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  ABSTRACT 

Article History: 
Vector Autoregressive (VAR) is a multivariate time series model that analyzes more than one 

variable where each variable in the model is endogenous. VAR is one of the models used in 
forecasting rainfall and wind speed. In observations of rainfall and wind speed, there are usually 

a series of events whose values are far from other observations or can be said to be outliers. The 

purpose of this study is to compare the VAR model on rainfall and wind speed data before and 

after outlier detection. This study uses secondary data, namely monthly data on rainfall and 
wind speed from 2019 to 2021. From the analysis results, the smallest AIC value obtained in the 

VAR model before outlier detection was 4.94, then the smallest AIC value in the VAR model after 

outlier detection was 0.25. Thus, it can be concluded that the best model is obtained in the VAR 

model after outlier detection seen from the smallest AIC value of the two VAR models. 
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1. INTRODUCTION 

Climate change is a change in the physical conditions of the Earth's atmosphere such as temperature, 

precipitation patterns, and several other climatic variables. Climate change and weather conditions are factors 

that affect activities in various fields of human life, specifically in the transportation sector. Air and sea 

transportation activities are carried out by considering weather conditions such as rainfall and wind speed. 

Therefore, rainfall and wind speed forecasts are important for the success of all planned transportation 

activities [1]. 

Forecasting is an activity carried out to measure future uncertainty based on past conditions and to 

assist decision-making. Forecasting is generally done on time series data. Forecasting time series data can be 

done for univariate and multivariate time series models. A univariate time series model is a model that 

contains only one observed variable, and a multivariate time series model is a model that contains several 

observed variables simultaneously [2]. 

Rainfall is one of the dynamic physical properties for which data is collected at regular time intervals, 

so time series analysis is necessary [3]. Rainfall is related to other weather factors such as temperature, 

humidity, and wind speed. Wind speed has an erratic nature. Therefore, a model is needed to predict accurate 

wind speed [4]. Rainfall and wind speed variables are interconnected variables [4] so, the determination of 

endogenous and exogenous variables is unknown for forecasting modeling. Therefore, simultaneous 

forecasting of rainfall and wind speed is carried out by viewing both variables as endogenous variables, using 

the Vector Autoregressive (VAR) method. VAR is simultaneous equation modeling that has multiple 

endogenous variables simultaneously  [5].  

Some previous studies that use VAR models include Hardani, Hoyyi, and Sudarno [6] on inflation rate 

data, interest rates, and IHSG. Ibnas, Salam, and Agustina [7] used the VAR model in forecasting the 

population in the Gowa Regency. This study aims to model rainfall and wind speed using the VAR model. 

In observations of rainfall and wind speed, there are usually unexpected events, which can produce a series 

of events whose values are far from other observations or can be said to be outliers. Outliers can cause 

conclusions from data analysis to be invalid, so it is necessary to detect and remove the effects of outliers in 

data analysis [8]. Therefore, in this study, outlier detection is performed on the VAR model to compare the 

VAR model before and after outlier detection to show the impact of outliers on the VAR model. 

 

2. RESEARCH METHODS 

2.1 Data Source 

This study uses monthly data of rainfall in millimeters (mm) and wind speed in knots. The data used 

is secondary data obtained from the Pontianak City Meteorological Station. The data period used in the 

formation of the Vector Autoregressive (VAR) model was three years, from January 2019 to December 2021. 

The sample size used in this study was 36 samples. 

2.2 Stationarity 

The method of testing stationarity against the average in this study was carried out by the Augmented 

Dickey-Fuller (ADF) test. If the data is not stationary on average, then a differencing process is performed 

[9]. Suppose the equation estimated by the ADF test is as follows. 

∆𝑌𝑡 = 𝛽0 + 𝜙𝑌𝑡−1 + ∑ 𝑎𝑖∆𝑌𝑡 + 𝑒𝑡.

𝑝

𝑖=1
 

The hypothesis used for ADF testing is as follows. 

H0: 𝜙 = 0 (there is a unit root or the data is non-stationary). 

