EVALUASI KINERJA PELAT KOLEKTOR DATAR DENGAN BERBAGAI MODEL TUBE KOLEKTOR SENAGAI PEMANAS AIR SURYA AKTIF
Abstract
Peningkatan populasi global hampir empat kali lipat dalam satu abad terakhir, tetapi industrialisasi yang cepat, diikuti oleh urbanisasi dan standar hidup yang tinggi, menyebabkan peningkatan enam kali lipat yang mengejutkan pada konsumsi air dunia. Menurut PBB, diperkirakan 2,7 miliar orang akan kekurangan akses ke air minum yang aman dan sekitar 2/3 dari populasi dunia akan menghadapi kelangkaan air pada tahun 2025. Saat ini, hampir 1% dari penduduk dunia yang tinggal di daerah pesisir bergantung pada air tawar dihasilkan oleh desalinasi. Namun, desalinasi air membutuhkan jumlah energi yang besar, dapat merusak organisme laut, dan efisiensi desalinasi biasanya kurang dari 20%. Dalam mengatasi masalah tersebut akan dirancang beberapa model tube kolektor dan akan di uji dengan memvariasikan laju aliran massa fluida: 1232,217 Kg/s, 2464,433 Kg/s, 3696,65 Kg/s, 4928,867 Kg/s, 6161,083 Kg/s. Tujuan penelitian ini untuk mendapatkan konfigurasi paling optimal dari kolektor pelat datar. Hasil penelitian ini menunjukan model tube serpentin menghasilkan efisiensi tertinggi dengan 48,67 % pada laju aliran massa 6161,083 Kg/s.
Downloads
References
A. E. Kabeel, “Performance of solar still with a concave wick evaporation surface,” Energy, vol. 34, no. 10, pp. 1504–1509, 2009, doi: 10.1016/j.energy.2009.06.050.
S. S. Narayanan, A. Yadav, and M. N. Khaled, “A concise review on performance improvement of solar stills,” SN Appl. Sci., vol. 2, no. 3, 2020, doi: 10.1007/s42452-020-2291-5.
Y. Taamneh, A. M. Manokar, M. M. Thalib, A. E. Kabeel, R. Sathyamurthy, and A. J. Chamkha, “Extraction of drinking water from modified inclined solar still incorporated with spiral tube solar water heater,” J. Water Process Eng., vol. 38, no. September, p. 101613, 2020, doi: 10.1016/j.jwpe.2020.101613.
P. Rahdan, A. Kasaeian, and W. M. Yan, “Simulation and geometric optimization of a hybrid system of solar chimney and water desalination,” Energy Convers. Manag., vol. 243, no. May, p. 114291, 2021, doi: 10.1016/j.enconman.2021.114291.
P. Michael Joseph Stalin, T. V. Arjunan, M. M. Matheswaran, and N. Sadanandam, “Experimental and theoretical investigation on the effects of lower concentration CeO 2 /water nanofluid in flat-plate solar collector,” J. Therm. Anal. Calorim., vol. 135, no. 1, pp. 29–44, 2019, doi: 10.1007/s10973-017-6865-4.
A. K. Tiwari and G. N. Tiwari, “Thermal modeling based on solar fraction and experimental study of the annual and seasonal performance of a single slope passive solar still: The effect of water depths,” Desalination, vol. 207, no. 1–3, pp. 184–204, 2007, doi: 10.1016/j.desal.2006.07.011.
H. Kessentini, J. Castro, R. Capdevila, and A. Oliva, “Development of flat plate collector with plastic transparent insulation and low-cost overheating protection system,” Appl. Energy, vol. 133, pp. 206–223, 2014, doi: 10.1016/j.apenergy.2014.07.093.
M. Smyth, P. C. Eames, and B. Norton, “Evaluation of a freeze resistant integrated collector/stora ge solar water-heater for northern Europe,” Appl. Energy, vol. 68, no. 3, pp. 265–274, 2001, doi: 10.1016/S0306-2619(00)00049-0.
H. Vettrivel and P. Mathiazhagan, “Comparison study of solar flat plate collector with single and double glazing systems,” Int. J. Renew. Energy Res., vol. 7, no. 1, pp. 267–274, 2017, doi: 10.20508/ijrer.v7i1.5397.g6985.
M. M. Marmoush, H. Rezk, N. Shehata, J. Henry, and M. R. Gomaa, “A novel merging Tubular Daylight Device with Solar Water Heater – Experimental study,” Renew. Energy, vol. 125, pp. 947–961, 2018, doi: 10.1016/j.renene.2018.03.031.
D. Wang, X. Wang, Y. Chen, W. Kang, and Y. Liu, “Experimental study on performance test of serpentine flat plate collector with different pipe parameters and a new phase change collector,” Energy Procedia, vol. 158, pp. 738–743, 2019, doi: 10.1016/j.egypro.2019.01.197.
Copyright (c) 2022 Nicolas Titahelu, Cendy S. E. Tupamahu, Sefnath J. E. Sarwuna
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
An author who publishes in the ALE Proceeding agrees to the following terms:
- Author retains the copyright and grants ALE Proceeding the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-ShareAlike 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Author is able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book) with the acknowledgment of its initial publication in this journal.
- Author is permitted and encouraged to post his/her work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).
Read more about the Creative Commons Attribution-ShareAlike 4.0 Licence here: https://creativecommons.org/licenses/by-sa/4.0/.