

Journal of Computer Science and Computational Intelligence
November 2025 | Vol. 1 | No. 2 | Page 61-68
E-ISSN: 3109-7383 P-ISSN: 3110-8393

DOI: https://doi.org/10.30598/algorithm.v1i2.61-68

Algorithm – Journal of Computer Science and Computational Intelligence

61

Programmer Logis: Analisis Peran Logika Informatika dalam Menulis

Kode Program yang Valid, Efisien, dan Solutif

(Analysis of the Role of Logic in Computer Science in Writing Valid, Efficient, and Solution-Oriented Program Code)

Rindy Marsya Mataheruila1, Citra Fathia Palembang 2, Dedy Ricardo Serumena3*
1,2Program Studi Ilmu Komputer, Fakultas Sains dan Teknologi, Universitas Pattimura

Jl. Ir. M. Putuhena, Ambon, 97233, Indonesia
*Corresponding author’s e-mail: * rserumena@gmail.com

Manuscript submitted:
18th November 2025

Manuscript revision:
22th November 2025

Accepted for publication:
25th November 2025

Abstract

The uncompromising pace of technological advancement demands that program code be written not merely to
function, but to be truly precise, efficient, and free from even the smallest errors. A single logical mistake can
trigger catastrophic system failures, compromise data integrity, and potentially endanger user safety. Through
the application of propositional logic, predicate logic, and the disciplined use of data structures and algorithms,
programmers are able to formalize programming languages and construct a code foundation that is resilient
to elementary errors. This journal critically highlights how propositional logic in informatics and control
structures such as if and else serve as decisive factors in determining code quality, enabling developers to
eliminate ambiguity and neutralize potential logical errors before they escalate into major issues. This study
employs a comparative case study approach by examining 50 code samples drawn from the Codeforces,
ManyBugs, and Bugs.jar datasets. The analysis is conducted by juxtaposing logically valid code with erroneous
(buggy) code using Truth Tables and Predicate Logic to validate algorithmic flow. The results demonstrate that
disciplined application of informatics logic significantly enhances program accuracy, efficiency, and stability.
Robust logical structures also substantially reduce debugging time. In conclusion, informatics logic is not
merely an academic concept, but an absolute foundation that determines whether software is fit for use or
instead becomes a threat to the system itself.

Keywords: Informatics Logic; Code, Writing; Programming; If-Else

This article is an open access article distributed under the terms and conditions of the

Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright © 2025
Journal homepage: https://ojs3.unpatti.ac.id/index.php/algorithm

Research Article Open Access

How to cite this article:

R. M. Mataheruila, C. F. Palembang and D. R. Serumena, “Programmer Logis: Analisis Peran Logika Informatika dalam Menulis
Kode Program yang Valid, Efisien, dan Solutif”, algorithm, vol. 1, no. 2, pp. 61-68, November 2025.

https://doi.org/10.30598/algorithm.v1i2.61-68
https://creativecommons.org/licenses/by-sa/4.0/

Algorithm - November 2025 | Vol. 1 | No.2 | Mataheruila, et al. Programmer Logis : Analisis Peran Logika…

Algorithm – Journal of Computer Science and Computational Intelligence

62

1. PENDAHULUAN
Dalam era digital saat ini, Menulis kode yang benar dan efisien adalah langkah utama dalam

memastikan kualitas perangkat lunak yang dikembangkan kode yang ditulis secara tepat tidak
hanya memastikan program berjalan sesuai dengan yang diharapkan, tetapi juga mempermudah
proses pemeliharaan dan pengembangan di masa depan. Selain itu, hal ini juga mengurangi risiko
kesalahan yang bisa berpengaruh buruk terhadap keamanan dan kestabilan sistem. Kesalahan
dalam penulisan kode seperti logika yang keliru dapat menyebabkan berbagai masalah serius,
mulai dari performa yang lambat, celah keamanan, hingga kegagalan sistem secara menyeluruh.
Penulisan kode perlu didasari oleh proses berpikir yang sistematis dan logis, agar hasilnya lebih
efektif dan terstruktur dengan baik [1] . Pada kenyataannya, banyak pengembang perangkat lunak
lebih fokus pada menguasai sintaksis bahasa pemrograman daripada memahami secara
mendalam logika informatika. Padahal, logika informatika adalah dasar dari cara berpikir
sistematis yang sangat membantu programmer dalam menyusun alur algoritma yang benar dan
efisien. Logika dan informatika menjadi peran utama dalam membangun pola pikir yang sistematis
dan terstruktur [2]. Dengan menerapkan prinsip-prinsip logika informatika, para programmer
dapat menulis kode yang tidak hanya efektif dan efisien, tetapi juga menghindari kesalahan logika
yang sering menjadi sumber utama bug dan kegagalan dalam sebuah program. Penggunaan logika
informatika juga berperan penting dalam perancangan algoritma yang tepat, memastikan setiap
langkah di dalam kode memiliki alasan dan tujuan yang jelas, sehingga proses pengembangan
perangkat lunak menjadi lebih terukur dan dapat diandalkan. Penguasaan logika, seperti logika
proposisional dan penerapan struktur kontrol seperti pernyataan if-else, memungkinkan
programmer dalam membuat keputusan yang benar dalam alur eksekusi program, serta mencegah
terjadinya kesalahan dalam penulisan kode [3].

