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 ABSTRACT 

Article History: 
Research on mathematical operations involving multidimensional arrays or tensors has 

increased along with the growing applications involving multidimensional data analysis. The 

𝑡-product of order-𝑝 tensor is one of tensor multiplications. The 𝑡-product is defined using two 

operations that transform the multiplication of two tensors into the multiplication of two block 

matrices, then the result is a block matrix which is further transformed back into a tensor. The 

composition of both operations used in the definition of 𝑡-product can transform a tensor into 

a block circulant matrix. This research discusses the 𝑡-product of tensors based on their 

circulant structure. First, we present a theorem of the 𝑡-product of tensors involving circulant 

matrices. Second, we use the definition of identity, transpose, and inverse tensors under 𝑡-

product operation and investigate their relationship with circulant matrices. Third, we manifest 

the computation of the 𝑡-product involving circulant matrices. The results of the discussion 

show that the 𝑡-product of tensors fundamentally involves circulant matrix multiplication, which 

means that the operation at its core relies on multiplying circulant matrices. This implies the 𝑡-

product operation of tensors having properties analogous to standard matrix multiplication. 

Furthermore, since the 𝑡-product of tensors fundamentally involves circulant matrix 

multiplication, its computation can be simplified by diagonalizing the circulant matrix first 

using the discrete Fourier transform matrix. Finally, based on the obtained results, an 

algorithm is constructed in MATLAB to calculate the 𝑡-product. 
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1. INTRODUCTION 

In the era of big data, multidimensional data analysis becomes more important, since much of real-

world data is inherently multidimensional. Research on mathematical operations involving multidimensional 

arrays or tensors has increased along with the growing applications involving multidimensional data analysis.  

The 𝑡-product of order-3 tensor is one of the tensor multiplication operations defined by [1]. The 𝑡-

product is defined using two operations that transform the multiplication of two tensors into the multiplication 

of block matrices, then the result is a block matrix which is further transformed back into a tensor. Order-3 

𝑡-product definition motivates further researchers to generalize its definition and define concepts on tensor 

over 𝑡-product which analogous to concepts on matrix over standard matrix multiplication. Then, [1] defined 

identity, inverse, and transpose of order-3 tensor. Hereafter, [2] generalized the definition of 𝑡-product, 

identity, inverse, and transpose of order-3 tensor into order-𝑝 tensor (recursively) and constructed an 

algorithm to compute it using Fast Fourier Transform function in MATLAB. Later, [3] and [4] defined and 

discuss about Moore-Penrose inverse of tensor over 𝑡-product and algorithm to compute it in MATLAB. 

Afterwards, some applications involving 𝑡-product are discussed including image deblurring [2], [5], facial 

recognition [2], [6], and data compression [7], [8]. Further and related discussion about 𝑡-product discussed 

in articles [5], [6], [9]–[17].  

A magnificent theorem formulated by [4] states that the order-3 𝑡-product between two tensors is 

fundamentally the multiplication of two block circulant matrices obtained by transforming the two tensors. 

The result of multiplication is then transformed back into a tensor using the inverse transformation of the 

same transformation. With this theorem, the concepts of tensors related to the 𝑡-product can be viewed based 

on their circulant matrix forms.  However, this theorem is still limited to order-3 tensors.  

In this research, a more general theorem is proposed compared to the [4]’s theorem, so that it applies 

to tensors of arbitrary order or order-𝑝 tensors. The proof is essentially a recursive version of proving [4]’s 

theorem, as the order-𝑝 𝑡-product is a recursive version of the order-3 𝑡-product. The theorem provides a new 

and simpler perspective in understanding the definition of the order-𝑝 𝑡-product and its related concepts and 

applications, which have been discussed by previously researchers.  

In this research, several concepts of tensors over the 𝑡-product will also be discussed based on their 

block circulant matrix forms, namely identity tensors, inverse, transpose, and Moore-Penrose inverse of 

tensor. Additionally, algorithms for calculating the 𝑡-product involving the diagonalization of circulant 

matrices using the Discrete Fourier Transform (DFT) matrix will also be explored.  

2. RESEARCH METHODS 

In this research, several definitions and theorems that have been made by previous studies are used. In 

this section, these definitions and theorems will be given, which will be presented in several subsections. The 

first subsection will mention the basic definition and theorem of 𝑡-product. The second subsection will present 

some definitions of concepts on the tensor over the 𝑡-product operation. The last subsection will give a 

theorem that can be used to construct a MATLAB algorithm to calculate the 𝑡-product. 

2.1 Preliminary Definitions and Theorems 

This section provides the definition of 𝑡-product and the definition of some operations used on it, then 

followed by the theorem about the order-3 𝑡-product as the product of two circulant matrices. The theorem 

will be the basic material in this research. 

Definition 1. [18] An 𝑛 × 𝑛 cyclic forward shift matrix, denoted by 𝑆𝑛 is a matrix of the form 

𝑆𝑛 =

[
 
 
 
 
 
0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ 0 ⋮
0 0 0 ⋯ 1 0
0 0 0 ⋯ 0 1
1 0 0 ⋯ 0 0]

 
 
 
 
 

. 

