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ABSTRACT 
In this paper, a new symmetry argument in a vacuum state with strictly vanishing vacuum energy has 
been studied. This argument exploits the well-known feature that deSitter and Anti–deSitter space are 
related by analytic continuation in complex analysis. When we drop boundary and hermiticity conditions 
on quantum fields, we get as many negative as positive energy states, which are related by 
transformations to complex space. In this case, we have explored indirectly a new perspective to solve 
cosmological constant problem. 
Keywords : Analytic continuation, cosmological constant problem. 

 
 
 
 
INTRODUCTION 

The constant of cosmological problem is the one of major obstacles for both particle physics and 
cosmology. The question is why is the effective cosmological constant, Λeff , defined as Λeff = Λ + 
8πG<ρ> so closed to zero1. As is well known, different contributions to the vacuum energy density from 
particle physics would naively give a value for <ρ> of order 4

PM  , which then would have to be (nearly) 
cancelled by the unknown “bare” value of Λ. 

This cancellation has to be precise to about 120 decimal places if we compare the zero-point 
energy of a scalar field, using the Planck scale as a cut-off, and experimental value of ρvac = <ρ> + Λ / 
8πG , being 10-47 GeV4. As is well known, even if we take a TeV scale cut-off, the difference between 
experimental and theoretical results still requires a fine-tuning of about 50 orders of magnitude. This 
magnificent fine-tuning seems to suggest that we fail to observe something that is absolutely essential. In 
their lectures [1, 2], ‘t Hooft and Prokopec gave the different proposals that have occurred and we discuss 
in more detail a scenario that has been introduce in [3] and [4], based on symmetry with respect to a 
transformation towards imaginary values of the space-time coordinates: xμ  i xμ . This symmetry entails 
of a new definition of vacuum state, as the unique state that is invariant under this transformation. Since 
curvature switches sign, this vacuum state must be associated with zero curvature, hence zero 
cosmological constant. The most striking and unusual feature of the symmetry is the fact that the 
boundary conditions of physical states are not invariant. Physical states obey boundary conditions when 
the real parts of the coordinates tend to infinity, not the imaginary parts. This is why all physical states, 
except the vacuum, must break the symmetry. We will argue that a vanishing cosmological constant could 
be a consequence of the specific boundary conditions of the vacuum, upon postulating this complex 
symmetry. 

The fact that we are transforming real coordinates into imaginary coordinates implies, that 
hermitean operators are transformed into operators whose hermiticity properties are modified. Taking the 
hermitean conjugate of an operator requires knowledge of the boundary conditions of a state. The 
transition from x to ix requires that the boundary conditions of the states are modified. For instance, wave 
functions Φ that are periodic in real space, are now replaced by waves that are exponential expressions of 
x , thus periodic in ix. But we are forced to do more than that. Also the creation and annihilation operators 
will transform, and their commutator algebra in complex space is not priori clear; it requires careful 
study.  
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Thus, the symmetry that we are trying to identify is a symmetry of laws of nature prior to 
imposing any boundary conditions. Demanding invariance under  xμ  xμ +  aμ  where aμ may be real or 
imaginary, violates boundary conditions at Φ  ∞ , leaving only one state invariant: the physical 
vacuum. 
 
 
 
CASSICAL SCALAR FIELD  

To set our notation, consider a real, classical, scalar field Φ(x) in D space-time dimensions, with 
Lagrangian 

 ( ) ( ) .
2
1)(,)(

2
1 4222 Φ+Φ=ΦΦ−Φ∂−= λμ mVxVL                        

(1) 
Adopting the metric convention  (- + + + ), we write the energy-momentum tensor as 
  ( ) .)()()()( xLgxxxT Φ+Φ∂Φ∂= μννμμν                                                      (2) 
The Hamiltonian H  is 
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 Write our transformation as xμ = iyμ , after which all coordinates are rotated in their complex 
planes such that yμ will become real. For redefined notions in y space, we use subscripts or superscripts y , 
e.g., .μμ ∂=∂ iy  The field in  y space obeys the Lagrange equations with 

  ( ) ;)(
2
1 2

Φ+Φ∂−=−= VLL y
y μ                                                                (4)  

                           ( ) .)()()( iyLgiyiyTT y
yyy Φ+Φ∂Φ∂=−= μννμμνμν                                         (5) 

The Hamiltonian in y-space is 

  ( ) ∫ −− =−= ;, 00
11 yD

yy
D TydHHiH                (6) 
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00 iyiyVT yyy
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r
                       (7) 

