
 
Journal of Computer Science and Computational Intelligence 
November 2025 | Vol. 1 | No. 2 | Page 53-60 
E-ISSN: 3109-7383 P-ISSN: 3110-8393 

DOI: https://doi.org/10.30598/algorithm.v1i2.53-60                             
           

 

 

Algorithm – Journal of Computer Science and Computational Intelligence 

53 

 

Soil Moisture Prediction Model on Peatlands using Long Short-Term 

Memory 

Helda Yunita Taihuttu 1* Jemsri Stenli Batlajery2 

1 Department of Computer Science, Faculty of Science and Technology, Universitas Pattimura 
Jl. Ir. M. Putuhena, Ambon, 97233, Indonesia 

2 Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University 
Jl. Raya Dramaga, Bogor 16680, Indonesia 

*Corresponding author’s e-mail: *yunitahelda24@gmail.com 

 
 

Manuscript submitted:  
11th November 2025  

Manuscript revision: 
20th November 2025 

Accepted for publication:  
22nd November 2025 

 

Abstract 

Peatlands play an important role in maintaining global ecosystem balance, but are highly susceptible to fires due 

to decreased soil moisture. This study aims to predict soil moisture on peatlands using the Long Short-Term 

Memory algorithm as a time series learning model. The data used includes variables of soil moisture 

(GWETPROF), rainfall (PRECTOTCORR), and temperature (T2M) obtained from NASA Langley Research 

Center's Prediction of Worldwide Energy Resources (POWER) for the period from August 1, 2019, to December 

31, 2023. The preprocessing involved identifying and handling missing values using the mean imputation method 

and normalization with the Min-Max Scaling technique. Correlation analysis showed a weak relationship between 

variables, so all of them were used as independent features. The LSTM model was built with parameters of 50 

neurons, ReLU activation function, Adam optimizer, and a dropout rate of 0.2. The test results showed that the 

model was able to accurately predict water content with a MAE value of 0.005, MSE ≈ 0.000, RMSE of 0.014, and 

R² of 0.97 on the test data. These results indicate that LSTM is effective in capturing temporal patterns and 

fluctuations in soil moisture, making it a potential tool for more adaptive and data-driven peatland fire mitigation. 
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1. INTRODUCTION 
Indonesia has 24.67 million hectares of peatland that is prone to forest and land fires, causing 

greenhouse gas emissions and biodiversity loss [1]. Ogan Komering Ilir (OKI) Regency in South 
Sumatra is an area with a high frequency of fires and thousands of hotspots every [1], causing 
economic losses and threatening the ecological function of peat as a carbon sink[2]. 

Various studies show that soil moisture is a key indicator of fire [3], and [4] found a strong 
relationship between low soil moisture and increased fire occurrence in various countries. 
Meanwhile, Schaefer[5] showed that the relationship between soil moisture and fires depends on 
the type of land cover. However, previous studies have not focused on peatlands and have not been 
able to effectively handle real-time data fluctuations. 

To address these limitations, this study proposes the use of Long Short-Term Memory (LSTM), 
a deep learning model capable of handling long- and short-term dependencies in sequential data. 
This model will integrate soil moisture, rainfall, and temperature data to predict fire risk more 
accurately and adaptively to peatland conditions with varying degrees of maturity and thickness. 
The developed LSTM model is expected to improve real-time peatland fire prediction, support 
data-driven decision-making for fire mitigation, and contribute to global climate change mitigation 
efforts through emission reduction. 
 
2. RESEARCH METHODS 
2.1. Study Area 

The data in this study covers the Ogan Komering Ilir Regency in South Sumatra Province, an 
area of 19,023.47 km² that often experiences forest and land fires. Geographically, it is located 
between 104°20' East Longitude and 106°00' East Longitude and 2°30' South Latitude and 4°15' 
South Latitude. 

