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 ABSTRACT 

Article History: 
Customer satisfaction is a crucial aspect that consistently takes center stage in business 
operations. In light of this, companies must devise appropriate strategies to fulfill customer 

demands. Consequently, this study delves into examining various factors that facilitate the 

supply process, including the application of discounts. Moreover, in line with the advancements 

in eco-green concepts, businesses have begun considering carbon emission factors concerning 
storage and distribution, which is further supported by the United Nations Framework 

Convention on Climate Change (UNFCCC). In this context, the paper presents an enhanced 

version of the economic order quantity model encompassing all-unit discount and carbon 

emission factors. The developed model entails inventory management approaches where 
demand relies on inventory levels, inventory levels coupled with selling prices, time-dependent 

demand, and exponentially declining demand patterns. The primary objective is to aid 

companies in optimizing their inventory management by determining the optimal quantity of 
goods while minimizing overall costs. Sensitivity analysis conducted to observe the influence on 

the reorder point (T), total inventory cost (TC), and total carbon emission (TE) reveals that 

lower unit purchase prices, driven by high demand, correspond to larger order quantities. 

Furthermore, it is worth noting that the higher average carbon emission within warehouses 
results in increased carbon emissions overall. 
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1. INTRODUCTION 

Effective inventory management is vital for companies to ensure the seamless continuation of their 

production processes. Inventories encompass various goods, materials, and assets held by a company for 

future use or sale. Managing inventories efficiently is crucial in controlling costs and ensuring the optimal 

supply of goods. However, inventory management can be complex due to several factors. Fluctuating demand 

patterns, storage limitations, and the risk of value loss over time present challenges for companies in 

determining when to place orders and how much to order. To address these complexities, various inventory 

models have been developed to provide solutions that consider factors such as demand fluctuations, storage 

capacities, and the deterioration of goods over time. Regarding demand patterns, there are many models that 

have been developed by considering certain types of demand such as inventory-dependent demand ( [1], [2], 

[3]), price-dependent demand [4], time-dependent demand [5], price- and inventory-dependent demand ( [6], 

[7], [8], [9]), certain demand functions ([10],  [11], [12]) and probabilistic demand ( [13], [14], [15]).  Besides 

demands, there is another factor that needs to be considered, such as deterioration. Deterioration relates to  

the quality decreasing of the goods after a certain time has elapsed. Many models have been proposed by 

introducing deterioration factor in addition to demand variation ( [7], [8], [12], [16], [17]). Inventory models 

with deterioration factor and return policy were developed in [8] and [16], while adding the capacity 

constraint is another development proposed in [18]. The complexity increases when a company deals with a 

multi-item inventory problem. There are two replenishment policies that can be considered, viz. individual 

ordering policy and joint ordering policy. Some papers deal with a multi-item inventory problem, such as in 

[2], [10],  [11], [19], [20]. 

Supplier discounts play a significant role in the production process and can greatly impact inventory 

management. These discounts enable companies to purchase goods in larger quantities at reduced costs, 

which can lead to improved inventory management practices. By purchasing goods in optimal quantities, 

companies can minimize the cost per unit of goods ordered and, in turn, optimize their overall inventory 

management strategies. Moreover, supplier discounts can enhance a company's competitiveness by allowing 

it to offer more competitive prices to its customers. Therefore, considering the all-unit discount factor 

becomes essential in inventory management, as it can provide substantial benefits in terms of cost reduction 

and market competitiveness. 

The current global industrial landscape is experiencing rapid growth and intense competition among 

companies to meet customer demands and preferences, particularly in terms of product quality and 

availability. In this context, it is crucial for industries to adopt long-term planning strategies that consider the 

environmental impact of their operations. Consequently, effective inventory management practices should 

incorporate factors such as carbon emissions and waste reduction ( [21], [22], [23]). By implementing 

strategies to reduce physical process inefficiencies, adopting cleaner and sustainable energy sources, and 

implementing environmentally conscious practices, companies can significantly contribute to minimizing 

their carbon footprint and promoting environmental sustainability ( [24], [25]). 

In line with these considerations, this paper aims to develop an inventory model based on the model in 

[26] that not only considers factors such as demand patterns, selling prices, and product deterioration but also 

accounts for carbon emissions. The incorporation of the inventory- and price-dependent demand, all-units 

discount, and carbon emission is the contribution and novelty of this paper. By incorporating the carbon 

emissions factor, the developed models will optimize inventory management practices by determining the 

ideal timing for reordering, appropriate order quantities, and methods to minimize total costs. This allows 

businesses to make informed decisions that not only align with their economic objectives but also support 

broader sustainability goals. This novel aspect not only distinguishes the research but also positions it as a 

valuable tool for companies seeking to navigate the complex landscape of balancing operational efficiency 

with environmental responsibility. In this way, the research contributes not only to the theoretical 

understanding of inventory management but also offers a practical and quantifiable approach that can be 

applied across various industries to foster sustainable business practices. 