If we keep only the mass term in the potential, V(Φ) = ½ m2Φ2 , the field obeys the Klein-
Gordon equation. In the real x-space, its solutions can be written as 

  ( )∫ −∗− +=Φ ,)()(),( )()(1 pxipxiD epaepapdtx                                            (8) 

  ( )∫ −∗− +−=Π ;)()(),( )()(01 pxipxiD epaiepiappdtx                              (9) 

  ( ) ,, 0220 tpxppxmpp −⋅≡+=
rrr

                                         (10) 
where a(p) is just a c-number. 
 Analytically continuing these solutions to complex space, yields: 

  ( )∫ −− +=Φ ,)(ˆ)(),( )()(1 qyi
y

qyi
y

D eqaeqaqdiiy τ                      (11) 

        ( )∫ −− +−=Π=Π ;)(ˆ)(),(),( )()(01 qyi
y

qyi
y

D
y eqaieqiaqqdiiyiy ττ        (12) 

                                                        ( ) ., 0220 τqyqqymqq −⋅≡−=
rrr

              (13) 
The new coefficients could be analytic continuations of the old ones, 
  ,,)()()(ˆ,)()( 11 μμ iqpqaiqapaia D

y
D

y −=−=−= ∗−−     (14) 
but this makes sense only if the a(p) would not have singularities that we cross when shifting the 
integration contour. Note, that, since  D = 4 is even, the hermiticity relation between  )(qa y  and  

)(ˆ qa y  is lost. We can now consider solutions where we restore them: 
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  ,)()(ˆ qaqa yy
∗=                                                                              (15) 

while also demanding convergence of the  q  integration. Such solutions would not obey acceptable 
boundary conditions in x-space, and the fields would be imaginary rather than real, so these are 
unphysical solutions. The important property that we concentrate on now, however, is that, according to 
Eq. (5), these solutions would have to opposite for Tμν . 
 Of course, the field in y-space appears to be tachyonic, since m2 is negative. In most of recent 
discussions, we should put m=0. A related transformation with the objective of  Tμν    - Tμν   was made 
by Kaplan and Sundurm in [5]. Non-Hermitian Hamiltonians were also studied by Bender at al. in for 
example [6, 7].  
GRAVITY 
Consider Einstein’s equations: 

  .8
2
1

μνμνμνμν π TGgRgR −=Λ−−                                                               (16) 

Writing 
  ,)()(,),( iyxgygyiyix y =→== μνμν

μμ τ        (17) 

and defining the Riemann tensor in y-space using the derivatives y
μ∂  , we see that  

  .)(iyRR y
μνμν −=                                                                                                 (18) 

Clearly, in y-space, we have the equation 

  .8)(8
2
1 yyyyy TGiyTGgRgR μνμνμνμνμν ππ −=+=Λ+−                    (19) 

Thus, Einstein’s equations are invariant except for the cosmological constant term. 
 A related suggestion was made in [8]. In fact, we could consider formulating the equations of 
nature in the full complex space  z = x + iy , but then everything becomes complex. The above 
transformation is a one-to-one map from real space 3ℜ  to the purely imaginary space 3ℑ , where again 
real equations emerge. 
 The transformation from real to imaginary coordinates naturally relates deSitter space with anti-
deSitter space, or, a vacuum solution with positive cosmological constant to a vacuum solution with 
negative cosmological constant. Only if the cosmological constant is zero, a solution can map into itself 
by such a transformation. None of the excited states can have this invariance, because they have to obey 
boundary conditions, either in real space, or in imaginary space. 

SECOND QUANTIZATION 
 We now turn our attention to second-quantized particle theories, and we know that the vacuum 
state will be invariant, at least under all complex translations. Not only the hermiticity properties of field 
operators are modified in the transformation, but now also the commutation rules are affected. A scalar 
field )(xΦ and its conjugate, Π(x), often equal to )(xΦ& , normally obey the commutation rule 

 
[ ] ,)(),(),,( 3 xxitxtx ′−−=′ΦΠ

rrrr δ                                                                 (20) 
where the Dirac delta function )(xδ  may be regarded as 

  )(xδ  =  
2xe λ

π
λ −    ,                                                              (21) 

in the limit ∞↑λ .  If xr  is replaced by yir , with yr  real, then the commutation rules are 

