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ABSTRACT 
 

The concept of deterministic theory underlying quantum mechanics, usually referred to as “hidden 
variable theories”. For instance, one may or may not assume the occurence of information loss at tiny 
distance scales. One may suspect some sort of cellular automaton or a classical system of continuous 
fields, or even classical loops, D-branes, or whatever. We discuss Gerardus ‘t Hooft idea that refer to as 
pre-quantization, where the physical system is not modified and complex systems are handled 
probabilistically. Our results for harmonic oscillators indicate that the energy eigenstates of a quantum 
system are going to be nice. The next one urgent question must be answered is how to construct explicit 
models in which energy can be seen extrinsic and how can we find its limit cycles. An atractive related 
problem that found by us is how to introduce weak interactions between two nearly independent systems. 

Keywords : Determinsitic concept, harmonic oscillator, limit cycles. 
 

 
INTRODUCTION 
                We suspect that our world can be understood by starting from a pre-quantized 
classical, or 'ontological', system. However, a serious difficulty is then encountered: one indeed gets 
Quantum Mechanics, but the Hamiltonian is not naturally bounded from below. If time would be assumed 
to be discrete, the Hamiltonian eigenvalues would turn out to be periodic, so one might limit oneself to 
eigenvalues E with 0 ≤ E < 2π/δt, where δt is the duration of a fundamental time step, but then the choice 
of a vacuum state is completely ambiguous, unlike the situation in the real world that one might want to 
mimic. If time is continuous, the Hamiltonian eigenvalues tend to spread over the real line, from - ∞ to ∞. 

In this paper, we derive the plausibility of our assumptions from first principles. First, the 
formalism is displayed in Section 2. Then, we demonstrate that the most basic building blocks of 
deterministic theory consists of units that would evolve with periodicity if there were no interaction 
(Section 3). We use the empirically known fact that the Hamiltonians are all bounded from below both 
before introducing the interaction and after having included the interaction. This necessitates our 
introduction of equivalence classes (Section 4), such that neither the quantum mechanical nor the 
macroscopic observer can distinguish the elements within one equivalence class, but they can distinguish 
the equivalence classes. 

This procedure is necessary in particular when two systems are considered together prior to 
considering any interaction. We are led to the discovery that, besides the Hamiltonian, there must be a 
classical quantity E that also corresponds to energy, and is absolutely conserved as well as positive 
(Section 5). It allows us to define the equivalence classes. We end up discovering a precise definition of 
the quantum wave function for a classical system (both amplitude and phase), and continue our procedure 
from there. 

Physical and intuitive arguments were displayed in Ref. [3]. In that paper, it was argued that any 
system with information loss tends to show periodicity at small scales, and quantization of orbits. It was 
also argued that some lock-in mechanism was needed to relate the Hamiltonian with an ontologically 
observable quantity E that is bounded from below. The lock-in mechanism was still not understood; here 
however we present the exact mathematical treatment and its relation to information loss. Interaction can 
be introduced in a rather direct manner (Section 6), by assuming energy not to be directly additive, but 
then it is difficult to understand how different energy sectors of the theory can be related to one another. 

After a discussion of our results (Section 7) an appendix follows in which we discuss the 
'random automaton'. It allows us to estimate the distribution of its limit cycles, though we immediately 
observe that the quantum models it generates are not realistic because the energy will not be an extensive 
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quantity. The deterministic models that might reproduce observed quantum field systems must be very 
special. 
VARIABLES, BEABLES AND CHANGEABLES  
           Any classical, deterministic system will contain some set of degrees of freedom qr  that follow 
some orbit qr  (t) in time. Time might be defined as a discrete variable or a continuous one, but this 
distinction is not as fundamental as one might think. If time is discrete, then the set qr  will have to 
include a clock that gives a tick at every time step tn = n ort,δ ,  

q
dt
d

clock  =  1 ;   (2.1) 

( )qqq ii
r

→   at  q clock = 0 mod tδ , ≠∀i clock. (2.2) 
 

It is not difficult to ascertain that this is just a special case of a more general equation of motion, 

( )qfq
dt
d rrrr =  (2.3) 

For simplicity we therefore omit specific references to any clock. In general, the orbit  qr (t) will be 
dictated by an equation of motion of the form (2.3). 

