STUDI PERBANDINGAN EFEKTIVITAS BERBAGAI MODEL TUBE PENUKAR KALOR SEBAGAI SISTEM PEMULIHAN LIMBAH PANAS

  • Nicolas Titahelu Universitas Pattimura https://orcid.org/0000-0003-1791-5656
  • Jandri Louhenapessy Universitas Pattimura
  • Samy Junus Litiloly Universitas Pattimura
  • Arson Arson Universitas Pattimura
Keywords: Effectiveness of heat exchanger, serpentine tube, parallel tube, helical tube, waste heat recovery

Abstract

Fokus utama penelitian ini adalah memodifikasi tube pipa lurus menggunakan berbagai model (serpentin, paralel dan helikal) tube penukar kalor sebagai sistem pemulihan limbah panas yang berasal dari generator listrik 5 kVa, Penelitian ini bertujuan untuk mendapatkan kecepatan udara sisi shell yang efektif, dimana efektivitas berbagai model (serpentin, paralel dan helikal) tube penukar kalor yang maksimal. Kecepatan udara sisi shell bervariasi dari 0.5 hingga 2.5 m/s pada panjang shell penukar kalor konstan. Pencatatan data berupa suhu, kecepatan udara sisi shell, dan laju aliran massa fluida panas (gas bekas) setelah tercapai kondisi tunak. Metode penelitian ini menggunakan kajian simulasi berdasarkan data eksperimen. Hasil penelitian menunjukkan bahwa efektivitas menurun dengan peningkatan kecepatan udara sisi shell, dimana efektivitas maksimum pada kecepatan udara minimum untuk ketiga model (serpentin, paralel dan helikal) tube penukar kalor masing-masing sebesar 50.2%, 57.1% dan 84.7%. Dapat disimpulkan bahwa model tube helikal paling efektif dimana efektivitas penukar kalor maksimum pada kecepatan udara sisi shell 0.5 m/s dan dapat digunakan selanjutnya dalam aplikasi.

 

Downloads

Download data is not yet available.

References

A. Mahmoudi, M. Fazli, and M. R. Morad, “A recent review of waste heat recovery by Organic Rankine Cycle,” Appl. Therm. Eng., vol. 143, no. July, pp. 660–675, 2018, doi: 10.1016/j.applthermaleng.2018.07.136.

T. E. Bimanatya and T. Widodo, “Fossil fuels consumption, carbon emissions, and economic growth in Indonesia,” Int. J. Energy Econ. Policy, vol. 8, no. 4, pp. 90–97, 2018.

E. Abokyi, P. Appiah-Konadu, F. Abokyi, and E. F. Oteng-Abayie, “Industrial growth and emissions of CO2 in Ghana: The role of financial development and fossil fuel consumption,” Energy Reports, vol. 5, pp. 1339–1353, 2019, doi: 10.1016/j.egyr.2019.09.002.

Y. W. Huang, M. Q. Chen, and L. Jia, “Assessment on thermal behavior of municipal sewage sludge thin-layer during hot air forced convective drying,” Appl. Therm. Eng., vol. 96, pp. 209–216, Mar. 2016, doi: 10.1016/j.applthermaleng.2015.11.090.

R. Moreira, F. Chenlo, J. Sineiro, S. Arufe, and S. Sexto, “Water Sorption Isotherms and Air Drying Kinetics of Fucus vesiculosus Brown Seaweed,” J. Food Process. Preserv., vol. 41, no. 4, Aug. 2017, doi: 10.1111/jfpp.12997.

M. Stramarkou, S. Papadaki, K. Kyriakopoulou, and M. Krokida, “Effect of drying and extraction conditions on the recovery of bioactive compounds from Chlorella vulgaris,” J. Appl. Phycol., vol. 29, no. 6, pp. 2947–2960, 2017, doi: 10.1007/s10811-017-1181-8.

E. Uribe et al., “Effect of drying methods on bioactive compounds, nutritional, antioxidant, and antidiabetic potential of brown alga Durvillaea antarctica,” Dry. Technol., vol. 38, no. 14, pp. 1915–1928, Oct. 2020, doi: 10.1080/07373937.2019.1679830.

M. H. Masud, A. A. Ananno, A. M. E. Arefin, R. Ahamed, P. Das, and M. U. H. Joardder, “Perspective of biomass energy conversion in Bangladesh,” Clean Technologies and Environmental Policy, vol. 21, no. 4. Springer Verlag, pp. 719–731, May 15, 2019. doi: 10.1007/s10098-019-01668-2.