2.2. Research Data 
Soil Moisture, Rainfall, and Temperature Data: This data was collected from August 1, 2019, 

to December 31, 2023, using Prediction of Worldwide Energy Resources (POWER) provided by 
NASA Langley Research Center (LaRC) through their portal (https://power.larc.nasa.gov/data-

access-viewer). POWER has been available since 2003. This data has a resolution of ½° latitude × 
⅝° longitude for meteorological data sets, and the grid reference system is WGS84. Meteorological 
parameters are based on the MERRA-2 assimilation model. Details of the attributes of this data are 
presented in Table 1. 

Table 1. Dataset attributes for prediction 

Attributes Description 

LATITUDE 

LONGITUDE 

Date  

GWETPROF 

T2M 

PRECTOTCORR 

Latitude coordinates of station location (°) 

Longitude coordinates of station location (°) 

Date of soil moisture measurement 

Soil moisture (%) 

Temperature at 2 Meters (C) 

Rainfall (mm/day) 

Soil Moisture Active Passive (SMAP) is a NASA satellite project launched in January 2015 with 
the aim of measuring and mapping the moisture content of several inches of soil surface globally. 
This satellite has a temporal resolution that covers scanning every 2-3 days and a spatial resolution 
of 10x10 km. In this study, we used level 3 data from SMAP. 

  

https://power.larc.nasa.gov/data-access-viewer
https://power.larc.nasa.gov/data-access-viewer
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2.3. Research Stages 
This research was conducted in several stages, namely data collection, data preprocessing, 

data partition, modeling, and evaluation. The overall research process can be seen in Figure 1. 

 

Figure 1. Research Stages 

2.4. Data Preprocessing 
The data used for modeling, namely rainfall, temperature, and soil moisture time series data, 

were checked and handled for missing values and normalization, and the model was designed to 
predict conditions one day ahead, as short-term prediction provides higher accuracy and is more 
relevant for timely decision-making in environmental monitoring and early warning systems. 
Missing values were handled using mean imputation, and normalization was performed using min-
max normalization. Min-max normalization was calculated using Equation 1 [6]. 

𝑥′ =
𝑥−𝑥(min)

𝑥(max)−𝑥(min)
      (1) 

2.5. Long Short-Term memory (LSTM) 
The LSTM architecture was introduced by Hochreiter and Schmidhuber in 1997 as an 

improvement on the Recurrent Neural Network (RNN) to overcome the vanishing gradient 
problem through the addition of a memory cell component. This structure is designed so that the 
network is able to store and utilize long-term information, making it very suitable for modeling 
and predicting time series data. An illustration of the LSTM architecture is shown in Figure 2. 

 
Figure 2. LSTM Architecture [7] 

Based on Figure 2, LSTM has three main gates, namely the forget gate, input gate, and output 

gate. LSTM also has three inputs, namely 𝑥𝑡, 𝐶𝑡−1, and ℎ𝑡−1, two outputs, namely 𝑐𝑡 and ℎ𝑡, and a 
bias value 𝑏.  The following are the stages in the LSTM architecture [8] : 

1. Forgetting Layer (𝑓𝑡) 

This layer uses the sigmoid activation function (𝜎) which provides an output value between 
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0 and 1. This layer is tasked with determining whether the information from the previous output 

(ℎ𝑡−1) and the current input (𝑥𝑡) is relevant or not. Information that is considered relevant will 
be passed on, while irrelevant information will be forgotten. Equation 2 for the forgetting layer can 
be written as. 

 𝑓𝑡 = 𝜎(𝑊𝑓. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)     (2) 

2. Input gate (𝑖𝑡) 
The input gate also uses the sigmoid activation function to determine which part of the input 

information will be updated. The input gate can be seen in Equation 3.  

𝑖𝑡 = 𝜎(𝑊𝑖 . [ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)     (3) 

3. Candidate Layer (𝐶̃𝑡) 
This layer produces candidate values that will be used to update cell memory, using the tanh 

activation function. The candidate layer is calculated using Equation 4. 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 . [ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶    (4) 

4. Update Cell Memory (𝐶𝑡) 
The cell memory is updated by combining information from the forgetting layer and input 

gate, and integrating the new candidate from the candidate layer. Equation 5 is used to calculate 
the cell memory update. 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶̃𝑡     (5) 

5. Output gate (𝑜𝑡) 
The output gate determines the portion of the cell memory that will be sent to the output. It 

also uses the sigmoid activation function. The output gate calculation uses Equation 6. 

