Inovasi Sistem Bioflok Dengan Sumber Bakteri Berbeda Untuk Budidaya Berkelanjutan Benih Kakap Putih (Lates calcalifer)

Innovation in biofloc systems with different bacterial sources for sustainable cultivating white snapper (Lates calcarifer)

  • Dini Rahayu Pattimura University
  • Endang Jamal Pattimura University
  • Agapery Yoane Pattinasarany Pattimura University
Keywords: biofloc bacteria, marine fish, growth, survival, water quality

Abstract

Biofloc is one of the advances in fish farming technology with the main principle of recycling nutrients into the culture system. Biofloc application has been widely used in freshwater aquaculture systems, but in seawater aquaculture systems it is still very limited. This study evaluated the application of bioflocs with different bacterial sources, EM4_Fishery and Nitrobac, on the growth and survival of White Snapper (Lates calcalifer) and the water quality of the aquaculture environment. This study used a completely randomised design (CRD) with three replications. A total of 19 White Snapper fish with an average weight of 6.86±0.17 g/L were put into each 14-day-old biofloc and control. Feeding was 2% of total body weight with a frequency of once a day (09.00 am). The results showed that during the experimental period, the weight of White Snapper fish decreased variably in both treatments and controls. The survival rate of White Snapper fish in the Nitrobac bacteria treatment tended to be higher than in the EM4_Fishery bacteria, but both were lower than the control with a tendency for large fish to survive longer than small fish. Concentrations of ammonia, nitrite and nitrate in the treatments at the beginning of the experiment were higher than the control but tended to decrease with the length of rearing. DO values tended to increase in the treatments compared to the control, while DO values tended to increase in the treatments compared to the control. These findings revealed that the Nitrobac as a source of biofloc bacteria in marine White Snapper culture is more effective than EM4_Fisheries, but requiring further experiments with some concern on individual fish size greater than 7 g and the biofloc older than two weeks is recommended.

Downloads

Download data is not yet available.

References

Amir, S., Setyono, B. D., Alim, S., & Amin, M. (2018). Aplikasi teknologi bioflok pada budidaya udang vaname (Litopenaeus Vannamei). Prosiding Konferensi Nasional Pengabdian Kepada Masyarakat dan Corporate Social Responsibility (PKM-CSR), 1, 660-666. https://prosiding-pkmcsr.org/index.php/pkmcsr/article/view/245/82

Aswardy, A., Gevira, Z., Cindy, C., Putri, M. D., Putri, F. H., & Taqwa, F. H. (2020, November). Pemanfaatan tepung tapioka sebagai alternatif subsitusi molase dalam budidaya ikan nila sistem bioflok di lahan suboptimal. In Seminar Nasional Lahan Suboptimal (No. 1, pp. 305-313).

Azhari, D., & Tomasoa, A. M. (2018). Kajian kualitas air dan pertumbuhan ikan nila (Oreochromis niloticus) yang dibudidayakan dengan sistem akuaponik. Jurnal Akuatika Indonesia, 3(2), 84-90.

Cheng, C. H., Yang, F. F., Ling, R. Z., Liao, S. A., Miao, Y. T., Ye, C. X., & Wang, A. L. (2015). Effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus). Aquatic Toxicology, 164, 61-71.

Gullian-Klanian, M. A. A. C., & Arámburu-Adame, C. (2013). Performance of Nile tilapia Oreochromis niloticus fingerlings in a hyper-intensive recirculating aquaculture system with low water exchange. Latin American journal of Aquatic research, 41(1), 150-162.

Holeh, G. M., Appenteng, P., Opıyo, M. A., Park, J., & Brown, C. L. (2020). Effects of intermittent feeding regimes on growth performance and economic benefits of Amur catfish (Silurus asotus). Aquatic Research, 3(3), 167-176.

Jang, J. D., Barford, J. P., & Renneberg, R. (2004). Application of biochemical oxygen demand (BOD) biosensor for optimization of biological carbon and nitrogen removal from synthetic wastewater in a sequencing batch reactor system. Biosensors and Bioelectronics, 19(8), 805-812.