Therefore, an inventory model will be developed, specifically focusing on models with demand 

functions dependent on inventory level and selling price. The decision variable in this model is to determine 

the appropriate reorder interval. Based on these decision variables, the optimal order quantity and total 

inventory cost will be determined by selecting the right ordering policy. 
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2. RESEARCH METHODS 

The mathematical model presented in this paper is developed based on the following notations and 

assumptions. In this paper, only the development of models with demand functions dependent on inventory 

level and selling price with two different functions 𝒓(𝒑) will be discussed. In this paper, only the development 

of models with demand functions dependent on inventory level and selling price, using two different functions 

𝒓(𝒑), will be discussed. The calculations for these models are conducted using MAPLE software. 

2.1 Notations 

The notations used in the development of this model are: 
𝐶𝑝 : total purchase cost per cycle, 

𝐶𝑜 : total ordering cost per cycle, 
𝐶𝑠 : total storage cost per cycle, 
𝐶𝑡 : total transportation cost per cycle, 
𝐸𝑒  : carbon emissions resulting from the production process, 
𝐹𝑒 : fuel emission standards, 
𝑐1 : fuel consumption when the vehicle is empty, 
𝑐2 : additional fuel consumption per unit load, 
𝑒1 : transportation carbon emission costs, 
𝑒2 : additional cost of transport carbon emission, 
𝑡𝑓 : fixed costs for the process of shipping goods, 

𝑡𝑣 : variable costs for the process of shipping goods, 
𝑡𝑥 : carbon emission tax price, 
𝑝𝑖 : selling cost per unit, 
𝑤 : warehouse average carbon emission, 
𝑙 : item weight, 
𝑇 : reorder time, 
𝑆 : ordering cost for each order placed, 
𝑑 : mileage from the supplier, 
ℎ : fraction of goods stored per unit, 
𝛼 : initial demand factor, 
𝛽 : the factor of increasing demand for items depends on inventory and price, 
𝐼(𝑡) : inventory level at time 𝑡 ∈ [0, 𝑇], 
𝑟1(𝑝) : linear demand function, 𝑟1(𝑝) =10.000-0,05𝑝 
𝑟2(𝑝) : logarithmic demand function, 𝑟2(𝑝) = 10.000 − 150 ln(𝑝) 
𝑄 : order quantity, 
𝑇𝐶 : total cost, 
𝑇𝐸 : total carbon emission. 

2.2 Assumptions 

The following assumptions are used in this model. 

1. There is no lead time for ordering items, which means that inventory will be replenished immediately 

upon placing an order when the inventory runs out. 

2. Inventory-dependent demand function is expressed as follows: 
 

𝐷(𝑡) = 𝑟(𝑝)(𝑎 + 𝛽𝐼(𝑡)) (1) 
 

where 𝑎 > 0 and 𝛽 > 0. 
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Figure 1. Inventory Model with Demand Dependent on Inventory Level 

 According to the image shown in Figure 1. It can be interpreted that at the initial state (𝑡 = 0), the 

company has an inventory of 𝑄 units of goods. As time goes by, the stock will diminish based on the price- 

and inventory-dependent demand at that time (𝑡). This means that if the company holds a substantial 

inventory, it will decrease more rapidly due to higher demand (and inventory-dependent demand). Once the 

stock is depleted at time 𝑡 = 𝑇, a reorder is initiated for 𝑄 units of products, ensuring that the inventory is 

replenished instantly without any waiting period (inter-order time). Then, the cycle repeats. 

2.3 Model Development 

The inventory model, which incorporates demand dependence on both inventory levels and selling 

prices, is a sophisticated mathematical tool aimed at optimizing product inventory. This model acknowledges 

the reality that consumers not only assess the quantity of available items but also consider the offered selling 

prices. Consequently, its purpose is to identify the optimal inventory level that maximizes the company's 

profits while minimizing associated inventory costs. 

The price- and inventory-dependent demand used in developing the model takes the following form. 

 

𝐷(𝑡) = 𝑟(𝑝)(𝛼 + 𝛽𝐼(𝑡)),     0 ≤ 𝑡 ≤ 𝑇 

 

where 𝑎 > 0 and 𝛽 > 0. 

Thus, the rate of change in the amount of inventory from time to time can be modeled using the differential 

equation as follows: 

 
𝑑𝐼(𝑡)

𝑑𝑡
= −𝛼𝑟(𝑝) − 𝛽𝑟(𝑝)𝐼(𝑡),     0 ≤ 𝑡 ≤ 𝑇 

 

with the respective boundary conditions and initial conditions, namely 𝐼(𝑡) = 0 and 𝐼(0) = 𝑄. 