In the absence of information loss, this will correspond to a Hamiltonian 
 

( ) ( ),qgqfp
i

ii
rr∑ +=Η  ( 2.4 ) 

where ip  = -- iqi ∂∂ /   is the quantum momentum operator. It will be clear that the quantum equations 
of motion generated by this Hamiltonian will exactly correspond to the classical equation (2.3). The 
function g( qr ) is arbitrary, its imaginary part being adjusted so as to ensure hermiticity: 
 

( ) iqfi 2. +∇−=Η−Η
rrr

 ( )( ) ,0Im =qg r
 ( 2.5 ) 

Any observable quantity  A ( qr ) , not depending on operators such as pi , and therefore 
commuting with all qi , will be called a beable. Through the time dependence of qr , the beables will 
depend on time as well. Any pair of beables, A and B , will commute with one another at all times: 

 
( ) ( )[ ] ,0, 21 =Α tBt    21 , tt∀  ( 2.6 ) 

 
A changeable is an operator not commuting with at least one of the qi 's. Thus, the operators pi 

and the Hamiltonian H are changeables. Using beables and changeables as operators [3], we can employ 
all standard rules of quantum mechanics to describe the classical system (2.3). At this point, one is 
tempted to conclude that the classical systems form just a very special subset of all quantum mechanical 
systems. 

This, however, is not quite true. Quantum mechanical systems normally have a Hamiltonian that 
is bounded from below; the Hamiltonian (2.4) is not. At first sight, one might argue that all we have to do 
is project out all negative energy states [3] [4]. We might obtain a physically more interesting Hilbert 
space this way, but, in general, the commutator property (2.6) between two beables is lost, if only positive 
energy states are used as intermediate states. As we will see, most of the beables (2.6) will not be 
observable in the quantum mechanical sense, a feature that they share with non-gauge-invariant operators 
in more conventional quantum systems with Yang-Mills fields. The projection mechanism that we need 
will be more delicate. As we will see, only the beables describing equivalence classes will survive as 
quantum observables. 

We will start with the Hamiltonian (2.4), and only later project out states. Before projecting out 
states, we may observe that many of the standard manipulations of quantum mechanics are possible. For 

instance, one can introduce an integrable approximation ( )qfi
r)0(  for the functions  ( )qfi

r
, and write 

                                ( )qfi
r

 =  ( )qfi
r)0(  +  ( )qfi

rδ  

† 
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after which we do perturbation expansion with respect to the small correction terms δ fi However, the 
variation principle in general does not work at this level, because it requires a lowest energy state, which 
we do not have. 
 
THE HARMONIC OSCILATOR 

We assume that a theory describing our world starts with postulating the existence of sub-
systems that in some first approximation evolve independently, and then are assumed to interact. For 
instance, one can think of independent local degrees of freedom that are affected only by their immediate 
neighbors, not by what happens at a distance, baring in mind that one may have to expand the notion of 
immediate neighbors to include variables that are spatially separated by distances of the order of the 
Planck length. Alternatively, one may think of elementary particles that, in a first approximation, behave 
as free particles, and are then assumed to interact. 

Temporarily, we switch off the interactions, even if these do not have to be small. Every  sub-
system   then   evolves   independently. Imagine furthermore that some form of information loss takes 
place. Then, as was further motivated in Ref. [3],  we suspect that the evolution in each domain will 
become periodic. 

Thus, we are led to consider the case where we have one or more independent, periodic variables 
qr i (t). Only at a later stage, coupling between these variables will have to be introduced in order to make 
them observable to the outside world. Thus, the introduction of periodic variables is an essential 
ingredient of our theory, in addition to being just a useful exercise. 

Consider a single periodic variable: 

ω=
∂
∂

t
q

 (3.1) 

 
while the state {q = 2π } is identified with the state {q = 0} . Because of this boundary condition, the 
associated operator qip ∂∂−= / is quantized : 

p = 0, ,1±  ,...,2±   (3.2) 
 
The inessential additive coefficient g(q) of Eq. (2.4) here has to be real, because of Eq. (2.5), and as such 
can only contribute to the unobservable phase of the wave function, which is why we permit ourselves to 
omit it: 

H = ωp = ωn ;  n = 0, ,1±  ,...,2±   (3.3) 
 
If we would find a way to dispose of the negative energy states, this would just be the Hamiltonian of the 

quantum harmonic oscillator with internal frequency ω  (apart from an inessential constant 
2
1

 ω). 

