MEMPREDIKSI HARGA JUAL RUMPUT LAUT KERING PADA TINGKAT PETANI DENGAN DATA MINING
Abstract
Abstrak Eucheuma cotonii sebagai salah satu jenis rumput laut kering cottonii (Dried Euchema Seaweed (DES)) adalah salah satu komoditas perikanan budidaya utama di Indonesia. Petani lokal menanam, memanen, dan mengeringkan rumput laut, dan kemudian menjualnya ke pedagang. Harga jual rumput lauttergantung pada faktor internal dan eksternal. Untuk memaksimalkan keuntungan mereka, para petani harus memperkirakan perkembangan harga di masa mendatang dengan menggunakan faktor-faktor ini. Penelitian ini menyajikan metode berbasis data baru untuk memperkirakan harga DES di masa depan untuk membantu petani dalam membuat prediksi tersebut. Dalam metode kami , kami menerapkan data mining untuk tugas memprediksi harga jual rumput laut pada saat penjualan, delapan minggu ke depan. Algoritma data mining, yaitu, penggolong, membutuhkan atribut sebagai inputnya. Dalam percobaan kami, kami mengidentifikasi tiga faktor internal dan tiga faktor eksternal sebagai atribut masukan. Atribut internal faktor yang digunakan adalah: harga DES terkini, kadar kebersihan dari DES, dan kadar air dari DES. Tiga eksternal-faktor atribut semua berhubungan dengan cuaca dan suhu minimum, suhu maksimum, dan curah hujan yang. Semua atribut yang diukur setiap hari di hari d. Output dari classifier adalah prediksi, klasifikasi biner yang menunjukkan apakah rumput laut harga jual pada waktu d ditambah delapan minggu lebih besar atau lebih kecil dari harga pada saat itu d.
Downloads
References
Barrow, M. (2009). Statistics for Economics, Accounting and Business Studies (fifth ed.). London: Pearson Education Limited.
Baskar, S. S., Arockiam, L., Kumar, A. V., & Jeyasimman, L. (2010). Brief survey of Data Mining Techniques to Agriculture. Agricultural Journal, 5, 116-118. doi:10.3923/aj.2010.116.118
Chen, F. L., & Ou, T. Y. (2008). A Neural-Network-Based Forecasting Method for Ordering Perishable Food in Convenience Stores. Paper presented at the Proceedings of the 2008 Fourth International Conference on Natural Computation - Volume 02.
Chen, Y.-c., Rogoff, K. S., & Rossi, B. (2010).Predicting agri-commodity prices: an asset pricing approach (D. o. Economics, Trans.) (Vol.I, pp. 45). Washington: University of Washington. Enireddy, V., Varma, K. V. S. R. P., Rao, S. P., & Satapati, R. (2010). Prediction of rainfall using backpropagation neural network model. International Journal on Computer Science and Engineering (IJCSE), 02 1119-1121.
FAO. (2002). CWP Handbook of Fishery statistical standards Rome: FAO Fisherises and Aguaculture.
Fayyad, U., M. , Piatetsky-Shapiro, G., & Smyth, P.(1996). From data mining to knowledge discovery: an overview. In M. F. Usama, P.-S.Gregory, S. Padhraic & U. Ramasamy (Eds.), Advances in knowledge discovery and data mining (pp. 1-34): American Association for Artificial Intelligence.
Food Agriculture Organization (FAO). (2002). CWP Handbook of Fishery statistical standards Rome: FAO Fisherises and Aguaculture.
Gordon, D. V. (2010). Price modelling in the Canadian fish supply chain with forecast and simulation of the ex-vessel price of fish. Paper presented at the Food Agriculture Workshop (FAO) on Supply Chain, Tokyo.
Hand, D., Mannila, H., & Smyth, P. (2001).Principles of data mining. Massachusetts:Massachusetts Institute of Technology.
Hu, T., Zhang, X., Hou, Y., Mu, W., Fu, Z., Wang,L., et al. (2005). A Hybrid Model for Forecasting Aquatic Products Short-Term Price Integrated Wavelet Neural Network with Genetic Algorithm
Advances in Natural Computation (Vol. 3611, pp.429-429): Springer Berlin / Heidelberg.
Li, G.-q., Xu, S.-w., & Li, Z.-m. (2010). Short-Term Price Forecasting For Agro-products Using Artificial Neural Networks. Agriculture and Agricultural Science Procedia, 1(0), 278-287.
Liu, Y. (2002). A framework of data mining application process for credit scoring. Retrieved from www.wi.wiso.uni-goettingen.de website:Pelinggon, R. E., & Tito, O. D. (2009). Enhancing the
demands of AFNR graduates through curricular intervention using modular approach with high S & T Seaweed production
Philip, K. C., Wei, F., Andreas, L. P., & Salvatore, J.S. (1999). Distributed Data Mining in Credit Card Fraud Detection. IEEE Intelligent Systems, 14(6), 67-74. doi: 10.1109/5254.809570
Quinlan, R. J. (1993). C4.5 Programs for Machine Learning. Ruß, G., Kruse, R., Schneider, M., Wagner, P., & Perner, P. (2008). Data Mining with Neural Networks for Wheat Yield Prediction Advances in Data Mining. Medical Applications, E-Commerce, Marketing, and Theoretical Aspects (Vol. 5077, pp. 47-56): Springer Berlin /Heidelberg.
Seng, J.-L., & Chen, T. C. (2010). An analytic approach to select data mining for business decision. Expert Systems with Applications, 37(12), 8042-8057.
Tiroba, G. (2006). A practical guide for seaweed farmers, Seaweed extension officers, Buying agents, Fisheries officers and Exporters.: CoSPSI.
Trono, G. C. J. (1990). Lesson from the history of seaweed culture in the Philippines and the trend of seaweed farming in Southeast Asia. Paper presented at the The regional workshops on seaweed culture and marketing, Fiji.
Witten, I. A., Frank, E., & Hall, M. A. (2011). Data Mining practical machine learning tools and technique
Wolpert, D. H., & Macready, W. G. (1997). No Free Lunch Theorems for Optimization. IEEE Transaction on Evolutionary, I, 67-82.
Wu, X., Kuma, V., Quinlan, R. J., Ghosh, J., Yang,Q., Motoda, H., et al. (2007). The top 10 on Data Mining Algorithm. Retrieved from http://www.cs.uvm.edu/~icdm/algorithms/10Algorithms-08.pdf doi:DOI 10.1007/s10115-007-0114-2
Xiaoshuan, Z., Tao, H., Revell, B., & Zetian, F.(2005). A forecasting support system for aquatic products price in China. Expert Systems with Applications, 28(1), 119-126.
Yakup, K., Melek Acar, B., & mer Kaan, B. (2011).Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange. Expert Syst. Appl.,38(5), 5311-5319. doi:10.1016/j.eswa.2010.10.027
Zhang, W., Chen, H., & Wang, M. (2010). A forecast model of agricultural and livestock product price. Paper presented at the International federation for information processing (IFIP),Beijing.
An author who publishes in the ALE Proceeding agrees to the following terms:
- Author retains the copyright and grants ALE Proceeding the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-ShareAlike 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Author is able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book) with the acknowledgment of its initial publication in this journal.
- Author is permitted and encouraged to post his/her work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).
Read more about the Creative Commons Attribution-ShareAlike 4.0 Licence here: https://creativecommons.org/licenses/by-sa/4.0/.