Beberapa penelitian sebelumnya telah menyoroti pentingnya kualitas penulisan kode dan
menunjukkan bahwa teknik debugging sangat penting dalam meningkatkan keandalan perangkat
lunak [5]. Meskipun banyak penelitian yang telah dilakukan, sebagian besar lebih menekankan
aspek teknis seperti standar coding dan metode debugging, tanpa secara khusus membahas peran
logika informatika dalam proses penulisan kode [4]. Menyoroti pentingnya pemahaman algoritma,
belum menggali secara mendalam bagaimana prinsip logika proposisional dan struktur kontrol
diterapkan dalam praktik coding sehari-hari. Oleh karena itu, masih ada kekosongan penelitian
yang secara khusus mengkaji bagaimana penerapan logika informatika dapat membantu dalam
mengidentifikasi pola kesalahan menulis kode[6].

2. METODE PENELITIAN

2.1. Jenis dan Pendekatan Penelitian
Penelitian ini menggunakan jenis penelitian kualitatif dengan pendekatan studi kasus untuk

mengkaji peran logika informatika dalam penulisan kode yang benar dan efektif. Pendekatan Studi
kasus dipilih karena metode ini memungkinkan analisis mendalam terhadap fenomena yang
terjadi dalam konteks nyata, yaitu praktik penulisan kode oleh programmer pada berbagai sumber
yang tersedia secara online. Penelitian akan berfokus pada kode program (struktur sintaksis dan
semantik), logika algoritma yang mendasari kode, kesalahan logika dalam kode yang sering terjadi,
dan penerapan struktur logika (misalnya, kondisi, perulangan, fungsi) dalam penulisan kode yang
efektif.

2.2. Objek Penelitian

Penelitian ini akan berfokus pada beberapa elemen kunci agar dapat memahami secara
mendalam peran logika informatika dan kualitas kode program. Berikut merupakan objek-objek
yang diteliti yaitu:

1. Kode program (struktur sintaksis dan semantik), Ini merupakan bagian utama dari
penelitian ini, yang mencakup baris-baris instruksi langsung yang ditulis dalam bahasa

Algorithm - November 2025 | Vol. 1 | No.2 | Mataheruila, et al. Programmer Logis : Analisis Peran Logika…

Algorithm – Journal of Computer Science and Computational Intelligence

63

pemrograman tertentu. Analisisnya akan meliputi struktur sintaksis dan semantik dari
kode tersebut, serta bagaimana kode tersebut mengimplementasikan solusi tertentu. Kami
juga akan meninjau bagaimana elemen-elemen seperti variabel, operator, fungsi, dan kelas
tersusun dan saling berinteraksi[7].

2. Logika algoritma yang mendasari kode, Objek ini mengacu pada cara berpikir serta
langkah-langkah yang disusun untuk menemukan solusi atas suatu masalah. Kami akan
menelusuri bagaimana prinsip dasar seperti logika proposisional dan predikat, induksi
matematika, rekursi, serta struktur data abstrak diubah menjadi algoritma yang efektif dan
akurat dalam kode program[8].

3. Kesalahan logika dalam kode yang sering terjadi, penting juga untuk mengenali dan
mengelompokkan kesalahan yang muncul bukan karena syntax error, tetapi lebih
disebabkan oleh pola pikir yang kurang tepat atau implementasi logika yang salah.
Kesalahan ini bisa berupa bug yang menyebabkan hasil tidak akurat, infinite loops, kondisi
yang tidak pernah terpenuhi, atau pengabaian terhadap edge cases tertentu[9].