 

Definition 2. [1] Let 𝐴 be a block matrix of the form 
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𝐴 = [

𝐴1

𝐴2

⋮
𝐴𝜌

], 

with 𝐴𝑖 of size 𝑛 × 𝑚, then block circulant matrix of 𝐴 denoted by 𝑐𝑖𝑟𝑐(𝐴) and defined as follows 

𝑐𝑖𝑟𝑐(𝐴) = [(𝑆𝜌
𝜌

⊗ 𝐼𝑛)𝐴|(𝑆𝜌
𝜌−1

⊗ 𝐼𝑛)𝐴|⋯ |(𝑆𝜌
1 ⊗ 𝐼𝑛)𝐴] =

[
 
 
 
𝐴1 𝐴𝜌 ⋯ 𝐴2

𝐴2 𝐴1 ⋯ 𝐴3

⋮ ⋮ ⋱ ⋮
𝐴𝜌 𝐴𝜌−1 ⋯ 𝐴1]

 
 
 
. 

where ⊗ is Kronecker product and 𝐼𝑛 is an identity matrix of size 𝑛. 

Definition 3. [2] The 𝑢𝑛𝑓𝑜𝑙𝑑 operation works by taking a tensor 𝒜 of size 𝑛1  ×  𝑛2  × . . .×  𝑛𝑝 and 

converting it into a block tensor of size 𝑛𝑝  ×  1 with each block being a tensor of size 𝑛1  ×  𝑛2  × . . .×  𝑛𝑝−1, 

as follows 

𝑢𝑛𝑓𝑜𝑙𝑑(𝒜) = [

𝒜1

𝒜2

⋮
𝒜𝑛𝜌  

], 

and 𝑓𝑜𝑙𝑑 is the inverse operation of 𝑢𝑛𝑓𝑜𝑙𝑑, which takes a block tensor of size 𝑛𝑝  ×  1 with each block 

being a tensor of size 𝑛1  ×  𝑛2  × . . .× 𝑛𝑝−1, and then converts it into an 𝑛1  ×  𝑛2  × . . .× 𝑛𝑝 tensor. Thus, 

we get 

𝑓𝑜𝑙𝑑(𝑢𝑛𝑓𝑜𝑙𝑑(𝒜)) = 𝒜. 

Definition 4. [1] Suppose the tensors 𝒜 is 𝑛1 × 𝑛2 × 𝑛3 and ℬ is 𝑛2 × 𝑙 × 𝑛3. Then the 𝑡-product 𝒜 ∗ ℬ is 

a tensor of size 𝑛1 × 𝑙 × 𝑛3, that is 

𝒜 ∗  ℬ =  𝑓𝑜𝑙𝑑(𝑐𝑖𝑟𝑐(𝑢𝑛𝑓𝑜𝑙𝑑(𝒜))𝑢𝑛𝑓𝑜𝑙𝑑(ℬ)). 

Definition 5. [3] Suppose 𝒜 ∈  ℝ𝑛1 ×𝑛2×𝑛3×...×𝑛𝑝 and ℬ ∈  ℝ𝑛2 × 𝑙 ×𝑛3×...×𝑛𝑝. The product of tensors 𝒜 ∗  ℬ 

is an order-𝑝 tensor (𝑝 ≥  3) of size 𝑛1  ×  𝑙 ×  𝑛3  × . . .×  𝑛𝑝, which is defined recursively as 

𝒜 ∗  ℬ =  𝑓𝑜𝑙𝑑(𝑐𝑖𝑟𝑐(𝑢𝑛𝑓𝑜𝑙𝑑(𝒜)) ∗ 𝑢𝑛𝑓𝑜𝑙𝑑(ℬ)). 

Finally, a theorem from [4] is given which will be generalized in this research. 

Theorem 1. [4] Suppose 𝒜 is a tensor of size 𝑛1  ×  𝑛2  ×  𝑛3 and ℬ is a tensor of size 𝑛2  ×  𝑙 × 𝑛3, the 

following holds 

𝒜 ∗  ℬ = 𝒞 ⟺  𝑐𝑖𝑟𝑐(𝑢𝑛𝑓𝑜𝑙𝑑(𝒜))𝑐𝑖𝑟𝑐(𝑢𝑛𝑓𝑜𝑙𝑑(ℬ)) = 𝑐𝑖𝑟𝑐(𝑢𝑛𝑓𝑜𝑙𝑑(𝒞)). 

By Theorem 1, the conceptualization of an order-3 𝑡-product can be construed as a multiplication operation 

involving block circulant. Using this theorem, the computation of the order-3 𝑡-product can be done through 

the utilization of a simpler structure, namely block circulant matrix. The generalization of Theorem 1 to 

encompass order-𝑝 tensors represent a significant advancement since it will open up a new and simpler view 

of understanding the order-𝑝 𝑡-product and its concepts and applications that have been discussed in previous 

researches. 

2.2 Some Concepts of Tensor 

Some concepts of tensor over 𝑡-product operation have been defined and discussed in previous 

researches [1]–[4], [9], [11]–[15], [17]. Here the definition of some concepts of tensor over 𝑡-product that 

will be discussed more in this research.  