  [ ] ( ) ,)(),(),,( 3 yyiityityi ′−−=′ΦΠ
rrrr δ                                                        (22) 

but, in (21) we see two things happen: 
(i)  This delta function does not go to zero unless  its argument  x lies in the right or left quadrant of  
Fig.1. Now, this can be cured if we add an imaginary part to  λ ,  namely  λ    - iμ , with  μ  real. Then 
the function (21) exists if x = r eiθ , with  0 < θ <  ½ π .  
But then,  
(ii) If  x = iy , the sign of  μ  is important. If  μ > 0 , replacing  x = iy ,  the delta function becomes 
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  ,)()(
2

yieiiy yi δ
π
μδ μ −→

−
= −                                   (23) 

       which would be  + )( yiδ  had we chosen the other sign for μ . 
We conclude that the sign of the square root in Eq. (21) is ambiguous. 
                                                y                                                                             y                                      
 
 
 
 
                                                                             x                                                                                   x                      
 
 
 
 
 
                                            a)                                                                                   b) 

Region in complex space where the Dirac delta function is well-defined, 
(a) if  λ  is real,  (b) if  μ  is real and positive. 

There is another way to phrase this difficulty. The commutation rule (20) suggests that either the field 
),( txrΦ  or  ),( txrΠ  must be regarded as a distribution. Take the field  Π.  Consider test  function 

)(xf r
,  and write  

 [ ] .)(),(),,(;),()(),( 3 xfitxtfxdtxxftf rrrrr
−=ΦΠΠ≡Π ∫        (24) 

As long as xr  is real, the integration contour in Eq. (24) is well defined. If, however, we choose 
x = iy , the contour must be taken to be in the complex plane, and  if we only wish to consider real y, then 
the contour must be along the imaginary axis. This would be allowed if  ),( yxrΠ is holomorphic for 
complex xr  , and the end points of the integration contour should not be modified. 
 For simplicity, let us take space to be one-dimensional. Assume that the contour becomes as in 
Fig. 2a. In the y space, we have  

 [ ]∫
∞

∞−
−=ΦΠΠ≡Π ,)(),(),,(;)()()(),( iyiftiytfiydiyiyftf           (25) 

so that       
[ ] .)(),(),,( yytyitiy ′−−=′ΦΠ δ                                                                  (26) 
 

                                                                                                                                                                                                                 
                                                                                                                                                           
 
 
 
                                                                                                                                                              
 
                                                
      
        Integration contour for the commutator algebra (24), (a)  and (b) being 
                                                      two distinct choices.  
  Note now that we could have chosen the contour of Fig. 2b  instead. In that case, the integration 
goes in the opposite direction, and the commutator algebra in Eq. (26) receives the opposite sign. Note 
also that, if we would be tempted to stick to one rule only, the commutator algebra would receive an 
overall minus sign if we apply the transformation x  iy  twice. 
 The general philoshopy is now that, with these new commutation relations in y-space, we could 
impose conventional hermiticity properties in y-space, and then consider states as representations of these 
operators. How do individual states then transform from x-space to y-space or vice versa ? We expect to 
obtain non-normalizable states, but the situation is worse than that. Let us again consider one space-
dimension, an begin with defining the annihilation and creation operators a(p) and a+(p) in x-space: 
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Insisting that the commutation rules )(])(),([ pppapa ′−=′+ δ   should also be seen in y-space 
operators: 
  )(])(ˆ),([ qqqaqa yy ′−=′ δ ,                                                                               (32) 

we write, assuming  00 qip −=   and  
τ∂
Φ∂

−=Π i   for free fields, 
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so that the commutator (32) agrees with the field commutators (26). In most of my considerations, we will 
have to take m = 0 ; we leave m in our expressions just to show its sign switch. 
 In x-space, the the fields Φ and π are real, and the exponents in Eq. (33) – (37) are all real, so the 
hermiticity relations are yy aa =+ and   yy aa ˆˆ =+   .  Now, we replace this by 

 += yy aâ  .                        (38) 
 The Hamiltonian for a free field reads 
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⎟
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         ∫ ∫ +−=⎟
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⎜
⎝
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1)()(ˆ 00 nqdqiqaqaqdqi yy

 
           (39) 

Clearly, with the hermiticity condition (38), the Hamiltonian became purely imaginary, as in 
Section 2. Also, the zero point fluctuations still seem to be there. However, we have not yet  addressed the 
operator ordering. Let us take a closer look at the way individual creation and annihilation operators 
transform. We now need to set m = 0 ,  p0 = |p| ,  q0 = |q| . In order to compare the creation and 
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annihilation operators in real space-time with those in imaginary space time, substitute Eqs. (33) and (34) 
into (30), and the converse, to obtain 
 

