PERFORMA MATERIAL DALAM MENYERAP PANAS DI RUSUN POLITEKNIK KELAUTAN DAN PERIKANAN SORONG
Abstract
Material peredam panas merupakan material alami atau sintetis yang diaplikasikan untuk menahan temperatur tinggi. Pada aplikasi sipil, guna mendapatkan kenyamanan dalam melakukan aktivitas sehari-hari material peredam panas banyak dipilih oleh karena kemampuan material tersebut. Di alam, banyak terkandung material peredam panas misalkan tanah, bebatuan mineral, dan lain sebagainya. Raw material tersebut, nantinya akan diolah atau dimanfaatkan langsung untuk diaplikasikan sebagai material peredam panas. Kota sorong merupakan sebuah kota yang memiliki kondisi paling kritis dan telah menjadi tantangan penting bagi banyak kota dalam permasalahan pulau panas perkotaan. Kondisi tersebut memacu timbulnya sebuah fenomena Urban Heat Island (UHI). Dalam upaya untuk mengurangi panas yang ditimbulkan, digunakan berbagai macam material untuk diaplikasikan di beberapa hal. Material tersebut diantaranya Material Beton Cor, Material Aspal, Material Tanah. Dalam penelitian ini, performa material dalam mengurangi panas ditentukan untuk ketiga material tersebut. Alat ukur yang digunakan adalah alat ukur yang umum digunakan untuk mengukur temperatur. Pengukuran dilakukan mulai dari pagi sampai malam. Hasil yang didapatkan bahwa material beton cor memiliki performa lebih baik dibanding dengan material jenis lain jika diaplikasikan sebagai atap dalam mengurangi panas. Sedangkan material aspal merupakan material yang baik jika diaplikasikan sebagai material jalan. Dengan temperatur rata-rata yang dihasilkan masing-masing material pagi = 〖32.5〗^0 C, siang = 〖60.2〗^0 C, sore = 〖34.7〗^0 C, dan malam = 〖31.0〗^0 C dan pagi = 〖30.0〗^0 C, siang = 〖33.4〗^0 C, sore = 〖29.4〗^0 C, dan malam = 〖28.5〗^0 C.
Downloads
References
Khamchiangta, D. and Dhakal, S., Time series analysis of land use and land cover changes related to urban heat island intensity: Case of Bangkok Metropolitan Area in Thailand, Journal of Urban Management 9, 383-395, 2020.
Landsberg, H.E., The Urban Climate. The Academic Press, London, New York, P196, 1981.
Rochaeti, E. Jul, D. Lilian, W. Dessi, and Moeljono. PENGARUH PANAS HIDRASI BETON DENGAN SEMEN TYPE II TERHADAP KETEBALAN ELEMEN BETON. Jurnal Teknik Sipil & Perencanaan 2, 183-194, 2014.
K. Widodo. (2002). PENGARUH LAMA WAKTU PEMANASAN MORTAR TERHADAP PRODUKSI KAPUR BEBAS. Prosiding Pertemuan Ilmiah Ilmu Pengetahuan dan Teknologi Bahan 2002.
Z. Lifeng, M. Rui, L. Junying, R. Shaoqin, Q. Xiaoqian, Y. Dongming, Q. Kuangliang, and W. Su., Performance buildup of concrete cured under low-temperatures: Use of a new nanocomposite accelerator and its application. Construction and Building Materials 335, 127529, 2022.
El-Mir. Abdulkader, J. Assaad J, and G. Nehme S., Correlating strength and durability to time-temperature profiles of high-performance mass concrete. Case Studies in Construction Materials 16, e01055, 2022.
Nguyen, M.H., Nishio, S., and Nakarai, K., Effect of temperature on nondestructive measurements for air permeability and water sorptivity of cover concrete. Construction and Building Materials 334, 127361, 2022.
Nida, A.D., Burhan M.K., and Ozcan A. Performance of glass powder substituted slag based geopolymer concretes under high temperature. Construction and Building Materials 331, 127318, 2022.
Xu. Zhenhuan, L. Jun, Q. Haimin, and W. Chengqing., Blast resistance of hybrid steel and polypropylene fibre reinforced ultra-high performance concrete after exposure to elevated temperatures. Composite Structures 294, 115771, 2022.
Pomerantz M, H. Akbari, S-C. Chang, R. Levinson, and B.Pon. (2003). “Examples of Cooler Reflective Streets for Urban Heat-Island Mitigation: Portland Cement Concrete and Chip Seals.” Report No. LBNL-49283, Lawrence Berkeley National Laboratory, Berkeley, CA.
Brennen. M, Tia, M, Altschaeffl. A.G., and Wood. L.E. (1999), Laboratory Investigation Of The Use Of Foamed Asphalt For Recycled Bituminous Pavements, Transportation Research Record 911, Washington, DC, TRB pp, 80-87.
Shi. W, Zhang. S, Wang. M., and Zheng. W., Design and performance analysis of soil temperature and humidity sensor. IFAC PapersOnLine, 51, 586-590, 2018.
Edhy. S.S., Hu. E., Kotousov. A., Riayatsyah. T.M.I., Khairil, and Hamdani., A new approach to modeling of seasonal soil temperature fluctuations and their impact on the performance of a shallow borehole heat exchanger. Case Studies in Thermal Engineering 22, 100781, 2020.
Copyright (c) 2022 Rezza Ruzuqi, Eko Tavip Maryanto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
An author who publishes in the ALE Proceeding agrees to the following terms:
- Author retains the copyright and grants ALE Proceeding the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-ShareAlike 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Author is able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book) with the acknowledgment of its initial publication in this journal.
- Author is permitted and encouraged to post his/her work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).
Read more about the Creative Commons Attribution-ShareAlike 4.0 Licence here: https://creativecommons.org/licenses/by-sa/4.0/.