 The proof is simple mathematics. Write 
 

( ) ( ))()(exp qiqq βαψ += ,      iqez =   (3.5) 
 
Choose βα i+  to be en entire function within the unit circle of z . Then an elementary exercise in 
contour integration yields, 
 

( ) ( ))(log
2
1 qWq =α  ;    ( )∫ −

−+
= '

'

''

0 )sin(
)cos(1

2
)( q

qq
qqdqq α

π
ζββ   (3.6) 

where ζ  stands for the principal value, and 0β  is a free common phase factor. In fact, Eq. (3.6) is not 
the only function obeying our theorem, because we can choose any number of zeros for ψ (z) inside the 
unit circle and then again match (3.4). One concludes from this theorem that no generality in the function 
W is lost by limiting ourselves to positive energy eigenfunctions only. 

In this paper, however, we shall take a different approach. We keep the negative energy states, 
but interpret them as representing the bra states ψ〈 . These evolve with the opposite sign of the energy, 
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since )0()( ψψ 〈=〈 +iHtet .  As long as we keep only one single periodic variable, it does not matter 
much what we do here, since energy is absolutely conserved. The case of two or more oscillators is more 
subtle, however, and this we consider in the next section. 

In this bra-ket formalism, it will be more convenient to tune the energy of the lowest ket state at 

ω
2
1

. The kets n  and bras n〈  have En = ω⎟
⎠
⎞

⎜
⎝
⎛ +

2
1n . The time evolution of the bras goes as if En = 

- ω⎟
⎠
⎞

⎜
⎝
⎛ +

2
1n ,  so that we have a sequence of energy values ranging from -∞  to ∞ . 

 
TWO (OR MORE) HARMONIC OSCILLATORS 
 
 As was explained at the beginning of Section 3, we expect that, when two periodic variables 
interact, again periodic motion will result. This may seem' to be odd. If the two periods, 1ω  and  2ω  are 
incommensurate, an initial state will never exactly be reproduced. Well, this was before we introduced 
information loss. In reality, periodicity will again result. We will show how this happens, first by 
considering the quantum harmonic oscillators to which the system should be equivalent, according to 
Section 3, and then by carefully interpreting the result. 

In Fig. 1, the states are listed for the two harmonic oscillators combined. Let their frequencies be 

1ω  and  2ω  . The kets 〉〉=〉 2121, nnnn   have n1 ≥  0 and n2 ≥  0, so they occupy the quadrant 

labelled I  in Fig 1. The bra states, in view of their time dependence, occupy the quadrant labelled III.  
The other two quadrants contain states with mixed positive and negative energies. Those must be 
projected away. If we would keep those states, then any interaction between the two oscillators would 
result in inadmissible mixed states, in disagreement with what we know of ordinary quantum mechanics. 
So, although keeping the bra states is harmless because total energy is conserved anyway, the mixed 
states must be removed. This is very important, because now we see that the joint system cannot be 
regarded as a direct product. Some of the states that would be allowed classically, must be postulated to 
disappear. We now ask what this means in terms of the two periodic systems that we thought were 
underlying the two quantum harmonic oscillators.  

 
Combining two harmonic oscillators. Tilted lines show sequences of spectral states  again    
                associated to harmonic oscillators. For further explanation, see text. 

 
First, we wonder whether the spectrum of combined states will still be discrete. The classical, 

non interacting system would only be periodic if the two frequencies have a rational ratio: 
021 =− ωω qp , where p and q are relative primes. The smallest period would be T = 

21 /2/2 ωπωπ pq = , so that we would expect equally spaced energy levels with spacings 

pq // 21 ωω = . Indeed, at high energies, we do get such spacings also in the quantum system, with 
increasing degeneracies, but at lower energies many of these levels are missing. If the frequencies have an 
irrational ratio, the period of the classical system is infinite, and so a continuous spectrum would have to 
be expected. 
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When two quantum harmonic oscillators are considered together, this does not happen. The 
spectrum is always discrete. In Fig. 1, it is indicated how to avoid having missing states and variable 
degeneracies. We see that actually full series of equally spaced energy levels still exist: 

At any given choice of a pair of odd relative primes p and q, we have a unique series of bra- and 

ket states with energies ,
2
1
⎟
⎠
⎞

⎜
⎝
⎛ +npqω  with 21 ωωω qppq +=  

It is easy to see that these sequences are not degenerate, that all odd relative prime pairs of integers (p, q) 
occur exactly once, and that all states are represented this way: 
 

( )2122112,1 2
1

2
1

2
1 ωωωω ppnnnnn +⎟

⎠
⎞

⎜
⎝
⎛ +=⎟

⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ +=Ε  ;  (4.1) 

 

q
p

n
n

=
+
+

12
12

2

1 .  (4.2) 

 
Some of these series are shown in the Figure. 