H1: 𝜙 < 0 (no unit root or the data is stationary). 

With the following test statistics: 

𝐴𝐷𝐹ℎ𝑖𝑡𝑢𝑛𝑔 =
∅̂

𝑆𝐸(∅̂)
,                                                                (1) 
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with ∅̂ =
∑ (∆𝑌𝑡−∆𝑌�̅�)𝑛

𝑡=2 (𝑌𝑡−1−�̅�𝑡−1)

∑ (𝑌𝑡−1−�̅�𝑡−1)2𝑛
𝑡=2

, �̂�2 =
∑ �̂�𝑛

𝑡=2 𝑡
2

𝑛−𝑚
, 𝑛 is the number of observations, and m is the number 

of parameter estimates. The null hypothesis is refused if the absolute value of 𝐴𝐷𝐹𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 is greater than 

the ADF critical value or the ADF probability value is smaller than the specified significance level, so the 

data can be said to be stationary [10]. 

The data is considered stationary in variance if the data is constant over time using Box-Cox. When 

the value of λ is close to one, it can be said that the data is stationary in variance. A Box-Cox transformation 

is performed if the data is non-stationary in variance. The following is given as a transformation for several 

values of λ [11]. 

Table 1. Box Cox Transformation 

Value 𝜆 -2.0 -1.0 -0.5 0.0 0.5 1.0 2.0 

Transformation  1

𝑍𝑡
2 

1

𝑍𝑡
 

1

√𝑍𝑡

 
In 𝑍𝑡 √𝑍𝑡 𝑍𝑡 𝑍𝑡

2 

Matrix Partial Autoregressive Function (MPACF) is a generalization of PACF into time series vector 

form built by Tiao and Box in 1981 [12], which is used to identify the order of the tentative model. MPACF 

has cut off properties after lag p in the VAR(p) model [13]. 

2.3 Akaike Information Criteria (AIC) 

The best model is chosen based on the smallest Akaike Information Criteria (AIC) value. According 

to Hermayani (2014), AIC is a criterion introduced by Akaike in 1973 to select the best model by considering 

many parameters in the model [2]. AIC is formulated as follows [12]: 

𝐴𝐼𝐶(𝑀) = 𝑛In(�̂�𝛼
2) + 2𝑀                                                        (2) 

where M is the number of parameters in the model. The optimal order in a model is chosen based on the value 

of M, which is a function of p and q, so that the AIC(M) value is minimum. 

2.4 Autoregressive Vector Model 

Vector Autoregressive (VAR) is a system of equations that shows every variable as a linear function 

of constants and lag values of the variable itself, as well as lags of other variables in the model. The definition 

of the VAR model is that all variables in the model are endogenous variables, or it can be said that the VAR 

model does not need to distinguish between endogenous and exogenous variables [14]. The VAR model with 

order p for k independent variables at time t can be modeled as Equation (3) [12]. 

𝒀𝒕 = 𝝓𝟎 + 𝝓𝟏,𝒀𝟏,𝒕−𝟏 + 𝝓𝟐,𝒀𝟐,𝒕−𝟐 + ⋯ + 𝝓𝒑,𝒀𝒑,𝒕−𝒑 + 𝒂𝒕                     (3) 

with 𝒀𝒕 is a vector of independent variables of size 𝑚 × 1, 𝝓𝟎 is a vector of intercepts of size 𝑚 × 1, 𝝓𝒊 is a 

parameter matrix of size 𝑚 × 𝑚 for each 𝑖 = 1,2, … , 𝑝 and 𝒂𝒕 is a vector of residuals of size 𝑚 × 1. 

2.5 White Noise Residual Assumption Test 

The White Noise residual assumption test on multivariate time series data aims to see whether the 

residuals of the model are independent of each other. This assumption test can be done using the Ljung-Box 

test statistic for multivariate cases with the following hypothesis [11]. 