Definition 6. [2] The identity tensor of an order-𝑝 tensor (𝑝 ≥  3), is the 𝑛 ×  𝑛 × 𝑛3  × . . .×  𝑛𝑝 sized 

tensor ℐ, defined recursively as a tensor such that ℐ1 is the identity tensor of an order-(𝑝 −  1) tensor of size 

𝑛 ×  𝑛 × 𝑛3  × . . .× 𝑛𝑝−1 and ℐ𝑗  , 𝑗 =  2, 3, . . . , 𝑛𝑝 is an order-(𝑝 −  1) zero tensor of size 

𝑛 ×  𝑛 × 𝑛3  × . . .× 𝑛𝑝−1. 
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Definition 7. [2] Suppose 𝒜 ∈  ℝ𝑛×𝑛×𝑛3×...×𝑛𝑝. If there exists order-𝑝 tensor (𝑝 ≥  3) that is ℬ ∈
 𝑅𝑛×𝑛×𝑛3×...×𝑛𝑝 , such that 

𝒜 ∗  ℐ = ℬ = ℐ ∗ 𝒜, 
then ℬ is the inverse tensor of 𝒜 and is denoted by 𝒜−1. 

Definition 8. [3] If 𝒜 ∈  ℝ𝑛1×𝑛2×𝑛3×...×𝑛𝑝  , then tensor transpose of 𝒜 denoted by 𝒜𝑇, is a tensor of size 

𝑛2  × 𝑛1  ×  𝑛3  × . . .×  𝑛𝑝 which is obtained by transposing every 𝒜𝑖 , for 𝑖 =  1, 2, . . . , 𝑛𝑝 and then 

reversing the order of 𝐴𝑖 for 𝑖 =  2, . . . , 𝑛𝑝, namely as follows 

𝒜𝑇 = 𝑓𝑜𝑙𝑑

(

 
 
 
 

[
 
 
 
 
 
 

(𝒜1)
𝑇

(𝒜𝑛𝑝
)
𝑇

(𝒜𝑛𝑝−1)
𝑇

⋮
(𝒜2)

𝑇 ]
 
 
 
 
 
 

)

 
 
 
 

. 

2.3 𝒕-Product Algorithm 

Some researches on 𝑡-product algorithm have been done by [1]–[4], [15]. In this research, we will also 

construct the 𝑡-product algorithm to compute 𝑡-product between two tensors and inverse Moore-Penrose of 

a tensor based on our proposed theorem. Here will be given some definitions and theorems of 𝑡-product 

algorithm by previous researches. 

Definition 9. [4] A Discrete Fourier Transform (DFT) Matrix of size 𝑛 ×  𝑛 i.e., 𝐹𝑛 is defined as 

𝐹𝑛 =
1

√𝑛

[
 
 
 
 
 
1 1 1 1 ⋯ 1
1 𝜔 𝜔2 𝜔3 ⋯ 𝜔𝑛−1

1 𝜔2 𝜔4 𝜔6 ⋯ 𝜔2(𝑛−1)

1 𝜔3 𝜔6 𝜔9 ⋯ 𝜔3(𝑛−1)

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 𝜔𝑛−1 𝜔2(𝑛−1) 𝜔3(𝑛−1) ⋯ 𝜔(𝑛−1)(𝑛−1)]

 
 
 
 
 

. 

Theorem 2. [2] Suppose 𝑐𝑖𝑟𝑐(𝐴) is a  block circulant matrix of 𝜌 ×  𝜌 with each block of size 𝑛 ×  𝑚, then 

(𝐹𝜌  ⊗ 𝐼𝑛)𝑐𝑖𝑟𝑐(𝐴)(𝐹𝜌
∗   ⊗ 𝐼𝑚) is a block diagonal matrix. 

Theorem 3. [2] For arbitrary tensor 𝒜 ∈ ℝ𝑛1×𝑛2×⋯×𝑛𝑝 and ℬ ∈ ℝ𝑛2×𝑙×⋯×𝑛𝑝, if 𝐹𝑛𝑖
 is DFT matrix of size 

𝑛𝑖 × 𝑛𝑖, because  

(𝐹𝑛𝑝
⊗ 𝐹𝑛𝑝−1

⊗ ⋯⊗ 𝐹𝑛3
⊗ 𝐼𝑛1

)�̃�(𝐹𝑛𝑝
∗ ⊗ 𝐹𝑛𝑝−1

∗ ⊗ ⋯⊗ 𝐹𝑛3
∗ ⊗ 𝐼𝑛1

)  

is a block diagonal matrix with 𝜌 = 𝑛3𝑛4 …𝑛𝑝 blocks, with all blocks have size 𝑛1 × 𝑛2, then the 𝑡-product 

of 𝒜 ∗ ℬ can be computed by folding back to appropriate size tensor of 

(�̃�∗ ⊗ 𝐼𝑛1) ((�̃� ⊗ 𝐼𝑛1
)�̃�(�̃�∗ ⊗ 𝐼𝑛2

)) (�̃� ⊗ 𝐼𝑛2
)�̂� 

with �̃� is a block circulant matrix obtained by performing the 𝑢𝑛𝑓𝑜𝑙𝑑 operation then 𝑐𝑖𝑟𝑐 operation on 𝒜 

repeatedly (recursively),  �̂� is a block matrix obtained by applying the 𝑢𝑛𝑓𝑜𝑙𝑑 operation on 𝒜 repeatedly 

(recursively),  �̃� = 𝐹𝑛𝑝
⊗ 𝐹𝑛𝑝−1

⊗ ⋯⊗ 𝐹𝑛3
, and the block diagonal matrix can be obtained by repeating 

FFTs along each mode of  𝒜. 