I. B. Alit, I. G. B. Susana, and I. M. Mara, “Utilization of rice husk biomass in the conventional corn dryer based on the heat exchanger pipes diameter,” Case Stud. Therm. Eng., vol. 22, Dec. 2020, doi: 10.1016/j.csite.2020.100764.

M. C. Ndukwu, M. Simo-Tagne, F. I. Abam, O. S. Onwuka, S. Prince, and L. Bennamoun, “Exergetic sustainability and economic analysis of hybrid solar-biomass dryer integrated with copper tubing as heat exchanger,” Heliyon, vol. 6, no. 2, Feb. 2020, doi: 10.1016/j.heliyon.2020.e03401.

H. Hassan and S. Abo-Elfadl, “Experimental study on the performance of double pass and two inlet ports solar air heater (SAH) at different configurations of the absorber plate,” Renew. Energy, vol. 116, pp. 728–740, Feb. 2018, doi: 10.1016/j.renene.2017.09.047.

N. Titahelu, C. S. E. Tupamahu, and S. J. E. Sarwuna, “Evaluasi Kinerja Pelat Kolektor Datar Dengan Berbagai Model Tube Kolektor Sebagai Pemanas Air Surya Aktif,” ALE Proceeding, vol. 5, pp. 53–58, 2022, doi: 10.30598/ale.5.2022.53-58.

N. S. F. Syatauw, A. Simanjuntak, and N. Titahelu, “Analisis kinerja panel surya akibat pendinginan aktif,” Isometri, vol. 2, no. 1, 2023.

W. M. Rumaherang, “Pengaruh rasio diameter terhadap parameter-parameter energi turbin arus laut horizontal,” Din. Tek. Mesin, vol. 10, no. 1, p. 1, 2020, doi: 10.29303/dtm.v10i1.306.

W. M. Rumaherang, B. Laconawa, N. Titahelu, and J. Louhenapessy, “Kajian Perbandingan Performance Energi Turbin Angin Model Ducted Dengan Un-Ducted,” J. Tek. Mesin, Elektro, Inform. Kelaut. dan Sains, vol. 2, no. 1, pp. 56–64, 2022, doi: 10.30598/metiks.2022.2.1.56-64.

P. Wan, L. Gong, and Z. Bai, “Thermodynamic analysis of a geothermal-solar flash-binary hybrid power generation system,” in Energy Procedia, Elsevier Ltd, 2019, pp. 3–8. doi: 10.1016/j.egypro.2019.01.023.

M. Sandali, A. Boubekri, D. Mennouche, and N. Gherraf, “Improvement of a direct solar dryer performance using a geothermal water heat exchanger as supplementary energetic supply. An experimental investigation and simulation study,” Renew. Energy, vol. 135, pp. 186–196, May 2019, doi: 10.1016/j.renene.2018.11.086.

Y. Yao, J. H. Xu, and D. Q. Sun, “Untangling global levelised cost of electricity based on multi-factor learning curve for renewable energy: Wind, solar, geothermal, hydropower and bioenergy,” J. Clean. Prod., vol. 285, Feb. 2021, doi: 10.1016/j.jclepro.2020.124827.

R. Loni, G. Najafi, E. Bellos, F. Rajaee, Z. Said, and M. Mazlan, “A review of industrial waste heat recovery system for power generation with Organic Rankine Cycle: Recent challenges and future outlook,” J. Clean. Prod., vol. 287, p. 125070, 2021, doi: 10.1016/j.jclepro.2020.125070.

G. V. Ochoa, J. P. Rojas, and J. D. Forero, “Advance Exergo-economic analysis of a waste heat recovery system using ORC for a bottoming natural gas engine,” Energies, vol. 13, no. 1, 2020, doi: 10.3390/en13010267.

C. Wang, Q. Li, C. Wang, Y. Zhang, and W. Zhuge, “Thermodynamic analysis of a hydrogen fuel cell waste heat recovery system based on a zeotropic organic Rankine cycle,” Energy, vol. 232, p. 121038, 2021, doi: 10.1016/j.energy.2021.121038.

O. Arsenyeva, J. J. Klemeš, P. Kapustenko, O. Fedorenko, S. Kusakov, and D. Kobylnik, “Plate heat exchanger design for the utilisation of waste heat from exhaust gases of drying process,” Energy, vol. 233, Oct. 2021, doi: 10.1016/j.energy.2021.121186.