𝐻0 ∶ 𝜌1 =  𝜌2 = 𝜌3 = ⋯ = 𝜌𝑘 = 0 (residuals qualified by the White Noise condition) 

H1 : There is at least one ρi ≠ 0 with i=1, 2, ..., k (residuals do not qualify the White Noise condition) 

The test statistic used is as follows: 

𝑄ℎ = 𝑛 ∑ 𝑡𝑟( �̂�ℎ
𝑖=1 𝒊

′
�̂�𝟎

−𝟏�̂�𝒊�̂�𝟎
−𝟏)                                                  (4) 

with the assumption of rejecting 𝐻0 if 𝑄ℎ ≥ 𝜒2 or p-value < 𝛼. The value of 𝐶𝑖 is obtained from �̂�𝒊 =

𝑛−1 ∑ �̂�𝑛
𝑡=𝑖+1 𝑡

�̂�𝑡−1
′ , where �̂�𝒊 is the autocovariance estimation matrix of the residuals 𝑎𝑡, �̂�𝟎 is the  �̂�𝒊 matrix 

when 𝑖 = 0 and n is the number of samples. 
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2.6 Multivariate Normality Test 

Multivariate normality tests can be performed using inferential tests, one of which is the Henze-Zirkler 

test. The Henze-Zirkler test tests data normality based on the distance between two distribution functions. 

Multivariate normality testing with the Henze-Zirkler test uses the following hypothesis [15]: 

H0: multivariate residuals are normally distributed 

H1: multivariate residuals are not normally distributed 

The test statistic used is the Henze-Zirkler test statistic with Equation (5): 

𝐻𝑍 =
1

𝑛2
∑ ∑ 𝑒

𝛽2

2
𝑫𝒊𝒋 − 2(1 + 𝛽2)

𝑘

2
1

𝑛
∑ 𝑒

𝛽2

2(1+𝛽2)
𝑫𝒊𝑛

𝑖=1
𝑛
𝑗=1

𝑛
𝑖=1 + (1 + 1𝛽2)−

𝑘

2             (5) 

where 𝛽 =
1

√2
(

𝑛(2𝑝+1)

4
)

1

𝑘+4
, 𝑫𝒊𝒋 = (𝑥𝑖 − 𝑥𝑗)

𝑇
𝑺−𝟏(𝑥𝑖 − 𝑥𝑗), 𝑫𝒊 = (𝑥𝑖 − �̅�)𝑇𝑺−𝟏(𝑥𝑖 − �̅�), 𝑘 is the number of 

variables, and 𝑺−𝟏 is the variance covariance matrix. The testing criterion is that 𝐻0 is rejected if the 𝑝 −

𝑣𝑎𝑙𝑢𝑒 < 𝛼, thus the residuals are not normally distributed. 

2.7 Outlier Detection 

Time series observations are usually affected by unexpected events. The result of the disturbance of 

the unexpected event causes observations whose values are far from other observations or can be said to be 

outliers [16]. Outliers are observations that are not consistent in the series. For this reason, there are two 

treatments for them, namely removing them on the condition that they do not damage the model or retaining 

them because they are not disturbed. Outliers are removed in the sense that they replace the outliers with new 

values. If the outliers are due to errors in the data, the outlier value can be substituted using the mean or 

median of the variable based on the data distribution [17]. 

2.8 Vector Autoregressive Process with the Outlier Detection 

The process of collecting and analyzing data in this study was carried out with the following steps. 

a. The first step is to collect monthly data on rainfall and wind speed for the observation point of 

Pontianak Maritime Meteorological Station. 

b. The data stationarity test is carried out in variance and average. If the data is not stationary in variance, 

data transformation is carried out. If the data is not stationary in average, data differencing and ADF 

test are required again. 

c. If the data tested for stationarity has been stationary in variance and average, then identify a temporary 

VAR model by looking at the cut-off in the MPACF function and determine the best model based on 

the smallest AIC value. 

d. After obtaining the best model from the smallest AIC value, model parameter estimation and 

diagnostic tests are carried out to test the White Noise residual assumption and the multivariate normal 

distribution residual assumption. 

e. If the model that has been obtained has met the residual assumptions, then identify outliers in the 

residual data of the multivariate model. 