3. RESULTS AND DISCUSSION 

This research will be conducted in three subsections. The first subsection will create and prove a theorem that 

extends the theorem on the order-3 𝒕-product as a multiplication of the block circulant matrices form of the 

tensors to be multiplied by [4] (see Theorem 1), so that it applies to any order of tensor. The second 

subsection will discuss the concepts of tensor over 𝒕-product based on its block circulant matrix form. The 

third subsection will discuss the algorithm for calculating the 𝒕-product utilizing the diagonalization of the 

circulant matrix using the discrete Fourier transform matrix. 
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3.1 The Main Theorem 

In this research, our main theorem will be recursive version of [4]’s with the main objective to calculate 

the order-𝑝 𝑡-product as a standard matrix multiplication of block circulant matrices. As its recursive version, 

first, we will introduce some recursive operation notations that will help in proving the main theorem. 

• 𝑈𝑛𝑓𝑜𝑙𝑑(𝒜) = �̂�. 

The 𝑈𝑛𝑓𝑜𝑙𝑑 operation on 𝒜, denoted 𝑈𝑛𝑓𝑜𝑙𝑑(𝒜) (using uppercase ‘U’), works by applying the 𝑢𝑛𝑓𝑜𝑙𝑑 

operation on 𝒜 repeatedly (recursively) until the tensor 𝒜 turns into a matrix of 𝑛3𝑛4 …𝑛𝑝 × 1 blocks 

with each block of size 𝑛1  × 𝑛2, and the result is denoted as �̂�. 

• 𝐹𝑜𝑙𝑑(�̂�) = 𝒜. 

The inverse operation of the 𝑈𝑛𝑓𝑜𝑙𝑑 operation is 𝐹𝑜𝑙𝑑 (using uppercase ‘F’), which is an operation that 

works by performing the 𝑓𝑜𝑙𝑑 operation repeatedly (recursively) on the block matrix the result of the 

tensor subjected to the 𝑈𝑛𝑓𝑜𝑙𝑑 operation such that 𝐹𝑜𝑙𝑑(𝑈𝑛𝑓𝑜𝑙𝑑(𝒜))  =  𝐹𝑜𝑙𝑑(�̂�)  =  𝒜. 

• 𝐶𝑈(𝒜) = �̃�    

The CU operation on 𝒜 or 𝐶𝑈(𝐴) works by performing the 𝑢𝑛𝑓𝑜𝑙𝑑 operation then 𝑐𝑖𝑟𝑐 operation on 𝒜 

repeatedly (recursively) until the tensor 𝒜 turns into a block matrix of size 𝑛3𝑛4 … 𝑛𝑝 × 𝑛3𝑛4 …𝑛𝑝  with 

each block of size 𝑛1  ×  𝑛2, and the result is denoted by �̃�. 

• 𝐹𝑈(�̃�) = 𝒜    

The inverse operation of 𝐶𝑈 is 𝐹𝑈, which is an operation that works by performing the 𝑢𝑛𝑐𝑖𝑟𝑐 and then 

𝑓𝑜𝑙𝑑 operation repeatedly (recursively) on the block matrix the result of the tensor subjected to the 𝐶𝑈 

operation such that 𝐹𝑈(𝐶𝑈(𝒜))  =  𝐹𝑈(�̃�) = 𝒜.  

The following lemma is given before proving the main theorem. 

Lemma 1. Suppose tensor 𝒜 ∈ ℝ𝑛1×𝑛2×𝑛3×⋯×𝑛𝑝  and tensor ℬ ∈ ℝ𝑛2×𝑙×𝑛3×⋯×𝑛𝑝 such that 𝒜 ∗ ℬ = 𝒞, it 

follows that 

𝒜 ∗ ℬ = 𝒞 ⟺ �̃��̂� = �̃�. 

Theorem 4. Suppose tensor 𝒜 ∈ ℝ𝑛1×𝑛2×𝑛3×⋯×𝑛𝑝 and tensor ℬ ∈ ℝ𝑛2×𝑙×𝑛3×⋯×𝑛𝑝 such that 𝒜 ∗ ℬ = 𝒞, 

it follows that 

𝒜 ∗ ℬ = 𝒞 ⟺ �̃��̃� = �̃�. 

Proof.  

(⟸) �̃��̃� = �̃�  ⇒ 𝒜 ∗ ℬ = 𝒞 . 