O. Chibuike, D. N. Olisaemeka Chukwudozie, D. N. Nnaemeka Reginald, D. O. Chukwunenye Anthony, D. I. Onyechege Johnson, and P. E. Enyioma Anyanwu, “ENERGY CONSUMPTION OF YAM SLICE DRYING IN AN EXHAUST GAS WASTE HEAT RECOVERY HOT AIR TRAY DRYER,” Sci. Res. J., vol. 9, no. 8, pp. 1–7, Aug. 2021, doi: 10.31364/scirj/v9.i08.2021.p0821872.

A. Akbari, S. Kouravand, and G. Chegini, “Experimental analysis of a rotary heat exchanger for waste heat recovery from the exhaust gas of dryer,” Appl. Therm. Eng., vol. 138, pp. 668–674, Jun. 2018, doi: 10.1016/j.applthermaleng.2018.04.103.

M. Aktaş, L. Taşeri, S. Şevik, M. Gülcü, G. Uysal Seçkin, and E. C. Dolgun, “Heat pump drying of grape pomace: Performance and product quality analysis,” Dry. Technol., vol. 37, no. 14, pp. 1766–1779, 2019, doi: 10.1080/07373937.2018.1536983.

A. E. Arefin, M. H. Masud, M. U. H. Joardder, and M. Mourshed, “Waste heat recovery systems for internal combustion engines : A review,” Int. Conf. Mech. Eng. Appl. Sci., no. February, pp. 3–5, 2017.

M. Masud et al., “Feasibility of utilizing waste heat in drying of plant-based food materials Renewable Energy View project Intermittent Microwave convective drying View project Feasibility of utilizing waste heat in drying of plant-based food materials,” Int. Conf. Mech. Ind. Mater. Eng., vol. 2017, 2017, [Online]. Available: https://www.researchgate.net/publication/325321933

J. D. Abraham, A. S. Dhoble, and C. K. Mangrulkar, “Numerical analysis for thermo-hydraulic performance of staggered cross flow tube bank with longitudinal tapered fins,” Int. Commun. Heat Mass Transf., vol. 118, Nov. 2020, doi: 10.1016/j.icheatmasstransfer.2020.104905.

M. S. Khan and A. Singhai, “THERMAL ANALYSIS OF CORRUGATED PLATE HEAT EXCHANGER BY USING ANSYS SOFTWARE THROUGH FEA METHOD,” pp. 2200–2210, 2019.

F. J. Gómez-de la Cruz, J. M. Palomar-Carnicero, Q. Hernández-Escobedo, and F. Cruz-Peragón, “Determination of the drying rate and effective diffusivity coefficients during convective drying of two-phase olive mill waste at rotary dryers drying conditions for their application,” Renew. Energy, vol. 153, pp. 900–910, Jun. 2020, doi: 10.1016/j.renene.2020.02.062.

H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, and S. A. Tassou, “Waste heat recovery technologies and applications,” Thermal Science and Engineering Progress, vol. 6. Elsevier Ltd, pp. 268–289, Jun. 01, 2018. doi: 10.1016/j.tsep.2018.04.017.

C. Wang, Z. Cui, H. Yu, K. Chen, and J. Wang, “Intelligent optimization design of shell and helically coiled tube heat exchanger based on genetic algorithm,” Int. J. Heat Mass Transf., vol. 159, Oct. 2020, doi: 10.1016/j.ijheatmasstransfer.2020.120140.

N. Titahelu, J. Latuny, C. S. E. Tupamahu, and S. J. E. Sarwuna, “Pitch ratio effect on the effectiveness of condenser for essential oil distillation,” J. Energy, Mech. Mater. Manuf. Eng., vol. 6, no. 2, pp. 145–154, 2021.

G. Kumar, Gagandeep, A. Kumar, N. A. Ansari, and M. Zunaid, “Comparative numerical study of flow characteristics in shell & helical coil heat exchangers with hybrid models,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 10831–10836. doi: 10.1016/j.matpr.2021.01.775.

A. D. Tuncer, A. Sözen, A. Khanlari, E. Y. Gürbüz, and H. İ. Variyenli, “Analysis of thermal performance of an improved shell and helically coiled heat exchanger,” Appl. Therm. Eng., vol. 184, Feb. 2021, doi: 10.1016/j.applthermaleng.2020.116272.