{ } ,)(ˆ)()()(
42

)( )(00)(00

00

xipq
y

xipq
y eqaqipeqaqip

qp

dqdxpa −−− ++−= ∫∫
π

       (40) 

{ } .)()()()(
42

)( )(00)(00

00

ypiqypiq
y epapiqepapiq

qp

dpdyqa +−+−− −++= ∫∫
π

     (41) 

 The difficulty with these expressions is the fact that the x- and the y- integrals diverge. The 
following procedure is proposed. Let us limit ourselves to the case that, in Eqs. (36) and (37), the y-

integration is over a finite box only:  |y| < L , in which case 02)( qqay   will be an entire analytic 
function of q. Then, in Eq. (40), we can first shift the integration contour in complex q-space by amount 
ip up or down, and subsequently rotate the x-integration contour to obtain convergence. Now the square 
roots occurring explicitly in Eqs. (40) and (41) are merely the consequence of a choice of normalization, 
and could be avoided, but the root in the definition of   p0  and   q0  are much more problematic. In 
principle we could take any of the two branches of the roots. However, in our transformation procedure 
we actually choose  q0 = - i p0  and the second parts of  Eqs. (40) and (41) simply cancel out. Note that, 
had we taken the other sign, i.e.  q0 = i p0  , this would have affected the expression for  Φ(iy, iτ) such, that 
we would still end up with the same final result. In general, the x-integration yields a delta function 
constraining  q  to be  ± ip , but  q0  is chosen to be on the branch  - i p0 , in both terms of this equation ( 
q0  normally does not change sign if  q  does). Thus, we get, from Eqs. (40) and (41), respectively, 

,,,)()( 002/1 piqpiqqaipa y ===                      (42) 

,,,)()( 002/1 qipqippaiqay −=−== −                 (43) 
so that  a(p)  and  ay (q)  are analytic continuations of one another. Similarly, 

        
.,,)()(ˆ,)(ˆ)( 002/12/1 qipqippaiqaqaipa yy −=−=== +−+       (44) 

There is no Bogolyubov mixing between  a  and  a+ .  Note that these expressions agree with the 
transformation law of the Hamiltonian (39). 
 Now that we have a precisely defined transformation law for the creation and annihilation 
operators, we can find out how the states transform. The vacuum state 0  is defined to be the state upon 
which all annihilation operators vanish. We now see that this state is invariant under all our 
transformations. Indeed, because there is no Bogolyubov mixing, all N particle states transform into N 
particle states, with N being invariant. The vacuum is invariant because 1) creation operators transform 
into creation operators, and annihilation operators into annihilation operators, and because 2) the vacuum 
is translation invariant. 
 The Hamiltonian is transformed into  – i  times Hamiltonian (in the case D = 2);  the energy 
density T00  into  –T00  , and since the vacuum is the only state that is invariant, it must have T00 = 0  and it 
must be the only state with this property. 
MAXWELL FIELDS        
 This can now easily to include the Maxwell action as well. In flat space-time: 

  ∫ ∂−∂=−= .,)()(
4
13

μννμμν
μν

μν AAFxFxFxdS           (45) 

The action is invariant under gauge transformations of the form 
  .)()()( xxAxA ξμμμ ∂+→                       (46) 

Making use of this freedom, we impose the Lorentz condition 0=∂ μμ A  , such that the 

equation of motion 0=∂ μν
μ F    becomes  μA = 0 . As is well known, this does not completely fix the 

gauge, since transformations like (46) are still possible, provided     ξ = 0 .  This remaining gauge freedom 
can be used to set  0=⋅∇ A

r
  , denoted Coulomb gauge, which sacrifices manifest Lortenz invariance. 

The commutation relations are 
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,)(]),(),,([ xxitxAtxE tr
ijj

i ′−=′ rrδ                                                               (47) 
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∂
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−−=
∂
∂

= &
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           (48) 

is the momentum conjugate to kA  , which we previously called  Π  , but it is here just a component of 
the electric field. The transverse delta-function is defined as 
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)( 2
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3
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⎝

⎛
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xxpitr
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rr rrr

δ
π

δ                                            (49) 

such that its divergence vanishes. In Coulomb gauge, A
r

 satisfies the wave equation     A
r

= 0 , and we 
write 

    ( ) ,),(),(),(
2)2(

),( )()(
2

1
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3
pxipxi epaepap

p
pdtxA −+

=

+= ∫ ∑ λλλε
π λ

rr
           (50) 

where  ),( λε p
r

is the polarization vector of the gauge field, which satisfies  0=⋅ pr
r
ε   from the 