f. If there are outliers in the multivariate model, the model will be subjected to outlier detection by 

replacing it with the mean of the initial data so that "New Data" will be obtained. 

g. Then the "New Data" without outliers obtained after removing outliers and replaced with the mean of 

this initial data is modeled again, so that a new model will be obtained. 

h. After obtaining the VAR model before and after outlier detection, the next step is to compare the two 

models based on the AIC value. 
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3. RESULTS AND DISCUSSION 

3.1 Descriptive Statistics 

This study uses monthly data on rainfall in millimeters (mm) and wind speed in knots. Table 2 

presents descriptive statistics of rainfall and wind speed data. 

Table 2. Descriptive Statistics of Rainfall and Wind Speed Data 

Variable N Mean Median Mode Min Max 

Rainfall (mm) 36 308  290 224 8  616 

Wind Speed (knots) 36 25 25 25 19  37 

Based on Table 2, rainfall data has a right-skewed pattern where the mean value is greater than the 

median and mode. While the wind speed data has a symmetrical data pattern where the mean, median, and 

mode values have the same value. 

3.2 Vector Autoregressive Model 

3.2.1 Stationarity Test 

The first step in modeling time series data is to test the stationarity of the data. If the data stationarity 

requirements cannot be met, it will produce an inaccurate model for prediction. The following is an initial 

plot of each rainfall and wind speed data: 

 
(a) 

 
(b) 

Figure 1. Time Series Plot (a) Rainfall and (b) Wind Speed 

Based on Figure 1 (a) and Figure 1 (b), rainfall and wind speed data are not stationary in a mean or 

variance. Testing for stationary data in variance is done by looking at the λ value of the Box-Cox plot. The 

following are the results of the Box-Cox transformation of rainfall and wind speed data. 

   
(a) (b) 

Figure 2. Box-Cox (a) Rainfall and (b) Wind Speed 
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Based on Figure 2 (a) the rainfall data is stationary with respect to variance as seen from the value of 

λ = 1, while in Figure 2 (b) the wind speed data is not stationary with respect to variance because the value 

of λ = 2, so it is necessary to transform the data by 1/𝑥2 so that the wind speed data is stationary on variance. 

The results of the wind speed data transformation can be seen in Figure 3. 

 
Figure 3. Box-Cox Transformation of Wind Speed 

Figure 3 is the result of the Box-Cox test of wind speed from the transformed "New Data", resulting 

in a value of λ = 1, which means that the wind speed data is stationary concerning variance. Next, the data 

was tested for stationarity concerning the mean. 

Furthermore, the stationarity test of the mean was conducted using the Augmented Dickey-Fuller 

(ADF) test. The ADF test results for rainfall and wind speed data are not stationary in the mean. Therefore, 

a data differencing step is required and the ADF test is performed again. Table 3 presents the ADF test results 

after differencing the data once. 

Table 3. Differencing Data Stationarity Test 

Variable ADF Count Probability Information 

Rainfall (mm) -4.16 0.01 Stationary 

Wind Speed (knots) -3.60 0.03 Stationary 

Table 3 shows that the probability value of the two variables is smaller than the significance value of 

0.05, which means that the two variables have been stationary in mean. 

3.2.2 Identification of The VAR Model 

Temporary VAR model identification can be done by looking at the cut off on the MPACF function 

shown in Table 4. 

Table 4. Stationary MPACF Results 

Variablel/Lag 1 2 3 4 5 6 

Rainfall -. .+ .. .. .. .. 

Wind Speed .- .. .. .. .. .. 

Based on Table 4, the MPACF function cuts off after lag 1 and lag 2, so the temporary VAR models 

formed are VAR(1) and VAR(2) models. The next step will be the model feasibility test process by estimating 

the model parameters and determining the best model by looking the smallest AIC value. The following is 

given the AIC value to determine the feasibility of the model in Table 5. 

Table 5. AIC Value of Temporary Model 

Temporary Model AIC 

VAR (1) 4.94 

VAR (2) 5.42 

From the results of the model feasibility test analysis, the best model with the smallest AIC value is 

the VAR(1) model resulting from differencing once with an AIC value of 4.94.  