𝑜𝑡 = (𝑊𝑜. [ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)     (6) 

6. Output (ℎ𝑡) 
Finally, the output of the LSTM is calculated by multiplying the output from the output gate 

by the hyperbolic tangent value of the updated cell memory. The output value is calculated using 
Equation 7. 

ℎ𝑡 = 𝑜𝑡 × tanh (𝐶𝑡)      (7) 

2.6. Model Evaluation 
After the prediction model is generated, it will be evaluated. This study uses several evaluation 

metrics, namely R-square (R²), Mean Absolute Error (MAE), Mean Square Error (MSE), and Root 
Mean Square Error (RMSE). R² measures how well the model explains data variability. A value 
close to 1 indicates a better prediction. MAE calculates the average absolute error between the 
predicted and actual values. MSE calculates the average square error. RMSE is a technique often 
used to evaluate the difference between the actual value and the predicted result. MAE, MSE, and 
RMSE values closer to 0 indicate that the predictions are closer to the actual data. The R², MAE, 
MSE, and RMSE values can be calculated using Equation 8 [9], Equation 9[10] , Equation 10[10], 
and Equation 11[10]. 
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𝑅2  =
∑ (𝑦𝑡−𝑦̅)2𝑛

𝑡=1  − ∑ (𝑦𝑡−𝑡)2𝑛
𝑡=1

∑ (𝑦𝑡−𝑦̅)2𝑛
𝑡=1

     (8) 

𝑀𝐴𝐸 =  
1

𝑛
∑ 𝑦𝑡 −𝑛

𝑖=1  𝑦̂𝑡     (9) 

𝑀𝑆𝐸 =  
1

𝑛
  ∑ (𝑦𝑡 − 𝑦̂𝑡)2𝑛

𝑖=1      (10) 

RMSE =√
∑ (𝑦𝑡− 𝑦̂𝑡)2𝑛

𝑡=1

𝑛
      (11) 

Where: 

𝑦𝑡 = Observed value for observation 𝑡 

𝑦̂𝑡 = Predicted value for observation 𝑡 

𝑦̅  = Average of all observed values 

𝑛  = Number of data points 

3. RESULTS AND DISCUSSION 
3.1. Data Collection 

The data in this study was obtained through a download process from the Prediction of 

Worldwide Energy Resources (POWER) system developed and managed by NASA Langley 

Research Center (LaRC). The dataset includes three variables, namely soil moisture (GWETPROF), 

rainfall (PRECTOTCORR), and temperature (T2M). The data was collected in daily resolution for 

the period from July 1, 2019, to December 31, 2023, and has 1614 rows × 3 columns. 

3.2. Data Preprocessing 
Data preprocessing began with the identification and handling of missing values to ensure 

data completeness. Missing values were handled using the mean ach falls under the category of 
central tendency imputation, which is simple yet effective in maintaining a stable data distribution 
without changing the number of observations. An example of the results of missing value handling 
can be seen in Table 2. 

Table 2. Results of missing value handling 

Date 
Data Before Handling Data After Handling 

GWETPROF GWETPROF 

01/08/2019 0,86 0,86 

02/08/2019 0,86 0,86 

03/08/2019 0,85 0,85 

04/08/2019 0,85 0,85 

05/08/2019 0,84 0,84 

… … … 

27/12/2023 NaN 0.90509 

28/12/2023 NaN 0.90509 

29/12/2023 NaN 0.90509 

30/12/2023 NaN 0.90509 

31/12/2023 NaN 0.90509 
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Correlation analysis was performed on data that had undergone missing value handling to 
determine the relationship between the variables used in this study. The results of the correlation 
analysis between soil moisture (GWETPROF), temperature (T2M), and rainfall (PRECTOTCORR) 
are presented in Figure 3. 