We see that, in order to reproduce the quantum mechanical features, that is, to avoid the 
unphysical states where one energy is positive and the other negative, we have to combine two periodic 
systems in such a way that a new set of periodic systems arises, with frequencies pqω . Only then can one 
safely introduce interactions of some form. Conservation of total energy ensures that the bra and ket states 
cannot mix. States where one quantum oscillator would have positive energy and one has negative 
energy, have been projected out. 

But how can such a rearrangement of the frequencies come about in a pair of classical periodic 
systems? Indeed, why are these frequencies so large, and why are they labelled by odd relative primes? In 
Fig. 2 the periodicities are displayed in configuration space, { }21 , qq  . The combined system evolves as 
indicated by the arrows. The evolution might not be periodic at all. Consider now the (5, 3) mode. We can 
explain its short period T53 = 53/2 ωπ  only by assuming that the points form equivalence clases, such 
that different points within one equivalence class are regarded as forming the same 'quantum' state. If all 
points on the lines shown in Fig. 2 (the ones slanting downwards) form one equivalence class, then this 
class evolves with exactly the period of the oscillator whose frequency is 53ω . 

 
  The equivalence class for oscillators in the case (p, q) = (5, 3). Lines with arrows pointing   
                               right and up: time trajectories of individual points. Solid and broken lines going 
downwards:  
                              (part of)  the (5,3) equivalence class at t = 0. For further explanation, see text. 

 
Observe in Fig. 2 that, in case (p, q) = (5, 3) , due to these fluctuations, five points of system 1 

alone now form a single equivalence class, and three points in system 2. This is because we have assigned 
5 quanta of energy to system 1 for every three quanta of energy of system 2. More generally, we could 
represent this situation with the wave function 
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( ) )(
2
1

2
11 2121 qqitqqpqn

pq ee
pq +−−+⎟

⎠
⎞

⎜
⎝
⎛ +

=
ω

ψ  ,   (4.3) 
 
where both variables q1,2 were taken to be periodic with periods 2π  . The (p, q) equivalence classes 
appear to be defined by the condition 
 

p q1 + q q2  =  Constant,  (4.4) 
 
and this means that the n -dependent part of the wave function (4.3) has a the same phase all over the 
entire equivalence class, if we may assume that the second term in Eq. (4.3), arising from the vacuum 

fluctuations tω
2
1

 , may be ignored. 

To  describe the equivalence classes it is helpful to introduce time variables ta for the subsystems   a = 1, 
2, …. in terms of their unperturbed evolution law, qa = .aatω  Then, writing 2211 , ωω qEpE == , 
one can characterize the equivalence classes as 
 

2211 tEtE δδ + = 0 (4.5) 
 

which means that the reactions that induce information loss cause qa to speed up or slow down by an 
amount ± δ ta obeying this equation. One can easily generalize this result for many coexisting oscillators. 
They must form equivalence classes such that fluctuating time differences occur that are only constrained 
by 
 

∑ =
a

a tE 02δ  ,  (4.6) 

 
which also are the collections of points that have the same phase in their quantum wave functions. We 
conclude that, in the ontological basis { 〉qr } , all states 〉qr which have the same phase in the wave 

function ϕq (apart from a fixed, time independent term), form one complete equivalence class. 

 
ENERGY AND HAMILTONIAN 
 In the previous section, it was derived that the energies of the various oscillators determine the shape of 
the equivalence classes that are being formed. However, this would require energy to be a beable, as 
defined in Section  2. Of course, the Hamiltonian, being the generator of time evolution, cannot be a 
beable. It is important to notice here, that the parameters p and q defining the equivalence classes as in 
Section 4, are not exactly the energies of q1 and q2 ; the Hamiltonian eigenvalues are 

H1 = ( n + 
2
1

) 1ωp   ;   H2 = ( n + 
2
1

) 2ωp   (5.1) 

 

with a common integral multiplication factor n + 
2
1

 . This n indeed defines the Hamiltonian of the orbit 

of the equivalence class. Generalizing this, the relation between the energies Ei  in Eqs.  (4.5)  and  (4.6) 
and the Hamiltonian H , is 

H = ( n + 
2
1

 ) E ,  (5.2) 

 
where n defines the evolution of a single clock that monitors the evolution of the entire universe. 