N. Titahelu, D. S. Pelupessy, and A. F. Rumagutawan, “Meningkatkan efektivitas kondensor vertikal pipa helikal koil untuk destilasi minyak atsiri sereh,” J. Rekayasa Mesin, vol. 14, no. 1, pp. 235–249, 2023, doi: 10.21776/jrm.v14i1.1219.

B. Delpech, B. Axcell, and H. Jouhara, “Experimental investigation of a radiative heat pipe for waste heat recovery in a ceramics kiln,” Energy, vol. 170, pp. 636–651, Mar. 2019, doi: 10.1016/j.energy.2018.12.133.

M. Parsazadeh and X. Duan, “Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit,” Appl. Energy, vol. 216, no. October, pp. 142–156, 2018, doi: 10.1016/j.apenergy.2018.02.052.

T. W. Lim and Y. S. Choi, “Thermal design and performance evaluation of a shell-and-tube heat exchanger using LNG cold energy in LNG fuelled ship,” Appl. Therm. Eng., vol. 171, May 2020, doi: 10.1016/j.applthermaleng.2020.115120.

R. Said, N. Titahelu, and R. Ufie, “Analisis laju aliran massa fluida dingin terhadap efektivitas penukar kalor shell and tube destilasi minyak atsiri cengkeh (Syzygium aromaticum ),” in Archipelago Engineering (ALE), 2021, pp. 140–145.

M. H. Masud, T. Islam, M. U. H. Joardder, A. A. Ananno, and P. Dabnichki, “CFD analysis of a tube-in-tube heat exchanger to recover waste heat for food drying,” International Journal of Energy and Water Resources, vol. 3, no. 3. pp. 169–186, 2019. doi: 10.1007/s42108-019-00032-w.

M. M. Ellaban, M. A. Abdelrahman, M. R. Salem, M. A. Moawed, and K. M. Elshazly, “Study of Convective Heat Transfer and Pressure Drop Characteristics inside Shell and Semi-Circular Tubes Heat Exchanger,” J. Homepage.WWW.Feng.bu.edu, vol. 1, no. 39, pp. 39–45, 2019, [Online]. Available: https://www.researchgate.net/publication/333203810

I. E. L. Ghandouri, A. El Maakoul, M. Meziane, N. Choab, Y. Nairn, and S. Saadeddine, “Numerical study of shell and tube heat exchangers with different baffle cuts,” in Proceedings of 2018 6th International Renewable and Sustainable Energy Conference, IRSEC 2018, Institute of Electrical and Electronics Engineers Inc., Jul. 2018. doi: 10.1109/IRSEC.2018.8702876.

X. L. Tian, H. Jin, K. W. Song, L. C. Wang, S. Liu, and L. B. Wang, “Effects of fin pitch and tube diameter on the air-side performance of tube bank fin heat exchanger with the fins punched plane and curved rectangular vortex generators,” Exp. Heat Transf., vol. 31, no. 4, pp. 297–316, Jul. 2018, doi: 10.1080/08916152.2017.1410503.

T. A. Tahseen, M. Ishak, and M. M. Rahman, “An overview on thermal and fluid flow characteristics in a plain plate finned and un-finned tube banks heat exchanger,” Renewable and Sustainable Energy Reviews, vol. 43. Elsevier Ltd, pp. 363–380, 2015. doi: 10.1016/j.rser.2014.10.070.

J. Xu, J. Li, Y. Ding, Q. Fu, M. Cheng, and Q. Liao, “Numerical simulation of the flow and heat-transfer characteristics of an aligned external three-dimensional rectangular-finned tube bank,” Appl. Therm. Eng., vol. 145, pp. 110–122, Dec. 2018, doi: 10.1016/j.applthermaleng.2018.09.022.

M. J. Ashraf, H. M. Ali, H. Usman, and A. Arshad, “Experimental passive electronics cooling: Parametric investigation of pin-fin geometries and efficient phase change materials,” Int. J. Heat Mass Transf., vol. 115, pp. 251–263, Dec. 2017, doi: 10.1016/j.ijheatmasstransfer.2017.07.114.

L. Chai and S. A. Tassou, “A review of airside heat transfer augmentation with vortex generators on heat transfer surface,” Energies, vol. 11, no. 10. MDPI AG, Oct. 01, 2018. doi: 10.3390/en11102737.