3.2.3 Parameter Estimation of VAR Model 

The parameter estimation results are tested for parameter significance to determine whether the 

parameters have an effect on the model. If the p-value < 0.05 then the parameter has a significant effect on 

the model. The results of the parameter significance test are presented in Table 6. 
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Table 6. Model Estimation and Significance Test 

Variable Parameter 
Parameter 

Estimation 
t - value Probability Information 

∆ Rainfall 

𝜙10 -3.256e+00  -0.103 0.9185 Insignificant 

𝜙11  -5.208e-01 -3.436 0.0017** Significant 

𝜙12  -1.417e+04 -0.271 0.7882 Insignificant 

∆
1

(𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑)2
 

𝜙20  2.097e-05 0.206 0.8378 Insignificant 

𝜙21  -1.232e-07 -0.253 0.8022 Insignificant 

𝜙22  -3.668e-01 -2.181 0.0369* Significant 

From Table 6, significant parameters can be seen from the statistical probability value that is less than 

0.05. Based on Table 6, the one-time differencing VAR(1) model formed is: 

[
∆𝑌1𝑡

∆𝑌2𝑡
] = [

−3.256
0.000021

] + [
−0.5208 −14170

−0.00000012 −0.3668
] [

𝑌1,𝑡−1

𝑌2,𝑡−1
] + [

𝑎1𝑡

𝑎2𝑡
]. 

or with the following equations. 

∆𝑌1𝑡 = −3.256 − 0.5208𝑌1,𝑡−1 − 14170𝑌2,𝑡−1 + 𝑎1𝑡 

∆𝑌2𝑡 = 0.000021 − 0.00000012𝑌1,𝑡−1 − 0.3668𝑌2,𝑡−1 + 𝑎2𝑡 

3.2.4 White Noise Residual Assumption Test 

This residual assumption test aims to determine the correlation between residual vectors from the VAR 

(1) model of the differencing results once formed. If the p-value < 0.05 then H0 is rejected or the residuals 

do not meet the White Noise assumption. The Ljung-Box test results are presented in Table 7. 

Table 7.  White Noise Residuals 

Lag Qm Probability Value 

1 1.22 0.87 

2 6.98 0.54 

3 13.16 0.36 

4 14.52 0.56 

5 16.61 0.68 

6 18.10 0.80 

Based on Table 7, the probability value for each lag is more than 0.05, so it can be concluded that the 

residuals qualified the White Noise residual assumption. 

3.2.5 Multivariate Normal Residual Assumption Test 

The multivariate normal residual assumption test in this study uses the Henze-Zirkler test. Table 8 

below provides the results of testing the multivariate normal assumption using the Henze-Zirkler test. 

Table 8.  Multivariate Normality test results 

Test Test Statistics p-value 

Henze-Zirkler 0.32 0.74 

From Table 8, it can be concluded that the residuals of the VAR(1) model resulting from one-time 

differencing are multivariate normally distributed. 

3.2.6 VAR Model Forecasting Before Outlier Detection 

In the VAR(1) model before outlier detection, the results of forecasting rainfall and wind speed data 

for January 2022 to December 2022 are presented in Table 9. 
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Table 9. Forecasting Result Data 

Month 
Forecasting Results 

Rainfall Wind Speed 

Jan-22 244 20 

Feb-22 244 20 

Mar-22 239 19 

Apr-22 234 19 

May-22 228 19 

Jun-22 223 18 

Jul-22 217 18 

Aug-22 212 17 

Sep-22 207 17 

Oct-22 202 16 

Nov-22 198 16 

Dec-22 193 16 

The forecast data obtained can be presented in graphs of actual data and forecast data as in Figure 4 

(a) and Figure 4 (b). 

 

 
(a) 

 
(b) 

Figure 4. Graph of Actual and Forecast Data (a) Rainfall and (b) Wind Speed 

3.3 Outlier Detection in VAR Model 

To determine the presence or absence of outliers, outlier detection is performed on the multivariate 

VAR(1) model using the Mahalanobis distance. The results of outlier detection are presented in Figure 4. 