Now that the relative primes p and q have become beables, we may allow for the fact that the 
periods of q1 and q2 depend on p and q as a consequence of some non-trivial interaction. But there is 
more. We read off from Fig. 2, that  p points on the orbit of q1 in fact belong to the same equivalence 
class. Assuming that the systems 1 and 2 that we started off with, had been obtained again by composing 
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other systems, we must identify these points. But this forces us to redefine the original periods by 
dividing these by p and q , respectively, and then we end up with two redefined periodic systems that are 
combined in the one and only allowed way: 

 
p = q = 1  (5.3) 
 

Only a single line in Fig. 1 survives: the diagonal. 
The picture that emerges is the following. We are considering a collection of variables qa , each 

being periodic with different periods Ta = 2 aωπ /  . They each are associated with a positive beable Ea , 

such that Ea = aω . The interactions will be such that the total energy E = aa
E∑   is conserved. Now 

as soon as these variables are observed together (even if they do not interact), an uncontrollable  mixing  
mechanism takes place in such a way that the variables are sped up or slowed down by time steps atδ  
obeying Eq. (4.6), so that, at any time t, all states obeying 

,tEtE
a

a
a

aa ⎟
⎠

⎞
⎜
⎝

⎛
= ∑∑   (5.4) 

 
form one single equivalence class. 

The evolution and the mixing mechanism described here are entirely classical, yet we claim that 
such a system turns into an acceptable quantum mechanical theory when handled probabilistically. 
However, we have not yet introduced interactions. 

 
INTERACTIONS  
 We are now in a position to formulate the problem of interacting systems. Consider two systems, 
labelled by an index a = 1, 2 …. System a is characterized by a variable qa [ ,0∈ 2π)  and a discrete 
index  i = 1, …. , Na , which is a label for the spectrum of states the system can be in. Without the 
interaction, i stays constant. Whether the interaction will change this, remains to be seen. 

The frequencies are characterized by the values i
a

i
a ω=Ε , so that the periods are i

a
i
a ωπ /2=Τ

. Originally, as in Section 4,  we had  i
aω  = aap ω ,  where p1 = p and p2 = q  were relative primes (and 

both odd), but the periods aω   are allowed to depend on pa , so it makes more sense to choose a general 
spectrum to start with. 

The non-interacting parts of the Hamiltonians of the two systems, responsible for the evolution 
of each, are described by 

,,
2
1,0 innin a

i
aaaa Ε⎟

⎠
⎞

⎜
⎝
⎛ +=Η   (6.1) 

 
where the integer na = +∞∞− ,....,  is the changeable generating the motion along the circle with angular 

velocity aω  .   We have 

aa qin ∂∂−= /   (6.2) 
 
The total Hamiltonian describing the evolution of the combined, unperturbed, system is not  

0
2

0
1 HH +  , but 

( ),
2
1

21
0 ji

tottot n Ε+Ε⎟
⎠
⎞

⎜
⎝
⎛ +=Η    (6.3) 

 
where i, j characterize the states 1 and 2, but we have a single periodic variable [ )π2,0∈totq ,   and    

 

tottot qin ∂∂−= / .  (6.4) 
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In view of Eq. (4.4), which here holds for p = q = 1 , we can define 
 

,21 qqqtot +=   (6.5) 
 
while q1 - q2  has become invisible. We can also say, 

                                      n1  =  n2  =  ntot 

 
An interacting system is expected to have perturbed energy levels, so that its Hamiltonian should 

become 
 

( )ijji
totnHH Ε+Ε+Ε⎟

⎠
⎞

⎜
⎝
⎛ +=+ δ21

int0

2
1

  ,  (6.7) 

 
where ijΕδ are correction terms depending on both i and j . This is realized simply by demanding that the 
beables i

1Ε   and / or  j
2Ε   get  their correction terms straight from the other system. This is an existence 

proof for interactions in this framework, but, at first sight, it appears not to be very elegant. It means that 
the velocity  ij

1ω  of one variable q1 depends on the state  j that the other variable is in, but no matrix 
diagonalization is required. Indeed, we still have no transitions between the different energy states i. It 
may seem that we have to search for a more general interaction scheme. Instead, the scheme to be 
discussed next differs from the one described in this section by the fact that the energies E cannot be read 
off directly from the state a system is in, even though they are beables. The indices i, j are locally 
unobservable, and this is why we usually work with superimposed states. 
 