S. Bhattacharyya, A. C. Benim, M. Pathak, S. Chamoli, and A. Gupta, “Thermohydraulic characteristics of inline and staggered angular cut baffle inserts in the turbulent flow regime,” J. Therm. Anal. Calorim., vol. 140, no. 3, pp. 1519–1536, May 2020, doi: 10.1007/s10973-019-09094-8.

A. M. González, M. Vaz, and P. S. B. Zdanski, “A hybrid numerical-experimental analysis of heat transfer by forced convection in plate-finned heat exchangers,” Appl. Therm. Eng., vol. 148, pp. 363–370, Feb. 2019, doi: 10.1016/j.applthermaleng.2018.11.068.

C. K. Mangrulkar, A. S. Dhoble, J. D. Abraham, and S. Chamoli, “Experimental and numerical investigations for effect of longitudinal splitter plate configuration for thermal-hydraulic performance of staggered tube bank,” Int. J. Heat Mass Transf., vol. 161, Nov. 2020, doi: 10.1016/j.ijheatmasstransfer.2020.120280.

N. Galanis, E. Cayer, P. Roy, E. S. Denis, and M. Désilets, “Electricity generation from low temperature sources,” J. Appl. Fluid Mech., vol. 2, no. 2, pp. 55–67, 2009, doi: 10.36884/jafm.2.02.11870.

L. Miró, J. Gasia, and L. F. Cabeza, “Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review,” Appl. Energy, vol. 179, pp. 284–301, 2016, doi: 10.1016/j.apenergy.2016.06.147.

M. Wahlroos, M. Pärssinen, J. Manner, and S. Syri, “Utilizing data center waste heat in district heating – Impacts on energy efficiency and prospects for low-temperature district heating networks,” Energy, vol. 140, pp. 1228–1238, 2017, doi: 10.1016/j.energy.2017.08.078.

M. Papapetrou, G. Kosmadakis, A. Cipollina, U. La Commare, and G. Micale, “Industrial waste heat: Estimation of the technically available resource in the EU per industrial sector, temperature level and country,” Appl. Therm. Eng., vol. 138, pp. 207–216, 2018, doi: 10.1016/j.applthermaleng.2018.04.043.

Z. Su et al., “Opportunities and strategies for multigrade waste heat utilization in various industries: A recent review,” Energy Convers. Manag., vol. 229, no. January, p. 113769, 2021, doi: 10.1016/j.enconman.2020.113769.

M. H. Masud, A. A. Ananno, N. Ahmed, P. Dabnichki, and K. N. Salehin, “Experimental investigation of a novel waste heat based food drying system,” J. Food Eng., vol. 281, Sep. 2020, doi: 10.1016/j.jfoodeng.2020.110002.

E. Tian, Y. L. He, and W. Q. Tao, “Research on a new type waste heat recovery gravity heat pipe exchanger,” Appl. Energy, vol. 188, pp. 586–594, 2017, doi: 10.1016/j.apenergy.2016.12.029.

Y. Qin, H. Fu, J. Wang, M. Liu, and J. Yan, “Waste heat and water recovery characteristics of heat exchangers for dryer exhaust,” Dry. Technol., vol. 36, no. 6, pp. 709–722, Apr. 2018, doi: 10.1080/07373937.2017.1351451.

Z. Cheng, Z. Tan, Z. Guo, J. Yang, and Q. Wang, “Technologies and fundamentals of waste heat recovery from high-temperature solid granular materials,” Applied Thermal Engineering, vol. 179. Elsevier Ltd, Oct. 01, 2020. doi: 10.1016/j.applthermaleng.2020.115703.

H. Gürbüz and D. Ateş, “A numerical Study on Processes of Charge and Discharge of Latent Heat Energy Storage System Using RT27 Paraffin Wax for Exhaust Waste Heat Recovery in a SI Engine,” Int. J. Automot. Sci. Technol., vol. 4, pp. 314–327, 2020, doi: 10.30939/ijastech..800856.

A. Baroutaji et al., “Advancements and prospects of thermal management and waste heat recovery of PEMFC,” Int. J. Thermofluids, vol. 9, p. 100064, 2021, doi: 10.1016/j.ijft.2021.100064.

H. Ma et al., “Assessment of the optimum operation conditions on a heat pipe heat exchanger for waste heat recovery in steel industry,” Renew. Sustain. Energy Rev., vol. 79, no. March, pp. 50–60, 2017, doi: 10.1016/j.rser.2017.04.122.