Suppose �⃗� is a vector, then based on the definition of circulant matrix, we obtain that the first column of 

𝑐𝑖𝑟𝑐(�⃗�) is �⃗�. The same is true for tensors, i.e., suppose 𝒜 is a tensor, then the first column of 

𝑐𝑖𝑟𝑐(𝑢𝑛𝑓𝑜𝑙𝑑(𝐴)) is 𝑢𝑛𝑓𝑜𝑙𝑑(𝐴), so by a recursive process, it can be obtained that the first column of �̃� is �̂�. 

Since �̃��̃� = �̃� then, based on the definition of matrix multiplication, we have 

�̃�(𝑓𝑖𝑟𝑠𝑡 𝑐𝑜𝑙𝑢𝑚𝑛 𝑜𝑓 �̃�) = (𝑓𝑖𝑟𝑠𝑡 𝑐𝑜𝑙𝑜𝑚𝑛 𝑜𝑓 �̃�) 

�̃��̂� = �̃�, 

or �̃��̃� = �̃�  ⇒ �̃��̂� = �̃� . Using Lemma 1 and the rule of syllogism, it is proved that �̃��̃� = �̃�  ⇒ 𝒜 ∗ ℬ = 𝒞 . 

(⇒) 𝒜 ∗ ℬ = 𝒞 ⇒ �̃��̃� = �̃�  . 

For simplicity let 𝜌 =  𝑛3𝑛4 …𝑛𝑝. Based on the definition of 𝑐𝑖𝑟𝑐 operation, the second and onwards column 

of 𝑐𝑖𝑟𝑐(𝐴) is the result of multiplying the cyclic forward shift matrix with its the first column. This also 

applies to the block matrix �̃�, with the second and onwards columns of �̃� being the result of multiplying the 

cyclic forward shift matrix with its first column which is �̂�. Therefore, there must be a matrix called 𝑀𝑖, with 

𝑖 =  1, 2, . . . , 𝜌, and 𝑀𝑖  ∈  {𝑆𝑛𝑝
𝑥 ⊗ 𝑆𝑛𝑝−1

𝑦
⊗ ⋯⊗ 𝑆𝑛3

𝑧 |1 ≤ 𝑥 ≤ 𝑛𝑝, 1 ≤ 𝑥 ≤ 𝑛𝑝−1, ⋯ , 1 ≤  𝑧 ≤  𝑛3}, such 

that (𝑀𝑖 ⊗ 𝐼𝑛1
)�̂�, (𝑀𝑖 ⊗ 𝐼𝑛2

)�̂�, and (𝑀𝑖 ⊗ 𝐼𝑛1
)�̂� are respectively the 𝑖-th column of �̃�, �̃�, and �̃�, 

respectively. Lemma 1 has shown that 𝒜 ∗ ℬ = 𝒞 ⇒  �̃��̂� = �̂�, by multiplying both sides by (𝑀𝑖 ⊗ 𝐼𝑛1
) we 

get (𝑀𝑖 ⊗ 𝐼𝑛1
)�̃��̂� = (𝑀𝑖 ⊗ 𝐼𝑛1

)�̂�. Then, since the forward sliding cyclic matrix commutes with the circulant 
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matrix, we get �̃�(𝑀𝑖 ⊗ 𝐼𝑛2
)�̂� = (𝑀𝑖 ⊗ 𝐼𝑛1

)�̂�. Then, if combined into the form of matrix multiplication, 

using the definition of matrix multiplication is obtained 

[�̃�(𝑀1 ⊗ 𝐼𝑛2
)�̂�|�̃�(𝑀2 ⊗ 𝐼𝑛2

)�̂�|⋯ |�̃�(𝑀𝜌 ⊗ 𝐼𝑛2
)�̂�] = [(𝑀1 ⊗ 𝐼𝑛1

)�̂�|(𝑀2 ⊗ 𝐼𝑛1
)�̂�|⋯ |(𝑀𝜌 ⊗ 𝐼𝑛1

)�̂�] 

�̃�[(𝑀1 ⊗ 𝐼𝑛2
)�̂�|(𝑀2 ⊗ 𝐼𝑛2

)�̂�|⋯ |(𝑀𝜌 ⊗ 𝐼𝑛2
)�̂�] = [(𝑀1 ⊗ 𝐼𝑛1

)�̂�|(𝑀2 ⊗ 𝐼𝑛1
)�̂�|⋯ |(𝑀𝜌 ⊗ 𝐼𝑛1

)�̂�] 

�̃��̃� = �̃�, 

Therefore, �̃��̂� = �̂� ⇒ �̃��̃� = �̃�. Then by Lemma 1, 𝒜 ∗ ℬ = 𝒞 ⇒  �̃��̂� = �̃�. It follows that 𝒜 ∗ ℬ = 𝒞 ⇒
�̃��̃� = �̃�. Then it is proved that 𝒜 ∗ ℬ = 𝒞 ⟺ �̃��̃� = �̃�. 

