KARAKTERISTIK GETARAN PADA DINDING KAPAL PENUMPANG BERMATERIAL FIBER REINFORCED PLASTIC AKIBAT OPERASIONAL MESIN INDUK

  • Debby R. Lekatompessy Universitas Pattimura
  • Christopher C. Titiheru Universitas Pattimura
  • Agustinus S. Titirloloby Universitas Pattimura
  • Dimas G. Panjaitan Universitas Pattimura
Keywords: Getaran, dinding kapal, redaman, amplitudo

Abstract

Salah satu sumber getaran pada kapal adalah akibat kerja mesin induk. Material struktur menjadi salah satu penentu besarnya amplitudo yang terjadi. Kapal monohull dengan penggunaan 3 mesin menjadi objek dari penelitian ini. Getaran pada dinding di ruang penumpang menjadi penting ketika amplitudo yang terjadi mengganggu penumpang di dalamnya. Karakteristik getaran perlu diketahui agar dapat dicarikan solusi untuk mengatasinya. Pengukuran getaran langsung di kapal menggunakan vibrometer dan dilanjutkan dengan menggunakan simulasi hingga diperoleh karakteristik getaran pada dinding kapal ini. Hasil pengukuran di lapangan menunjukkan angka amplitudo di atas 0,2 mm melebihi batas yang diijinkan yaitu 0,02 mm. Diperlukan simulasi untuk menggambarkan distribusi getaran pada dinding kapal. Hal ini untuk mempermudah proses analisa pola distribusi getaran . Hasil simulasi pada dinding kapal menunjukkan bahwa getaran dalam arah vertikal mempunyai nilai amplitudo yang lebih besar dan frekuensi lebih rendah dibandingkan arah getaran horisontal. Hal ini mengindikasikan konstruksi dalam keadaan buruk jika frekuensi natural dari sistem tersebut mendekati nilai frekuensi eksitasi akibat operasional mesin.  Getaran yang diteruskan dari sumber getaran tidak teredam dengan baik dalam arah vertikal. Hal ini ditunjukkan dengan besarnya nilai amplitudo yang mencapai 10 kali lebih besar dari amplitudo arah getaran horisontal. Penelitian ini menunjukkan diperlukan peredam pada bagian dinding kapal agar getaran dalam arah vertikal dapat dikurangi. Adapun cara meredam getaran dapat dilakukan dengan berbagai cara. Solusi untuk mengurangi getaran ini menjadi peluang untuk dilakukan penelitian lainnya.

Downloads

Download data is not yet available.

References

A. H. Ali, A. Gouda, H. M. Mohamed, M. H. Rabie, and B. Benmokrane, “Nonlinear finite elements modeling and experiments of FRP-reinforced concrete piles under shear loads,” Structures, vol. 28, pp. 106–119, Dec. 2020, doi: 10.1016/j.istruc.2020.08.047.

E. Monaldo, F. Nerilli, and G. Vairo, “Effectiveness of some technical standards for debonding analysis in FRP-concrete systems,” Composites Part B: Engineering, vol. 160, pp. 254–267, Mar. 2019, doi: 10.1016/j.compositesb.2018.10.022.

K. Dileep Kumar, S. B. Sarathchandra, S. M. Madhusudanprasad, and K. Prasad, “Effect of delamination on natural frequencies of laminated FRP composite plate,” Materials Today: Proceedings, Oct. 2022, doi: 10.1016/j.matpr.2022.09.376.

Z. Zhang et al., “Vibration-based assessment of delaminations in FRP composite plates,” Composites Part B: Engineering, vol. 144, pp. 254–266, Jul. 2018, doi: 10.1016/j.compositesb.2018.03.003.

X. Liu, Y. Wang, G. Wang, B. Yang, and R. Xu, “Dynamic analysis of RC beams externally bonded with FRP plates using state space method,” Engineering Structures, vol. 253, p. 113788, Feb. 2022, doi: 10.1016/j.engstruct.2021.113788.

N. Kharghani and C. Guedes Soares, “Experimental and numerical study of hybrid steel-FRP balcony overhang of ships under shear and bending,” Marine Structures, vol. 60, pp. 15–33, Jul. 2018, doi: 10.1016/j.marstruc.2018.03.003.

G. Vizentin and G. Vukelic, “Marine environment induced failure of FRP composites used in maritime transport,” Engineering Failure Analysis, vol. 137, p. 106258, Jul. 2022, doi: 10.1016/j.engfailanal.2022.106258.

K. Li, Y. Yu, Y. Wang, and Z. Hu, “Research on structural optimization method of FRP fishing vessel based on artificial bee colony algorithm,” Advances in Engineering Software, vol. 121, pp. 250–261, Jul. 2018, doi: 10.1016/j.advengsoft.2018.03.011.

T. Tafsirojjaman, A. Ur Rahman Dogar, Y. Liu, A. Manalo, and D. P. Thambiratnam, “Performance and design of steel structures reinforced with FRP composites: A state-of-the-art review,” Engineering Failure Analysis, vol. 138, p. 106371, Aug. 2022, doi: 10.1016/j.engfailanal.2022.106371.

H. Li et al., “Vibro-impact response of FRP sandwich plates with a foam core reinforced by chopped fiber rods,” Composites Part B: Engineering, vol. 242, p. 110077, Aug. 2022, doi: 10.1016/j.compositesb.2022.110077.

Y. Ouyang and C. Chen, “Research advances in the mechanical joining process for fiber reinforced plastic composites,” Composite Structures, vol. 296, p. 115906, Sep. 2022, doi: 10.1016/j.compstruct.2022.115906.

E. Avi, A. Laakso, J. Romanoff, H. Remes, and I. Lillemäe-Avi, “Coarse mesh finite element model for cruise ship global and local vibration analysis,” Marine Structures, vol. 79, p. 103053, Sep. 2021, doi: 10.1016/j.marstruc.2021.103053.

H. Wang, W. Jiang, Z. He, and W. Peng, “Analysis on surface mobility of an infinite beam-stiffened structure,” Applied Acoustics, vol. 172, p. 107590, Jan. 2021, doi: 10.1016/j.apacoust.2020.107590.

D. Chen, H. Zi, Y. Li, and X. Li, “Low frequency ship vibration isolation using the band gap concept of sandwich plate-type elastic metastructures,” Ocean Engineering, vol. 235, p. 109460, Sep. 2021, doi: 10.1016/j.oceaneng.2021.109460.

I. G. Akande, M. A. Fajobi, O. A. Odunlami, and O. O. Oluwole, “Exploitation of composite materials as vibration isolator and damper in machine tools and other mechanical systems: A review,” Materials Today: Proceedings, vol. 43, pp. 1465–1470, Jan. 2021, doi: 10.1016/j.matpr.2020.09.300.

L. Koutsoloukas, N. Nikitas, and P. Aristidou, “Passive, semi-active, active and hybrid mass dampers: A literature review with associated applications on building-like structures,” Developments in the Built Environment, vol. 12, p. 100094, Dec. 2022, doi: 10.1016/j.dibe.2022.100094.

Published
2022-10-17
How to Cite
Lekatompessy, D., Titiheru, C., Titirloloby, A., & Panjaitan, D. (2022). KARAKTERISTIK GETARAN PADA DINDING KAPAL PENUMPANG BERMATERIAL FIBER REINFORCED PLASTIC AKIBAT OPERASIONAL MESIN INDUK. ALE Proceeding, 5, 110-115. https://doi.org/10.30598/ale.5.2022.110-115