 

 
Figure 5. Outlier Points in VAR(1) Model 

Figure 5, shows that the number of outliers detected is 3 points with different data distances. The data 

in the 8th observation has a data distance of 14.504. The data in the 30th observation has a data distance of 

10.646 and the data in the 24th observation has a distance of 8.742. 

After the outlier point is known, the outlier data is replaced with the mean value of the initial data so 

that "New Data" will be obtained, then the "New Data" will be modeled again [17]. 

3.4 Vector Autoregressive Model After Outlier Detection 

The data to be re-identified is rainfall and wind speed data that has undergone the process of replacing 

outlier values. So that the data can be said to be "New Data". 

  



BAREKENG: J. Math. & App., vol. 18(1), pp. 0117- 0128, March, 2024.     125 

 

 

3.4.1 Stationarity Test 

The first step to identify the model with "New Data" is to test whether the "New Data" is stationary in 
variance using Box-Cox transformation as shown in Figure 6 (a) and Figure 6 (b). 

 

  
(a) (b) 

Figure 6. Box-Cox (a) Rainfall and (b) Wind Speed 

Based on the Box-Cox transformation results in Figure 6 (a) the rainfall data has been stationary in 

variance because λ = 1, while in Figure 6 (b) it can be seen that the wind speed data is not stationary in 

variance because the value of λ ≠ 1. Therefore, the wind speed data needs to be transformed to 1/x to make 

the wind speed data stationary in variance. The results of the wind speed data transformation can be seen in 

Figure 7. 

 
Figure 7. Box-Cox Transformation of Wind Speed 

Figure 7, is the result of the Box-Cox transformation of wind speed data which produces a value of λ 

= 1, which means the data is stationary in variance. 

The stationarity test for the mean in "New Data" is not stationary because the probability value is more 

than the significance value of 0.05 so, it is necessary to differencing the data and ADF test again. The ADF 

test results after differencing once are summarized in Table 10. 

Table 10. Stationarity Test of New Data after Differencing 

Variable ADF Count Probability Information 

Rainfall (mm) -4.42 0.01 Stationary 

Wind Speed (knots) -3.91 0.02 Stationary 

 
Table 10 explains that both variables are stationary to the mean because they have probability values 

that are smaller than the significance value of 0.05. 

3.4.2 Identification of The VAR Model 

The identification of a temporary VAR model based on "New Data" is carried out by looking at the 

cut-off on the MPACF function. 

Table 11. Stationary MPACF Result 

Variable/Lag 1 2 3 4 5 6 

Rainfall -. .. -. .. .. .. 

Wind Speed .- .. .. .. .. .. 

Based on Table 11, the MPACF function cuts off after lag 1 and lag 3, so the temporary VAR models 

formed are VAR (1) and VAR (3) models. The following is given the AIC value to determine the feasibility 

of the model in Table 12. 
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Table 12. Stationary MPACF Result 

Temporary Model AIC Value 

VAR (1) 0.25 

VAR (3) 1.24 

From the results of the model feasibility test analysis, the best model with the smallest AIC value is 

the VAR(1) model resulting differencing once with an AIC value of 0.25. 

3.4.3 Parameter Estimation of VAR Model 

Then the parameter estimation of the VAR(1) model can be retrieved in Table 13. 

Table 13. VAR Model Estimation 

Variable Parameter 
Parameter 

Estimation 
t - value Probability Information 

∆ Rainfall 

𝜙10 -3.6427 -0.126 0.900265 Insignificant 

𝜙11 -0.6072 -4.307 0.00015*** Significant 

𝜙12 3141.8477 0.752 0.457846 Insignificant 

∆
1

(𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑)2  
𝜙20 2.594e-04 0.226 0.8226 Insignificant 

𝜙21 -3.731e-06 -0665 0.5110 Insignificant 

𝜙22 -3.767e-01 -2.266 0.0306* Significant 

 

From Table 13, significant parameters can be seen from the probability value that is less than 0.05. 