Khanjani, M. H., Sharifinia, M., & Emerenciano, M. G. C. (2023). A detailed look at the impacts of biofloc on immunological and hematological parameters and improving resistance to diseases. Fish & Shellfish Immunology, 137, 108796.

Kurniawan, A., & Dewi, C. S. U. (2018). Studi dinamika bakteri dan kualitas air selama proses awal bioflok. Journal of Innovation and Applied Technology, 4(2), 779-783.

Nurjanah, S. (2020). Pencegahan Bakteri Vibrio alginolyticus Pada Ikan Kakap Putih (Lates calcarifer) Dengan Penambahan Serbuk Daun Binahong (Anredera cordifolia) Pada Pakan [Skripsi]. Aceh: Universitas Malikussaleh.

Nurlaela, I., Tahapari, E., & Sularto, S. (2017). Pertumbuhan ikan patin nasutus (Pangasius nasutus) pada padat tebar yang berbeda. In Prosiding Forum Inovasi Teknologi Akuakultur (pp. 31-36).

Ogello, E. O., Outa, N. O., Obiero, K. O., Kyule, D. N., & Munguti, J. M. (2021). The prospects of biofloc technology (BFT) for sustainable aquaculture development. Scientific African, 14, e01053.

[PP RI] Peraturan Pemerintah Republik Indonesia. (2021). Nomor 21 tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup, Lampiran VIII: Baku Mutu Air Laut. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://dlh.jembranakab.go.id/file/Lampiran+Peraturan+Pemerintah+Nomor+22+Tahun+2021.pdf (diakses pada tanggal 2 Juli 2024).

Pungky, S. W. K., Andriani, V., Binawati, D. K., Yachya, A., Hariani, D., & Amilah, S. (2023). Pkm Budidaya Ikan Lele (Clarias Gariepinus) Menggunakan Sistem Bioflok Pada Guru SMA Se-Jawa Timur. Jurnal Penamas Adi Buana, 6(02), 94-103.

Purnomo, P. D. (2012). The effect of carbohydrate addition in aquaculture media towards production of intensive tilapia culture (Oreochromis niloticus). Journal of Aquaculture Management and Technology, 1(1), 161-179.

Putra, I., Effendi, I., Lukistyowati, I., Tang, U. M., Fauzi, M., Suharman, I., & Muchlisin, Z. A. (2020). Effect of different biofloc starters on ammonia, nitrate, and nitrite concentrations in the cultured tilapia Oreochromis niloticus system. F1000research, 9, 293-293. https://doi.org/10.12688/f1000research.22977.3.

Putri, B., Wardiyanto, W., & Supono, S. (2015). Efektivitas Penggunaan Beberapa Sumber Bakteri Dalam Sistem Bioflok Terhadap Keragaan Ikan Nila (Oreochromis niloticus). e-Jurnal Rekayasa dan Teknologi Budidaya Perairan, 4(1), 433-438.

Schneider, O., Sereti, V., Eding, E. H., & Verreth, J. A. J. (2005). Protein production by the heterotrophic bacteria using carbon supplemented fish waste. http://www.was.org/Meetings/AbstractData.asp?AbstractId=8945

Sinha, A. K., Liew, H. J., Diricx, M., Blust, R., & De Boeck, G. (2012). The interactive effects of ammonia exposure, nutritional status and exercise on metabolic and physiological responses in gold fish (Carassius auratus L.). Aquatic Toxicology, 109, 33-46.

The Engineering ToolBox. (2005). Oxygen - Solubility in Fresh and Sea Water vs. Temperature. [online] Available at: https://www.engineeringtoolbox.com/oxygen-solubility-water-d_841.html [Diakses 22 Juni 2024].

Widiastuti, I. M. (2009). Pertumbuhan dan kelangsungan hidup (survival rate) ikan mas (Cyprinus carpio) yang dipelihara dalam wadah terkontrol dengan padat penebaran yang berbeda. Media Litbang Sulawesi Tengah, 2(2), 151073.

Yu, Y. B., Choi, J. H., Lee, J. H., Jo, A. H., Lee, K. M., & Kim, J. H. (2023). Biofloc technology in fish aquaculture: A review. Antioxidants, 12(2), 398. https://doi.org/10.3390/antiox12020398

Published
2025-02-03