Coulomb condition   0=⋅∇ A
r

  . Moreover, the polarization vectors can be chosen to be orthogonal  

λλδλελε ′=′⋅ ),(),( pp rr
and satisfy a completeness relation 

.),(),( 2∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

λ

δλελε
p

pp
pp nm

mnnm r                                   (51) 

The commutator relation between the creation and annihilation operators becomes 
,)(]),(),,([ λλδδλλ ′

+ ′−=′ pppapa rr
                                                 (52) 

in which the polarization vectors cancel out due to their completeness relation. 
 In complex space, the field μA  thus transforms analogously to the scalar field, with the only 

addition that the polarization vectors  )( pμε
r

 will now become function of complex momentum qr   . 
However, since they do not satisfy a particular algebra, like the creation and annihilation operators, they 
do not cause any additional difficulties. The commutation relations between the creation and annihilation 
operators behave similarly as in the scalar field case, since the second term in the transverse delta-
function (49), and the polarization vector completeness relation (51), is invariant when transforming to 
complex momentum. 
 Thus we find  
 
  ,),(),(),(),( ττ μν

μν
μν

μν iiyFiiyFtxFtxF −→                                     (53) 
and again T00  flips sign, as the energy momentum tensor reads: 

  .
4
1

μν
αβ

αβ
α
νμαμν ηFFFFT +−=                                                                     (54) 

In term of the  E  and  B  fields, which are given by derivatives of  μA  ,  ii FE 0=   ,  jkijkk FB ε
2
1

=   

, we have: 

  ( ) 00
22

00 2
1 TBET −→+=            ,                                  (55) 

which indicates that the electric and magnetic fields become imaginary. A source term  μ
μ AJ  can also 

be added to the action (45), if one imposes that  μμ JJ −→   , in which case the Maxwell equations  
νμν

μ JF =∂  are covariant. 
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 Implementing gauge invariance in imaginary space is also straightforward. The Maxwell action 
and Maxwell equations are invariant under  ),(),(),( txtxAtxA ξμμμ ∂+→ .  In complex space 
time this becomes 
  ),(),(),(),( τξτττ μμμ iiyyiiiyAiiyA ∂−→                     (56) 
and the Lorentz condition 
  ),(),(0),(),( ττ μ

μ
μ

μ iiyAyitxAtx ∂→=∂                                      (57) 
In Coulomb gauge the polarization vectors satisfy 
  0)( =⋅ qq rr

ξ ,                         (58) 
where  q  is imaginary momentum. 
RELATION WITH BOUNDARY CONDITIONS 
 All particle states depend on boundary conditions, usually imposed on the real axis. One could 
therefore try to simply view the  x  ix  symmetry as a one-to-one mapping of states with boundary 
conditions imposed on  ± x  ∞  to states with boundary conditions imposed on imaginary axis  ± ix  ∞ 
. At first sight, this mapping transforms positive energy particle states into negative energy particle states. 
The vacuum, not having to obey boundary conditions would necessarily have zero energy. However, this 
turns out not to be sufficient. 
 Solutions to Klein-Gordon equation, with boundary conditions imposed on imaginary 
coordinates are of the form: 

    ( )∫ +=+
⋅

=Φ − 220)()(

0
,)(ˆ)(

22
),( mppepaepa

p

dptx pxpx
im

π
  ,        

(59) 
written with the supscript  “ im “  to remind us that this is the solution with boundary conditions 

on the imaginary axis. With these boundary conditions, the field explodes for real valued  x  ± ∞ , 
whereas for the usual boundary conditions, imposed on the real axis, the field explodes for  ix  ± ∞ . 
Note that for non-trivial  a   and   â  , this field now has a non-zero complex part on the real axis, if one 
insists that the second term is the Hermitian conjugate of the first, as is usually the case. This is a 
necessary consequence of this set up. However , we insist on writing   += aâ   and returning to three 
spatial dimensions, we write for Φim(x,t) and Пim(x,t) : 

               ( ) ,
2
1

)2(
),( )()(

03

3
px

p
px

pim eaea
p

pdtx −++=Φ ∫ π
r

   

( )∫ −+−−=Π=Φ )()(
0

3

3

2
)(

)2(
),(),( px

p
px

pimim eaeappdtxtx
π

rr&   , 

                                    ,)(, 0220 tpxppxmpp −⋅≡+=
rrr

     (60) 
and impose the normal commutation relations between  a  and  a+ : 