 
Figure 3. Correlation between variables 

Figure 3 shows the results of the correlation analysis between climate variables, namely 
GWETPROF (soil moisture), T2M (temperature), and PRECTOTCORR (rainfall). The correlation 
value between GWETPROF and T2M of –0.29 indicates a weak negative relationship, suggesting 
that an increase in temperature tends to decrease soil moisture. The correlation between 
GWETPROF and PRECTOTCORR is 0.095, which is very weakly positive, while that between T2M 
and PRECTOTCORR is –0.029, which is almost unrelated. Overall, the three variables have weak 
relationships, so there is no indication of multicollinearity, and each can be used as an independent 
feature in the prediction model. 

3.3. Data Partition 
The data was divided into two parts, namely 80% as training data and 20% as test data, to 

ensure that the model could learn optimally and be evaluated objectively on data that was not used 
during training. 

3.4. Modeling with LSTM 
Soil moisture prediction modeling was carried out using the LSTM algorithms implemented 

with the Keras library based on TensorFlow in Python. The modeling process was carried out using 
the Long Short-Term Memory (LSTM) architecture with a series of optimal parameters. The 
parameters used were 50 neurons in the hidden layer to determine the network's capacity to 
capture temporal patterns, the ReLU activation function to regulate the model's non-linearity, the 
Adam optimizer to optimize weight updates during the training process, and a dropout rate of 0.2 
as a regularization technique to reduce the risk of overfitting, as well as using 50 epochs. 

After the model was obtained, it was then tested with test data to see the performance of the 
prediction model on data that had never been trained before. The visualization of the results 
(Figure 4) shows that the prediction curve (red) almost overlaps with the actual curve (blue) 
throughout the observation period, indicating that the LSTM model is able to recognize and predict 
soil moisture dynamics accurately, both when soil moisture is high at the beginning of the period 
and when it decreases sharply towards the end of the observation period. 
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Figure 4. Comparison of actual and predicted soil moisture values 

3.5. Model Evaluation 
The performance of the LSTM model was evaluated using R-square (R²), Mean Absolute Error 

(MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). The evaluation results 
can be seen in Figure 5 and Figure 6. 

 
Figure 5. Comparison of MAE, MSE, and RMSE values for training and test data 

 
Figure 6. Comparison of R² values for training and test data 

In Figure 5, it can be seen that the MAE (Mean Absolute Error) value for the training data is 
0.004 and for the test data is 0.005, while the MSE (Mean Squared Error) value is close to 0.000 in 
both datasets. The Root Mean Squared Error (RMSE) values are also relatively small, 0.005 for the 
training data and 0.014 for the test data. These low error values indicate that the difference 
between the predicted values and the actual values is very small, indicating that the model has 
high prediction accuracy and is stable in the learning process. 

Figure 6 shows a coefficient of determination (R²) value of 0.997 for the training data and 
0.970 for the test data. An R² value close to 1 indicates that the model is able to explain more than 
97% of the data variation in the test dataset, with a slight decrease compared to the training data. 
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This indicates that the model has excellent generalization capabilities and shows no signs of 
significant overfitting. 

Overall, these evaluation results reinforce that the LSTM model used has optimal 
performance, with a very low prediction error rate and high data pattern representation 
capabilities in both training and test data. 

4. CONCLUSION 
This study successfully developed a Long Short-Term Memory (LSTM)-based soil moisture 

prediction model for peatlands that shows excellent prediction performance with low error rates 
and high determination values. The model with a configuration of 50 neurons, ReLU activation, 
Adam optimizer, and 0.2 dropout was able to accurately recognize soil moisture dynamics patterns 
in both the increase and decrease phases. The MAE (0.005), RMSE (0.014), and R² (0.97) values 
indicate that the model is able to represent the complex relationship between climate factors and 
soil moisture very well. These findings confirm that the LSTM approach has great potential for 
application in early warning systems for peatland fires, particularly in vulnerable areas such as 
Ogan Komering Ilir Regency, and supports data-driven decision-making in climate change 
mitigation efforts. 
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