4. Penerapan struktur logika, Objek ini membahas bagaimana konsep-konsep logika
informatika diimplementasikan ke dalam struktur kode. Ini mencakup penggunaan elemen
control seperti kondisi (seperti if-else dan switch-case), perulangan (seperti for, while, dan
do-while), fungsi, serta modularitas. Kami akan melihat bagaimana penerapan struktur-
struktur ini memengaruhi keakuratan, kenyamanan membaca, dan efisiensi kode secara
keseluruhan[8].

2.3. Sumber Dataset
Penggunaan dataset untuk code analysis menjadi bagian penting dalam mengungkap

bagaimana logika informatika berpengaruh langsung terhadap kualitas suatu program. Dataset
seperti Codeforces, LeetCode, ManyBugs, dan Bugs.jar menyediakan kumpulan kode nyata yang
mengandung berbagai bentuk kesalahan logika, mulai dari kondisi if-else yang tidak tepat,
perulangan yang salah, hingga struktur kontrol yang tidak konsisten. Melalui analisis terhadap
kesalahan-kesalahan tersebut, penelitian ini menunjukkan bahwa ketidakmampuan memahami
dan menerapkan logika informatika secara benar selalu berujung pada program yang tidak valid,
inefisiensi algoritma, serta kegagalan sistem[7].

1. Codeforces atau LeetCode submissions.
Merupakan kumpulan kode nyata dari programmer seluruh dunia yang bisa dianalisis
untuk melihat kesalahan logika, Codeforces atau LeetCode submissions (menganalisis
kesalahan logika) adalah website tempat programmer dari seluruh dunia mengerjakan
soal-soal pemrograman kemudian di submit, Dari situ, dapat di ketahui Mana kode yang
berhasil, Mana kode yang gagal (wrong answer, time limit exceeded, runtime error)

kesalahan-kesalahan ini di jadikan sebagai data penelitian[4].

2. ManyBugs Dataset.
Melalui dataset bug real-world pada program C, peneliti dapat mengamati langsung
berbagai bentuk kesalahan logika, seperti kondisi yang tidak tepat, perulangan yang
berpotensi infinite loop, alur kontrol yang salah. Analisis terhadap bug yang tercatat di
ManyBugs memperlihatkan bahwa sebagian besar error muncul akibat tidak
diterapkannya prinsip-prinsip dasar logika informatika. Dengan membandingkan versi
kode sebelum perbaikan dengan versi setelah perbaikan, penelitian ini memberikan bukti
empiris bahwa penerapan logika yang benar dapat mengembalikan validitas program,
meningkatkan efisiensi eksekusi, dan menghasilkan solusi yang tepat[7].

3. Bugs.jar Dataset.

Algorithm - November 2025 | Vol. 1 | No.2 | Mataheruila, et al. Programmer Logis : Analisis Peran Logika…

Algorithm – Journal of Computer Science and Computational Intelligence

64

Bugs.jar merupakan dataset bug berbasis Java yang berisi kumpulan kesalahan logika
nyata pada berbagai proyek perangkat lunak. Dalam konteks penelitian ini, Bugs.jar
menjadi bukti empiris bahwa kegagalan menerapkan logika informatika secara benar
selalu berujung pada ketidakstabilan sistem. Melalui analisis terhadap pola bug yang
terdapat dalam dataset, penelitian ini menegaskan bahwa logika informatika memiliki
peran sentral dalam menghasilkan kode yang valid, efisien, dan solutif[8].

2.4. Teknik Pengumpulan Data
Dalam penelitian ini, teknik pengumpulan data dilakukan dengan beberapa cara untuk

memperoleh data yang relevan dan mendalam mengenai peran logika informatika dalam
penulisan kode yang benar dan efektif [9]. Total sampel yang dianalisis dalam penelitian ini
berjumlah 50 kode, yang terdiri dari 20 submission algoritma (Codeforces), 15 kasus kesalahan
memori (ManyBugs), dan 15 kasus logika bisnis (Bugs.jar). Teknik-teknik yang digunakan yaitu:

Tabel 1. Codeforces (Analisis Kesalahan Logika)

No Teknik Pengumpulan Dataset Observasi dan Sampling Code

1 Observasi langsung terhadap submission

Submission yang gagal (Wrong Answer, Runtime
Error, Time Limit Exceeded)
Submission yang berhasil untuk perbandingan
penjelasan error dari sistem online judge

2
Pengambilan sampel (purposive
sampling)

Kesalahan logika (logical error)
Struktur kontrol yang salah (if-else, loop,
operator logika)
Alur logika yang tidak konsisten