B. K. Roomi, “Experimental and theoretical study of waste heat recovery from a refrigeration system using a finned helical coil heat exchanger,” no. February, 2020, doi: 10.1002/htj.21788.

A. A. Ayare and S. D. Anjarlekar, “Experimental Study on Helical Coil Heat Exchanger,” vol. 7, no. 5, pp. 56–59, 2017.

R. Kong, A. Asanakham, T. Deethayat, and T. Kiatsiriroat, “Heat transfer characteristics of deionized water-based graphene nanofluids in helical coiled heat exchanger for waste heat recovery of combustion stack gas,” 2018.

R. Kong, T. Deethayat, A. Asanakham, and T. Kiatsiriroat, “Heat transfer phenomena on waste heat recovery of combustion stack gas with deionized water in helical coiled heat exchanger,” Case Stud. Therm. Eng., vol. 12, pp. 213–222, Sep. 2018, doi: 10.1016/j.csite.2018.04.010.

R. Kong, T. Deethayat, and A. Asanakham, “Thermal Characteristics of Helical Coiled Heat Exchanger with Graphene-Deionized Water on Waste Heat Recovery of Combustion Stack Gas,” vol. 18, pp. 50–67, 2019.

P. Coronel and K. P. Sandeep, “Heat transfer coefficient in helical heat exchangers under turbulent flow conditions,” Int. J. Food Eng., vol. 4, no. 1, 2008, doi: 10.2202/1556-3758.1209.

N. D. Shirgire1 and P. Vishwanath Kumar, “Review on Comparative Study between Helical Coil and Straight Tube Heat Exchanger,” IOSR J. Mech. Civ. Eng. (IOSR-JMCE, vol. 8, no. 2, pp. 55–59, 2013, [Online]. Available: www.iosrjournals.org

D. G. Prabhanjan, G. S. V Ragbavan, T. J. Kennic, J. P. Hartnett, and W. J. Minkowycz, “COMPARISON OF HEAT TRANSFER RATES BETWEEN A STRAIGHT TUBE HEAT EXCHANGER AND A HELICALLY COILED HEAT EXCHANGER.”

S. R. Gurav, “Parametric Comparison of Heat Transfer in Helical and Straight Tube-In-Tube Heat Exchanger,” 2013. [Online]. Available: www.ijsr.net

R. N. Xu, F. Luo, and P. X. Jiang, “Experimental research on the turbulent convection heat transfer of supercritical pressure CO2 in a serpentine vertical mini tube,” Int. J. Heat Mass Transf., vol. 91, pp. 552–561, 2015, doi: 10.1016/j.ijheatmasstransfer.2015.08.001.

H. Mirgolbabaei, “Numerical investigation of vertical helically coiled tube heat exchangers thermal performance,” Appl. Therm. Eng., vol. 136, pp. 252–259, 2018, doi: 10.1016/j.applthermaleng.2018.02.061.

X. Cui, J. Guo, X. Huai, H. Zhang, K. Cheng, and J. Zhou, “Numerical investigations on serpentine channel for supercritical CO2 recuperator,” Energy, vol. 172, pp. 517–530, Apr. 2019, doi: 10.1016/j.energy.2019.01.148.

S. A. Nada, R. Khater, and M. A. Mahmoud, “Thermal characteristics enhancement of helical cooling-dehumidifying coils using strips fins,” Therm. Sci. Eng. Prog., vol. 16, May 2020, doi: 10.1016/j.tsep.2020.100482.

N. Titahelu, “Perpindahan kalor konveksi natural dari silinder horisontal isothermal set dalam saluran vertikal,” J. Tek. Mesin, Elektro, Inform. Kelaut. dan Sains, vol. 1, no. 1, pp. 30–38, 2021, doi: 10.30598/metiks.2021.1.1.30-38.

M. S. SADEGHIPOUR and M. ASHEGHI, “Free convection heat transfer from arrays of vertically separated horizontal cylinders at low Rayleigh numbers,” Internatonal J. Heat Mass Transf., vol. 37, pp. 103–109, 1994.

S. R. Yan et al., “A critique of effectiveness concept for heat exchangers; theoretical-experimental study,” Int. J. Heat Mass Transf., vol. 159, Oct. 2020, doi: 10.1016/j.ijheatmasstransfer.2020.120160.