Based on Theorem 4, the order-𝑝 𝑡-product 𝒜 ∗ ℬ can be calculated as 

𝒜 ∗ ℬ = 𝐹𝑈(𝐶𝑈(𝒜)𝐶𝑈(ℬ)). (1) 

By Equation (1), the 𝑡-product is fundamentally a matrix multiplication between two block circulant 

matrices. The 𝑡-product multiplication structure based on Theorem 4 can be more easily understood through 

the illustration below. 

 

 
Figure 1. Illustration to Compute 𝒕-product Based On Proposed Theorem 

 
This way to compute is simpler than using the definition, because it only uses one reversible 

transformation, that is the transformation from tensor domain into block circulant matrix domain. Theorem 

1 also states that when we want to multiply two tensors, we must transform the tensor first into its block 
circulant matrix form. 

3.2 Some Concepts of Tensor 

As by Theorem 4 the 𝑡-product of two tensor is essentially multiplication of block circulant matrix 

form of both tensors. In this subsection we will discuss more about some concepts of tensor namely identity, 

inverse, and transpose of tensor in the view of its block circulant matrix form. 

• Identity tensor 

By the Definition 6, if ℐ is an order-𝑝 identity tensor of size 𝑛 × 𝑛 × 𝑛3 × ⋯× 𝑛𝑝, then the block circulant 

form of identity tensor is an identity matrix of size 𝑛𝑛3𝑛4 …𝑛𝑝. 

𝐶𝑈(ℐ) = 𝐼 = 𝐼𝑛𝑛3𝑛4…𝑛𝑝
. 

By this and by Theorem 4, the 𝑡-product between any tensor and the identity tensor is essentially the 

multiplication between any block circulant matrix and the identity matrix. This strengthens the results of 

previous research which proved that the identity tensor over the 𝑡-product has properties analogous to the 

identity matrix over standard matrix multiplication. 

• Inverse of tensor 

By the Definition 7, if 𝒜−1 is inverse of tensor 𝒜 then the block circulant matrix form of  𝒜−1 is inverse 

matrix of block circulant matrix form of  𝒜. 
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𝐶𝑈(𝒜−1) = 𝒜−1̃ = �̃�−1 = (𝐶𝑈(𝒜))−1 

By this and by Theorem 4, the 𝑡-product between any tensor and its invers is essentially the multiplication 

between any block circulant matrix and its inverse. This strengthens the results of previous research which 

proved that the inverse tensor over the 𝑡-product has properties analogous to the invers matrix over 

standard matrix multiplication. 

• Transpose of tensor 

By the Definition 8, if 𝒜𝑇 is transpose of tensor 𝒜 then the block circulant matrix form of  𝒜𝑇 is transpose 

matrix of block circulant matrix form of  𝒜. 

𝐶𝑈(𝒜𝑇) = 𝒜�̃� = �̃�𝑇 = (𝐶𝑈(𝒜))𝑇 

By this and by Theorem 4, the 𝑡-product between any tensor and its transpose is essentially the 

multiplication between any block circulant matrix and its invers. This strengthens the results of previous 

research which proved that the transpose tensor over the 𝑡-product has properties analogous to the 

transpose matrix over standard matrix multiplication. 

• Moore-Penrose inverse of tensor 

By the Definition 9, if 𝒜+ is inverse Moore-Penrose of tensor 𝒜 then the block circulant matrix form of  

𝒜+ is inverse Moore-Penrose of matrix of block circulant matrix form of  𝒜. 

𝐶𝑈(𝒜+) = 𝒜+̃ = �̃�+ = (𝐶𝑈(𝒜))+ 

By this and by Theorem 4, the 𝑡-product between any tensor and its Moore-Penrose inverse is essentially 

the multiplication between any block circulant matrix and its Moore-Penrose inverse. This strengthens the 

results of previous research which proved that the Moore-Penrose inverse tensor over the 𝑡-product has 

properties analogous to the Moore-Penrose inverse matrix over standard matrix multiplication. 

3.3 𝒕-Product Algorithm 

As Theorem 4 simplifies the equation for calculating the 𝑡-product, Theorem 4 can also be used to 

simplify the equation for calculating 𝑡-product in Theorem 3. The simpler form of the equation for 

calculating the 𝑡-product in Theorem 3 will make it easier to understand the 𝑡-product algorithm. This section 

will discuss the MATLAB algorithm for calculating the 𝑡-product and the inverse Moore-Penrose of a tensor. 

By the Theorem 3 and Theorem 4, the 𝑡-product 𝒜 ∗ ℬ can be compute as 

𝒜 ∗ ℬ = 𝐹𝑈 ((�̃�∗ ⊗ 𝐼𝑛1) ((�̃� ⊗ 𝐼𝑛1
)�̃�(�̃�∗ ⊗ 𝐼𝑛2

)) ((�̃� ⊗ 𝐼𝑛2
)�̃�(�̃�∗ ⊗ 𝐼𝑙)) (�̃� ⊗ 𝐼𝑙)). 

The illustration to compute it can be seen in Figure 2. 