3
Dokumentasi kode dan Analisis
komparatif

Buggy code vs correct code
Logika sebelum diperbaiki vs sesudah diperbaiki

Tabel 2. ManyBugs Dataset (Pemograman C)

No Teknik Pengumpulan Dataset Observasi dan Sampling Code

1 Download dataset dari repositori resmi. Versi kode sebelum perbaikan (buggy version)

Versi kode sesudah perbaikan (fixed version)
Dokumentasi lokasi bug
Test case terkait bug

2 Extract dan klasifikasi data.
Jenis bug
File yang terdampak
Kondisi if yang salah
Loop yang tidak tepat
Fungsi atau logika yang keliru

3 Analisis kode berbasis logika.
Pointer/variabel yang tidak diperbarui
Alur kontrol yang tidak logis

Tabel 3. Bugs.jar: Dataset Mining & Code Examination

Algorithm - November 2025 | Vol. 1 | No.2 | Mataheruila, et al. Programmer Logis : Analisis Peran Logika…

Algorithm – Journal of Computer Science and Computational Intelligence

65

No
Teknik

Pengumpulan
Dataset

Observasi dan Sampling Code

1 Download dataset

Dataset diunduh dalam bentuk:
• buggy-class
• fixed-class

Setiap bug memiliki:
• laporan bug
• patch perbaikan

2 Penelusuran bug

Peneliti menelusuri logika yang penyebabkan
error:

• kesalahan operator logika
• logika percabangan tidak tepat
• kondisi null tidak ditangani
• loop salah batas

3
Pemeriksaan kode
buggy secara manual

• full project
• test case untuk verifikasi bug
• commit history

4 Analisis perbaikan

Membandingkan kode buggy dengan kode
fixed untuk melihat:
• bagian logika apa yang diubah
• bagaimana perubahan tersebut

memperbaiki error

2.5. Teknik Analisis Data

Setelah data dikumpulkan melalui berbagai metode seperti studi dokumentasi, observasi
langsung, analisis konten, dan studi perbandingan [10]. langkah berikutnya adalah melakukan
analisis data. Teknik analisis yang dipilih dalam penelitian ini meliputi:

Tabel 4. Analisis Dataset

No Analisis Data Langkah-langkah Tujuan

1 Static Code Analysis

▪ Mengeliminasi data
yang tidak berkaitan
dengan penerapan
logika dalam
penulisan kode
program.

▪ Memilah contoh
kode, kasus, dan
konten yang sesuai
dengan rumusan
masalah.

Untuk memperjelas dan
memfokuskan data yang
relevan.

2
Comparative Logic
Analysis

▪ Menyajikan
ringkasan hasil studi
dokumentasi,
observasi studi
kasus, analisis
konten, dan studi
komparatif.

▪ Menampilkan
visualisasi seperti

Untuk Mempermudah
pemahaman terhadap
pola dan hubungan
antar data.

Algorithm - November 2025 | Vol. 1 | No.2 | Mataheruila, et al. Programmer Logis : Analisis Peran Logika…

Algorithm – Journal of Computer Science and Computational Intelligence

66

tabel dan diagram
untuk
membandingkan
kualitas kode dan
penerapan logika.

▪ Mengidentifikasi
pola penerapan
logika yang benar
dan salah.

3 Penarikan Kesimpulan

▪ Mengevaluasi
efektivitas metode
yang ditemukan
dalam berbagai
sumber.

▪ Memberikan saran
perbaikan untuk
meningkatkan
kualitas kode.

Untuk Memberikan
hasil akhir dan
rekomendasi yang
sesuai dengan tujuan
penelitian.

Teknik pengumpulan data ini bertujuan untuk memberikan gambaran yang terstruktur

mengenai teknik analisis data dalam pengumpulan data yang sesuai dengan penelitian. Teknik
pengumpulan data ini, diharapkan hasil penelitian yang dapat memberikan pemahaman tentang
bagaimana logika informatika diterapkan secara efektif dalam penulisan kode program yang
benar, efisien, dan minim kesalahan.

3. HASIL DAN PEMBAHASAN
3.1. Analisis Kegagalan Logika Deteksi Status (State Detection Logic)
 Studi kasus utama diambil dari permasalahan algoritma Encode dan Decode (mencakup varian
mudah dan sulit). Tantangan fundamental pada kasus ini adalah ketiadaan persistensi memori
antar-eksekusi (stateless execution), di mana program dijalankan dua kali secara terpisah namun
harus mampu mengenali konteks eksekusi ("Putaran 1" atau "Putaran 2").
 Analisis terhadap sampel kode yang gagal menunjukkan pola kesalahan fatal di mana
programmer menerapkan logika naif dengan asumsi bahwa nilai variabel global akan tersimpan
di memori. Sebaliknya, solusi yang valid memanfaatkan logika proposisional berbasis observasi
input.