DISCUSSION 

When we attempt to regard quantum mechanics as a deterministic system, we have to face the 
problem of the positivity of the Hamiltonian, as was concluded earlier in Refs [1][2][3][4][5]. There, also, 
the suspicion was raised that information loss is essential for the resolution of this problem.  

Cellular automaton models can be written down that show a rapid convergence towards small 
limit cycles, starting from any state F(0). Conway's "game of life" [6] is an example, although that also 
features 'glider solutions', which are structures that are periodic, but they move forward when released in 
an empty region, so that they are not limit cycles in the strict sense. It must be emphasized, however, that 
Conway's game of life will not serve as a model generating quantum mechanics. In a model generating 
quantum mechanics, the vacuum state is the state with the longest limit cycle, since it has the lowest 
energy. Thus, the empty state in Conway's game of life would carry more energy than its glider solutions. 

States of interest, with which we might attempt to describe the universe as we know it, must be 
very far away from any limit cycle. They are also far away from the strictly stationary eigenstates of the 
Hamiltonian. This means that we do not yet know which of the numerous possible limit cycles our 
universe will land into. This is why we normally use wave functions that have a distribution of amplitudes 
in the basis of the Hamiltonian eigenmodes. The squares of these amplitudes indicate the probability that 
any particular limit cycle will be reached. Also note that, according to General Relativity, taking into 
account the negative energies in the gravitational potentials, the total energy of the universe should 
vanish, which means that the entire universe might never settle for any limit cycle, as is indeed suggested 
by what we know of cosmology today: the universe continues to expand. The limit cycles mentioned in 
this paper refer to idealized situations where small sections of the universe are isolated from the rest, so as 
to be able to define their energies exactly.  

The fact that the observed cosmological constant appears to be non-vanishing implies that a 
finite volume V of space will have a largest limit cycle with period 

 

V
hGP
Λ

=
π8

  ,  (7.3) 

 
which is of the order of a microsecond for a volume of a cubic micron. If Λ were negative we would have 
had to assume that gravity does not exactly couple to energy. 
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Lorentz transformations and general coordinate transformations have not been considered in this 
paper. Before doing that, we must find models in which the Hamiltonian is indeed extensive, that is, it can 
be described as the integral of an Hamiltonian density T00 ( )t,χr , over 3-space, as soon as the integration 

volume element xd r3
 is taken to be large compared to the 'Planck volume'. When that is achieved, we 

will be only one step away from generating locally deterministic quantum field theories. 
What  can  be  said   from what we know presently, is that a particle with 4-momentum pμ , must 

represent an equivalence class that contains all translations  μμμ xxx Δ+→   with μp nh= , where n 
is an integer. It is even more tempting to include here the gauge equivalence classes of General Relativity 
: perhaps local coordinate transformations are among the dissipative transitions. In this case, the 
underlying deterministic theory might not be invariant under local coordinate transformations, and here 
also one may find novel approaches towards the cosmological constant problem and the apparent flatness 
of our universe. 

Our reason for mentioning virtual black holes being sources of information loss might require 
further explanation. Indeed, the quantum mechanical description of a black hole is not expected to require 
information loss (in the form of quantum decoherence) ; it is the corresponding classical black hole that 
we might expect to play a role in the ontological theory, and that is where information loss is to be 
expected, since classical black holes do not emit Hawking radiation. As soon as we turn to the quantum 
mechanical description in accordance to the theory explained in this paper, a conventional, fully coherent 
quantum description of the black hole is expected. Although we do feel that this paper is bringing forward 
an important new approach towards the interpretation of Quantum Mechanics, there are many questions 
that have not yet been answered. One urgent question is how to construct explicit models in which energy 
can be seen as extrinsic, that is, an integral of an energy density over space. A related problem is how to 
introduce weak  interactions  between two nearly independent systems. Next,  one would like to gain 
more understanding of the phenomenon of  (destructive) interference, a feature typical for  Quantum 
Mechanics while absent in  other statistical theories. 
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