 

Figure 2. Illustration to Compute 𝒕-product using DFT Matrix  
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As on MATLAB, the block diagonal matrix results of diagonalization of a block circulant matrix that 

is (�̃� ⊗ 𝐼𝑛1
)�̃�(�̃�∗ ⊗ 𝐼𝑛2

) can be obtained by applying repeating FFTs along each mode of tensor 𝒜. Using 

MATLAB one can compute 𝑡-product by the following algorithm. 

MATLAB algorithm to compute the 𝒕-product 

Input: 𝑛1 × 𝑛2 × 𝑛3 × ⋯× 𝑛𝑝 tensor 𝒜 and 𝑛2 × 𝑙 × 𝑛3 × ⋯× 𝑛𝑝 tensor ℬ 

% Defining tensor 𝒜 is done by writing each piece in the form of the matrix as 𝐴(: , : , 𝑖3, 𝑖4, … , 𝑖𝑝 ), as 

well with ℬ    
 
SA = size(A);   % stores the size of the tensor 𝒜 as a vector 

SB = size(B);   % stores the size of the tensor 𝒜 as a vector 

 
for i = 3 : ndims(A)  % ndims(A) = order of 𝒜 = 𝑝 

    A = fft(A,[],i);      % repeating FFTs along each mode of 𝒜, until a block diagonal matrix is obtained 

    B = fft(B,[],i);      % repeating FFTs along each mode of ℬ, until a block diagonal matrix is obtained 
end 
 
C = repmat(0,[SA(1) SB(2) SA(3:ndims(A))]);   % create an empty tensor of size 𝑛1 × 𝑙 × 𝑛3 × …× 𝑛𝑝 

 
for i = 1 : prod(SA(3 : ndims(A)))    % calculate the size of the block diagonal matrix 
    C(:,:,i) = A(:,:,i)*B(:,:,i);               % multiplying the two matrix blocks, then store it on C 
end 
 
for i = ndims(A):-1:3 
    C = ifft(C,[],i);            % repeating inverse FFTs along each mode of tensor 𝒜, until a tensor obtained 

end 
 
C       % displays the result 

 

For instance, let 𝒜 be a tensor of size 2 × 3 × 2 × 2 as follows 

𝒜11 = [
1 2 3
4 5 6

],   𝒜12 = [
13 14 15
16 17 18

],    𝒜21 = [
7 8 9
10 11 12

],   𝒜22 = [
19 20 21
22 23 24

],  

and ℬ be a tensor of size 3 × 2 × 2 × 2 below 

ℬ11 = [
1 2
3 4
5 6

] , ℬ12 = [
13 14
15 16
17 18

] , ℬ = [
7 8
9 10
11 12

] , ℬ = [
19 20
21 22
23 24

],  

Then we can compute tensor  𝒞 = 𝒜 ∗ ℬ using MATLAB code as follows 

Example MATLAB code to compute the 𝒕-product 

A(:,:,1,1) = [1 2 3 ; 4 5 6]; 
A(:,:,1,2) = [7 8 9 ; 10 11 12]; 
A(:,:,2,1) = [13 14 15 ; 16 17 18]; 
A(:,:,2,2) = [19 20 21 ; 22 23 24]; 
 
B(:,:,1,1) = [1 2 ; 3 4 ; 5 6]; 
B(:,:,1,2) = [7 8 ; 9 10 ; 11 12]; 
B(:,:,2,1) = [13 14 ; 15 16 ; 17 18]; 
B(:,:,2,2) = [19 20 ; 21 22 ; 23 24]; 
 
SA = size(A);   % stores the size of the tensor 𝒜 as a vector 

SB = size(B);   % stores the size of the tensor 𝒜 as a vector 
 

for i = 3 : ndims(A)  % ndims(A) = order of 𝒜 = 𝑝 

    A = fft(A,[],i);      % repeating FFTs along each mode of 𝒜, until a block diagonal matrix is obtained 

    B = fft(B,[],i);      % repeating FFTs along each mode of ℬ, until a block diagonal matrix is obtained 
end 
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C = repmat(0,[SA(1) SB(2) SA(3:ndims(A))]);   % create an empty tensor of size 𝑛1 × 𝑙 × 𝑛3 × …× 𝑛𝑝 

 
for i = 1 : prod(SA(3 : ndims(A)))    % calculate the size of the block diagonal matrix 
    C(:,:,i) = A(:,:,i)*B(:,:,i);               % multiplying the two matrix blocks, then store it on C 
end 
 
for i = ndims(A):-1:3 
    C = ifft(C,[],i);            % repeating inverse FFTs along each mode of tensor 𝒜, until a tensor obtained 

end 
 
C       % displays the result 

 We obtain the result as follows 

𝒞11 = [
2140 2272
2572 2740

],   𝒞12 = [
1276 1408
1708 1876

],    𝒞21 = [
1924 2056
2356 2524

],   𝒞22 = [
1060 1192
1492 1660

]. 

 
 

By the Theorem 3 and Theorem 4 we can compute invers Moore-Penrose of tensor 𝒜 as 

𝒜+ = 𝐹𝑈 ((�̃�∗ ⊗ 𝐼𝑛1) ((�̃� ⊗ 𝐼𝑛1
)�̃�(�̃�∗ ⊗ 𝐼𝑛2

))
+

(�̃� ⊗ 𝐼𝑛2
)) 

The illustration to compute it can be seen in Figure 3. 