Tabel 5. Komparasi Logika: Deteksi Status Eksekusi

Komponen Kode Salah (Logika Naif) Kode Formal (Logika
Proposisional)

Cuplikan Kode if (run_count == 1) { ... } if (input_string == "") { ... }
Dasar Logika Mengandalkan Variable State

(Internal). Berasumsi variabel
penghitung bertahan antar sesi.

Mengandalkan Fact Observation
(Eksternal). Memeriksa
keberadaan data input.

Analisis Formal Premis Salah: 𝑃(𝑡1) → 𝑃(𝑡2)
(Nilai variabel pada waktu 𝑡1
terbawa ke 𝑡2)
Fakta: Sistem melakukan reset
memory, sehingga 𝑃(𝑡2) = ∅

Implikasi Valid:
Misalkan 𝑝 adalah proposisi
"Input Kosong".

Jika 𝑝 ≡ 𝑇𝑟𝑢𝑒 → 𝑆𝑡𝑎𝑡𝑒 =
𝑅𝑢𝑛_1.

Jika 𝑝 ≡ 𝐹𝑎𝑙𝑠𝑒 → 𝑆𝑡𝑎𝑡𝑒 =
𝑅𝑢𝑛_2.

 Kegagalan pada kolom "Kode Salah" menunjukkan ketidakmampuan programmer dalam
membedakan scope variabel statis dan dinamis. Dalam Logika Informatika, ini adalah pelanggaran

Algorithm - November 2025 | Vol. 1 | No.2 | Mataheruila, et al. Programmer Logis : Analisis Peran Logika…

Algorithm – Journal of Computer Science and Computational Intelligence

67

terhadap Logika Temporal (logika yang melibatkan waktu). Programmer menganggap program
memiliki ingatan (stateful), padahal lingkungan eksekusi bersifat stateless.
 Sebaliknya, "Kode Benar" menerapkan prinsip logika proposisional yang deterministik.
Keputusan percabangan (if-else) tidak didasarkan pada asumsi variabel yang rapuh, melainkan
pada bukti fakta input yang diberikan sistem. Penerapan logika ini menghilangkan ambiguitas dan
menjamin program berjalan valid pada setiap putaran eksekusi tanpa risiko kesalahan memori.

3.2. Studi Kasus ManyBugs: Kegagalan Logika Sekuensial & Memori
 Analisis terhadap dataset ManyBugs (berbasis bahasa C) mengungkap pola kesalahan fatal
pada manajemen memori, khususnya terkait urutan logika (sequence logic) dalam pengaksesan
pointer. Kesalahan ini terjadi karena programmer melanggar hukum implikasi logika: mengakses
data sebelum memvalidasi keberadaannya.

Tabel 6. Komparasi Logika: Penanganan Pointer (Null Safety)

Komponen Kode Salah Kode Formal
Cuplikan Kode int val = list->value;

if (list != NULL) { ... }

if (list != NULL) {

int val = list->value; ... }

Urutan Logika 1. Akses Memori (Action)
2. Validasi (Condition)

1. Validasi (Condition)
2. Akses Memori (Action)

Analisis Formal Logika Terbalik:
𝐴𝑐𝑡𝑖𝑜𝑛 → 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

Jika 𝑙𝑖𝑠𝑡 = 𝑁𝑈𝐿𝐿 , baris 1
langsung memicu Segmentation
Fault (Crash).

 Implikasi Valid:
(𝑙𝑖𝑠𝑡 ≠ 𝑁𝑈𝐿𝐿) → 𝐴𝑐𝑡𝑖𝑜𝑛

Premis 𝑙𝑖𝑠𝑡 ≠ 𝑁𝑈𝐿𝐿 harus
bernilai TRUE terlebih dahulu
sebelum konsekuen (Action)
dieksekusi.

 Contoh di atas memperlihatkan pelanggaran terhadap Logika Predikat. Dalam logika
informatika yang benar, sebuah pre-kondisi (syarat) harus selalu mendahului eksekusi (akibat).
Kode buggy mencoba menarik data (list->value) dari alamat memori yang belum dipastikan
eksistensinya. Ini membuktikan bahwa kesalahan sistem level rendah (low-level) sering kali bukan
disebabkan oleh ketidaktahuan sintaksis, melainkan kekacauan dalam menyusun alur premis
logika. Perbaikan dilakukan dengan memindahkan deklarasi ke dalam scope logika yang
terlindungi (Guard Clause).