S. A. Nada, H. F. Elattar, A. Fouda, and H. A. Refaey, “Numerical investigation of heat transfer in annulus laminar flow of multi tubes-in-tube helical coil,” Heat Mass Transf. und Stoffuebertragung, vol. 54, no. 3, pp. 715–726, Mar. 2018, doi: 10.1007/s00231-017-2163-8.

D. Mondal, M. O. Ikram, M. F. Rabbi, and M. N. A. Moral, “Experimental Investigation and Comparison of Bend Tube Parallel & Counter Flow and Cross Flow Water to Air Heat Exchanger,” Int. J. Sci. Eng. Res., vol. 5, no. 7, pp. 686–695, 2014.

S. Rostami, A. S. A. Hamid, K. Sopian, H. Jarimi, A. Bassim, and A. Ibrahim, “Heat Transfer Analysis of the Flat Plate Solar Thermal Collectors with Elliptical and Circular Serpentine Tubes,” Appl. Sci., vol. 12, no. 9, 2022, doi: 10.3390/app12094519.

Ł. Amanowicz and J. Wojtkowiak, “Approximated flow characteristics of multi-pipe earth-to-air heat exchangers for thermal analysis under variable airflow conditions,” Renew. Energy, vol. 158, pp. 585–597, 2020, doi: 10.1016/j.renene.2020.05.125.

N. H. Abu-Hamdeh, R. A. R. Bantan, and I. Tlili, “Analysis of the thermal and hydraulic performance of the sector-by-sector helically coiled tube heat exchangers as a new type of heat exchangers,” Int. J. Therm. Sci., vol. 150, Apr. 2020, doi: 10.1016/j.ijthermalsci.2019.106229.

A. Banasode, S. Valmiki, and V. S. Desai, “Design and Analysis of Bagasse Dryer to Recover Energy of Water Tube Boiler in a Sugar Factory,” Int. J. Innov. Technol. Res., vol. 5, no. 4, pp. 6645–6652, 2017.

A. Alimoradi and F. Veysi, “Prediction of heat transfer coefficients of shell and coiled tube heat exchangers using numerical method and experimental validation,” Int. J. Therm. Sci., vol. 107, pp. 196–208, Sep. 2016, doi: 10.1016/j.ijthermalsci.2016.04.010.

J. Fernández-Seara, C. Piñeiro-Pontevedra, and J. A. Dopazo, “On the performance of a vertical helical coil heat exchanger. Numerical model and experimental validation,” Appl. Therm. Eng., vol. 62, no. 2, pp. 680–689, 2014, doi: 10.1016/j.applthermaleng.2013.09.054.

M. Attalla and H. M. Maghrabie, “Investigation of effectiveness and pumping power of plate heat exchanger with rough surface,” Chem. Eng. Sci., vol. 211, Jan. 2020, doi: 10.1016/j.ces.2019.115277.

M. S. Mahdi, H. B. Mahood, A. A. Khadom, A. N. Campbell, M. Hasan, and A. O. Sharif, “Experimental investigation of the thermal performance of a helical coil latent heat thermal energy storage for solar energy applications,” Therm. Sci. Eng. Prog., vol. 10, pp. 287–298, May 2019, doi: 10.1016/j.tsep.2019.02.010.

A. S. Rao, S. Sujeesh, A. Sanyal, P. K. Tewari, and L. M. Gantayet, “Effect of agitation speed and fluid velocity on heat transfer performance in agitated Bunsen reactor of iodine-sulphur thermo-chemical cycle,” Int. J. Nucl. Hydrog. Prod. Appl., vol. 3, no. 1, p. 65, 2016, doi: 10.1504/ijnhpa.2016.078425.

R. Ramesh, S. N. Murugesan, C. Narendran, and R. Saravanan, “Experimental investigations on shell and helical coil solution heat exchanger in NH3-H2O vapour absorption refrigeration system (VAR),” Int. Commun. Heat Mass Transf., vol. 87, pp. 6–13, Oct. 2017, doi: 10.1016/j.icheatmasstransfer.2017.06.010.

Published
2023-10-31
How to Cite
Titahelu, N., Louhenapessy, J., Litiloly, S., & Arson, A. (2023). STUDI PERBANDINGAN EFEKTIVITAS BERBAGAI MODEL TUBE PENUKAR KALOR SEBAGAI SISTEM PEMULIHAN LIMBAH PANAS. ALE Proceeding, 6, 20-31. https://doi.org/10.30598/ale.6.2023.20-31