 

 
Figure 3. Illustration to Compute Moore-Penrose Inverse Tensor Using DFT matrix  

Same as the 𝑡-product, using FFT function in MATLAB, one can compute Moore-Penrose inverse of 

a tensor easier. The algorithm to compute it can be seen in the following algorithm. 

MATLAB algorithm to compute inverse Moore-Penrose of a tensor 

Input: 𝑛1 × 𝑛2 × 𝑛3 × ⋯× 𝑛𝑝 tensor 𝒜 

% defining tensor 𝒜 is done by writing each piece in the form of the matrix as 𝐴(: , : , 𝑖3, 𝑖4, … , 𝑖𝑝 )     

 
SA = size(A);   % stores the size of the tensor 𝒜 as a vector 

 
for i = 3:ndims(A)  % ndims(A) = order of 𝒜 = 𝑝 

    A = fft(A,[],i);    % repeating FFTs along each mode of 𝒜, until a block diagonal matrix is obtained 
end 
 

MP = repmat(0,[SA(1) SB(2) SA(3:ndims(A))]);  % create an empty tensor of size 𝑛1 × 𝑙 × 𝑛3 × …× 𝑛𝑝 

 
for i = 1:prod(SA(3:ndims(A)))  % prod(SA(3:ndims(A))) to calculate the size of the block diagonal matrix 
    MP(:,:,i) = pinv(A(:,:,i));         % calculate inverse Moore-Penrose of every block, then store it on MP 
end 
 
for i = ndims(A):-1:3 
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    MP = ifft(MP,[],i);        % repeating inverse FFTs along each mode of tensor 𝒜, until a tensor obtained 
end 
 
MP      % displays the result    

For instance, let 𝒜 be a tensor of size 2 × 2 × 2 × 2, where 

𝒜11 = [
1.75 0
0 1.25

],   𝒜12 = [
−0.25 0

0 −0.25
],    𝒜21 = [

0.75 0
0 −0.75

],   𝒜22 = [
−1.25 0

0 0.25
].  

We implement the following MATLAB algorithm to compute inverse Moore-Penrose of tensor 𝒜.  

Example MATLAB code to compute inverse Moore-Penrose of a tensor 

A(:,:,1,1)=[1.75 0; 0 1.25]; 
A(:,:,1,2)=[0.75 0 ; 0 -0.75]; 
A(:,:,2,1)=[-0.25 0 ; 0 0.25]; 
A(:,:,2,2)=[-1.25 0; 0 0.25]; 
 
SA = size(A);   % stores the size of the tensor 𝒜 as a vector 
 

for i = 3:ndims(A)  % ndims(A) = order of 𝒜 = 𝑝 

    A = fft(A,[],i);    % repeating FFTs along each mode of 𝒜, until a block diagonal matrix is obtained 
end 
 
MP = repmat(0,[SA(1) SB(2) SA(3:ndims(A))]);  % create an empty tensor of size 𝑛1 × 𝑙 × 𝑛3 × …× 𝑛𝑝 

 
for i = 1:prod(SA(3:ndims(A)))  % prod(SA(3:ndims(A))) to calculate the size of the block diagonal matrix 
    MP(:,:,i) = pinv(A(:,:,i));         % calculate inverse Moore-Penrose of every block, then store it on MP 
end 
 
for i = ndims(A):-1:3 
    MP = ifft(MP,[],i);        % repeating inverse FFTs along each mode of tensor 𝒜, until a tensor obtained 
end 
 
MP      % displays the result    

Then we obtain 

𝒜11
+ = [

0.4375 0
0 0.5

],   𝒜12
+ = [

0.3125 0
0 0.25

],   𝒜21
+ = [

0.1875 0
0 0

],   𝒜22
+ = [

0.0625 0
0 0.25

]. 

The algorithm we provide in this article is a more detail and improved version of the MATLAB 

algorithm previously constructed by [2] and [3]. Our focus in the algorithm is to give a stronger understanding 

that the algorithms can work because the 𝑡-product is basically a multiplication between two block circulant 

matrices as stated in our theorem and can be clearly understood through Figure 2 and Figure 3. Based on 

Figure 2 and Figure 3 and Theorem 3, a simpler illustration of the algorithms can be seen in Figure 4 and 

Figure 5. 

 

Figure 4. Illustration to compute 𝒕-product using FFT MATLAB  
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Figure 5. Illustration to compute Moore-Penrose inverse using FFT MATLAB  

4. CONCLUSIONS 

According the result and discussion above, there are three main points that can be concluded, which 

are as follows: 

1. The 𝑡-product of tensors fundamentally involves circulant matrix multiplication, which means that the 

operation at its core relies on multiplying circulant matrices.  

2. The proposed theorem makes the concepts of tensor over 𝑡-product more understandable to be analogues 

to the same concepts in matrix over standard multiplication. 

3. The theorem simplifies the computation of 𝑡-product and inverse Moore-Penrose of a tensor using matrix 

DFT. 
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