4. KESIMPULAN DAN SARAN

Penelitian ini menyimpulkan bahwa logika informatika memiliki peran yang sangat penting
dalam memastikan penulisan kode yang benar. Hasil dari studi kasus yang kami lakukan
menunjukkan bahwa, meskipun banyak programmer fokus pada penguasaan sintaksis bahasa
pemrograman, mereka seringkali kurang memiliki pemahaman mendalam tentang logika
informatika. Hal ini menjadi penyebab utama munculnya kesalahan logika dalam kode yang
mereka buat. Jika kesalahan ini tidak segera ditangani, bisa berakibat serius terhadap kinerja,
keamanan, serta kestabilan sistem secara keseluruhan. Dengan pendekatan yang sistematis dan
berbasis logika, kesalahan dalam struktur program dapat dikurangi secara signifikan.

Dengan menerapkan prinsip-prinsip logika informatika secara konsisten, seperti logika
proposisional dan struktur kontrol (misalnya if-else), kita dapat melihat peningkatan yang nyata
dalam kualitas kode secara keseluruhan. Ini terlihat dari peningkatan kohesi, pengurangan
ketergantungan antar bagian kode, dan penurunan jumlah bug yang signifikan setelah dilakukan
restrukturisasi berdasarkan prinsip-prinsip logika tersebut. Penerapan prinsip-prinsip logika
tidak hanya membantu dalam debugging, tetapi juga meningkatkan kualitas dan efisiensi kode
secara keseluruhan. Oleh karena itu, penguasaan logika informatika sangat diperlukan oleh setiap

Algorithm - November 2025 | Vol. 1 | No.2 | Mataheruila, et al. Programmer Logis : Analisis Peran Logika…

Algorithm – Journal of Computer Science and Computational Intelligence

68

programmer, baik pemula maupun profesional, untuk menciptakan sistem yang andal, efisien, dan
bebas dari kesalahan logika.

REFERENSI

[1] A. Maulana et al., Rekayasa Perangkat Lunak: Konsep, Metode, dan Praktik Terbaik. Get
Press, 2023.

[2] M. N. Ardian dan D. Soyusiawaty, "Multimedia Pembelajaran Logika Informatika pada
Mahasiswa Teknik Informatika," Jurnal Sarjana Teknik Informatika, vol. 2, no. 1, 2014.

[3] A. Sari, "Aplikasi CAI untuk Pembelajaran Logika Informatika," Jurnal Untan, Jurnal
Aplikasi dan Riset Informatika (JUARA), vol. 1, no. 1, 2022.

[4] A. M. Hassan dan L. Wei, "Programming Errors: Syntax vs Logic," International Journal
of Computer Science and Information Security, vol. 17, no. 4, 2019.

[5] M. A. Smith dan J. D. Lee, "The Impact of Logical Thinking Skills on Programming
Performance," Journal of Software Engineering and Applications, vol. 13, no. 1, 2020,
Art. No. 13001. Doi: 10.4236/jsea.2020.13001.

[6] J. Brownlee, "Machine Learning Mastery: Logic in Algorithms," 2016. [Online].
Available: https://machinelearningmastery.com.

[7] R. Hidayat, "Studi Sintaksis dan Semantik Bahasa Pemrograman dalam Pengembangan
Sistem Informasi," Jurnal Sistem Informasi, vol. 15, no. 1, pp. 33-40, 2019.

[8] I. G. N. A. Putra dan P. I. Santosa, "Penerapan Struktur Kontrol dan Modularitas dalam
Pengembangan Perangkat Lunak Berbasis Java," Jurnal Ilmiah Teknologi Informasi
Terapan, vol. 7, no. 1, pp. 45-52, 2021.

[9] T. Handayani dan E. Prasetyo, "Penerapan Logika Informatika pada Pengembangan
Algoritma untuk Penyelesaian Masalah Kompleks," Jurnal Informatika, vol. 12, no. 2,
pp. 101-110, 2018.

[10] N. F. M. Noor, "An integrated development environment on problem-solving for C
programming fundamentals," International Journal of Interactive Mobile Technologies
(iJIM), vol. 18, no. 3, pp. 4–17, 2024. doi: 10.3991/ijim.v18i03.46820.

https://machinelearningmastery.com/