Based on Table 13, the one-time differencing VAR(1) model formed is: 

[
∆𝑌1𝑡

∆𝑌2𝑡
] = [

−3.6427
 0.0002594

] + [
−0.6072 3141.8477

0.000003731 −0.3767
] [

𝑌1,𝑡−1

𝑌2,𝑡−1
] + [

𝑎1𝑡

𝑎2𝑡
]. 

or with the following equations. 

∆𝑌1𝑡 = −3.6427 − 0.6072𝑌1,𝑡−1 + 3141.8477𝑌2,𝑡−1 + 𝑎1𝑡 

∆𝑌2𝑡 = 0.0002594 − 0.000003731𝑌1,𝑡−1 − 0.3767𝑌2,𝑡−1 + 𝑎2𝑡 

3.4.4 White Noise Residual Assumption Test 

In testing the suitability of the model includes a residual assumption test with Ljung-Box to see if the 

residuals have met the White Noise assumption. The Ljung-Box test results are presented in Table 14. 

Table 14. White Noise Residual 

Lag Qm Probability Value 

1 1.75 0.78 

2 7.43 0.48 

3 14.34 0.27 

4 15.45 0.49 

5 16.85 0.66 

6 17.12 0.84 

From Table 14, it is known that the probability value for each lag is more than 0.05, so it can be 

concluded that the residuals qualified the White Noise assumption. 

3.4.5 Multivariate Normal Residual Assumption Test 

The conclusion of the normal multivariate distribution assumption test in this study was carried out 

using the Henze-Zirkler test. Table 15 below provides the results of testing the normal multivariate 

assumption using the Henze-Zirkler test. 
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Table 15. Multivariate Normality Test Results 

Test Test Statistics p-value 

Henze-Zirkler 0.323096 0.78 

 

Table 15 is the result of testing multivariate normality using the Henze-Zirkler test. Judging from the 

p-value that is more than 0.05, it can be concluded that the residuals have qualified the multivariate normal 

assumption. 

3.4.6 VAR Model Forecasting After Outlier Detection 

In the VAR (1) model after outlier detection, the results of forecasting rainfall and wind speed data 

for January 2022 to December 2022 are presented in Table 16. 

Table 16. Forecasting Result Data 

Month 
Forecasting results 

Rainfall Wind Speed 

Jan-22 257 21 

Feb-22 254 20 

Mar-22 249 20 

Apr-22 245 20 

May-22 240 19 

Jun-22 236 19 

Jul-22 231 18 

Aug-22 227 18 

Sep-22 223 18 

Oct-22 218 17 

Nov-22 214 17 

Dec-22 210 17 

The forecast data obtained can be presented in graphs of actual data and forecast data as in Figure 8 

(a) and Figure 8 (b). 

 

 
(a) 

 
(b) 

Figure 8. Graph of actual and Forecast Data of (a) Rainfall and (b) Wind Speed 

3.5 Comparison of VAR Models Before and After Outlier Detection 

After identifying the VAR model with outliers and the VAR model without outliers, a comparison 

between the two models will be made in Table 17. 

Table 17. Comparison of VAR Models with Outliers and Without Outliers 

Model AIC 

There are Outliers 4.94 

There are not Outlier 0.25 

Based on Table 17, after performing outlier detection on the model by replacing the observation data 

where outliers occur with the mean of the initial data so that "New Data" is obtained, it is known that the 
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smallest AIC value is found in the model that does not have outliers or after outlier detection is 0.25. Thus, 

it can be concluded that the best Vector Autoregressive model is the model after outlier detection. 

 

4. CONCLUSIONS 

From the analysis that has been done in comparing the Vector Autoregressive model before and after 

outlier detection, the best model before outlier detection is the VAR(1) model which has the smallest AIC 

value of 4.94. While the best model after outlier detection is the VAR(1) model with the smallest AIC value 

of 0.25. Judging from the smallest AIC value of the two models, it can be concluded that the VAR(1) model 

after outlier detection is better than the model before outlier detection. 
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