.)()2(],[ )3(3 ppaa pp ′−=+
′

rrδπ      .    (61) 

Using Eq. (61), the commutator between  imΦ   and  imΠ   at equal times, becomes: 

  ,)(])(),([ )3( xxxx imim ′−=ΠΦ
rrrr δ                         (62) 

which differs by a factor of   i  from the usual relation, and by a minus sign, compared to Eq. (26). The 
energy-momentum tensor is given by 

  ( ) ,
2
1

imkim
k

imimim
T Φ∂Φ∂−Φ∂Φ∂= μννμμν η          (63) 

and thus indeed changes sign, as long as one considers only those contributions to a Hamiltonian that 
contain products of  a  and  a+  : 

  .],[
2
1

)2(
0

3

3

HaaaappdH pppp
diag
im −=⎟

⎠
⎞

⎜
⎝
⎛ −−= ++∫ π

                     (64) 
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However, the remaining parts give a contribution that is rapidly diverging on the imaginary axis 
 
 
  ( ) ,)( )(22)(22 pxpx

im
diagnon eaeaT −+− +=μν                                                  (65) 

but which blows up for  ± x  ∞ .  Note that when calculating vacuum expectation values, these terms 
give no contribution. 
 The summarize, one can only construct such a symmetry, changing boundary conditions from 
real to imaginary coordinates, in a very small box. This was to be expected, since we are comparing 
hyperbolic functions with their ordinary counterparts, sinh (x)  vs.  sin (x) , and they are only identical 
functions in a small neighborhood around the origin. 

CONCLUSIONS  
 It is natural to ascribe the extremely tiny value of the cosmological constant to some symmetry. 
Until now, the only symmetry that showed promises in this respect has been supersymmetry. It is 
difficult, however, to understand how it can be that supersymmetry is obviously strongly broken by all 
matter representations, whereas nevertheless the vacuum state should respect it completely. This 
symmetry requires the vacuum fluctuations of bosonic fields to cancel very precisely against those of the 
fermionic field, and it is hard to see how this can happen when fermionic and bosonic fields have such 
dissimilar spectra. 
 The symmetry proposed in this paper is different. It is suspected that the field equations 
themselves have a larger symmetry than the boundary conditions for the solutions. It is the boundary 
conditions, and the hermiticity conditions on the fileds, that force all physical states to have positive 
energies. If we drop these conditions, we get as many negative energy as positive energy states, and 
indeed, there may be a symmetry relating positive energy with negative energy. This is the most 
promising beginning of an argument why the vacuum state must have strictly vanishing gravitational 
energy. 
 The fact that the symmetry must relate real to imaginary coordinates is suggested by the fact that 
deSitter and Anti-deSitter space are related by analytic continuation, and that their cosmological constant 
have opposite sign. 
 Unfortunately, it is hard to see how this kind of symmetry could be realized in the known 
interaction types seen in the sub-atomic particles. At first sight, all mass term are forbidden. However, we 
could observe that all masses in the Standard Model are due to interactions, and it could be that fields 
with positive mass squared are related to tachyonic fields by our symmetry. The one scalar field in the 
Standard Model is the Higgs field. Its self interaction is described by a potential  

)(
2
1)( 2

1 FV −ΦΦ=Φ +λ , and it is strongly suspected that parameter λ  is unnaturally small. Our 

symmetry would relate it to another scalar field with opposite potential: )()( 2122 Φ−=Φ VV . Such a 
field would have no vacuum expectation value, and, according to perturbation theory, a mass that is the 

Higgs mass divided by 2  . Although explicit predictions would be premature, this does suggest that a 
theory of this kind could make testable predictions, and it is worth-while to search for scalar fields that do 
not contribute to the Higgs mechanism at LHC, having a mass somewhat smaller than the Higgs mass. 
We are hesitant with this particular prediction because the negative sign in its self  interaction potential 
could lead to unlikely instabilities, to be taken care of by non-perturbative radiative corrections. 
 The symmetry we studied in this paper would set the vacuum energy to zero and has therefore 
the potential to explain a vanishing cosmological constant. In light of the recent discoveries that the 
universe appears to be accelerating [9], one could consider a slight breaking of this symmetry. This is a 
non-trivial task that we will have to postpone to further study. Note however, that our proposal would 
only nullify exact vacuum energy with equation of state w = -1. Explaining the acceleration of the 
universe with some dark energy component other than a cosmological constant, quintessence for example, 
therefore is not ruled out within this framework. 
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