Therefore, changes in the amount of inventory from time to time can be solved with the following steps: 

 
𝑑𝐼(𝑡)

𝑑𝑡
= −𝛼𝑟(𝑝) − 𝛽𝑟(𝑝)𝐼(𝑡) 

𝑑𝐼(𝑡)

−𝛼𝑟(𝑝) − 𝛽𝑟(𝑝)𝐼(𝑡)
= 𝑑𝑡 

∫
𝑑𝐼(𝑡)

−𝛼𝑟(𝑝) − 𝛽𝑟(𝑝)𝐼(𝑡)
= ∫ 𝑑𝑡 
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−
1

𝛽𝑟(𝑝)
ln(𝛼𝑟(𝑝) − 𝛽𝑟(𝑝)𝐼(𝑡)) = 𝑡 + 𝐶1 

ln(𝛼𝑟(𝑝) + 𝛽𝑟(𝑝)𝐼(𝑡)) = −𝛽𝑟(𝑝)𝑡 + 𝐶2 

𝛼𝑟(𝑝) + 𝛽𝑟(𝑝)𝐼(𝑡) = 𝐶3𝑒−𝛽𝑟(𝑝)𝑡 

𝛽𝑟(𝑝)𝐼(𝑡) = −𝛼𝑟(𝑝) + 𝐶3𝑒−𝛽𝑟(𝑝)𝑡 

 

So, the general solution is obtained from the following equation: 

 

𝐼(𝑡) = −
𝛼

𝛽
+ 𝑐𝑒−𝛽𝑟(𝑝)𝑡          (2) 

 

After getting the general solution, a special solution will be determined based on the boundary conditions, 

namely by finding a constant value 𝑐. 

 

To find the value of 𝑐, we will substitute the boundary conditions 𝐼(𝑇) = 0 in Equation (2). Found, 

 

0 = −
𝛼

𝛽
+ 𝑐𝑒−𝛽𝑟(𝑝)𝑡 

𝑐 =
𝛼𝑒−𝛽𝑟(𝑝)𝑇

𝛽
 

 

Next, substitute the value of 𝑐, into the Equation (2) to get the specific solution of the equation, i.e. 

 

0 = −
𝛼

𝛽
+

𝛼

𝛽
(𝑒−𝛽𝑟(𝑝)(𝑇−𝑡)) 

=
𝛼

𝛽
(𝑒−𝛽𝑟(𝑝)(𝑇−𝑡) − 1) 

 

Substitute the initial condition 𝐼(0) = 𝑄 into Equation (2) to obtain the maximum inventory quantity (𝑄). 

It is obtained  

𝐼(0) = 𝑄 =
𝛼

𝛽
(𝑒−𝛽𝑟(𝑝)𝑇 − 1)     (3) 

There are four cost components for the total cost of inventory for one period of time, which is purchase cost 

(𝐶𝑝), order cost (𝐶𝑜), storage cost (𝐶𝑠), and transportation cost (𝐶𝑡), which each are given below. 

1. Purchase Cost (𝑪𝒑) 

The Purchase Cost (𝐶𝑝) is the cost incurred for acquiring a particular item. The magnitude of the 

purchase cost over a specific period can be expressed as follows 

𝐶𝑝 =
𝛼

𝛽𝑇
(−1 + 𝑒−𝛽𝑟(𝑝)𝑇)  𝑃𝑖 

2. Order Cost (𝑪𝒐) 

The Ordering Cost (𝐶𝑜) is the cost incurred when a purchase order is placed. The amount of ordering 

cost during a single time period can be expressed as follows 

𝐶𝑜 =
𝑆

𝑇
 

3. Storage Cost (𝑪𝒔) 

Storage Cost (𝐶𝑠) is the cost incurred for maintaining goods during their storage period. The magnitude 

of the storage cost over a specific time period can be expressed as follows 

𝐶𝑠 = (ℎ 𝑃𝑖 + 𝑤 𝐸𝑒  𝑇𝑥)  [−
𝛼

𝛽
−

𝛼(1 − 𝑒−𝛽𝑟(𝑝)𝑇)

𝑟(𝑝)𝑇𝛽2 ] 

4. Transportation Cost (𝑪𝒕) 

Transportation Cost (𝐶𝑡) is a combination of cost components that include fixed costs, variable costs, 

and carbon emission costs resulting from vehicle usage. The total transportation cost over a specific period 

can be expressed as follows 
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𝐶𝑡 =
1

𝑇
(𝑡𝑓 + (2𝑑𝑐1𝑡𝑣 + 𝑑𝑐2𝑙

𝛼

𝛽
(−1 + 𝑒𝛽𝑟(𝑝)𝑇)𝑡𝑣) + (2𝑑𝑒1 + 𝑑𝑒2

𝛼

𝛽
(−1 + 𝑒𝛽𝑟(𝑝)𝑇))) 

 

Total Cost of Inventory for One Period of Time 

 

Therefore, the total inventory cost can be determined, which is the sum of purchase costs, ordering 

costs, holding costs, and transportation costs, namely 

     𝑇𝐶(𝑇) =
𝛼

𝛽𝑇
(−1 + 𝑒−𝛽𝑟(𝑝)𝑇) 𝑃𝑖 +

𝑆

𝑇
+ (ℎ 𝑃𝑖 + 𝑤 𝐸𝑒 𝑇𝑥) [−

𝛼

𝛽
−

𝛼(1−𝑒−𝛽𝑟(𝑝)𝑇)

𝑟(𝑝)𝑇𝛽2 ] + 
1

𝑇
(𝑡𝑓 + (2𝑑𝑐1𝑡𝑣 +

𝑑𝑐2𝑙
𝛼

𝛽
(−1 + 𝑒𝛽𝑟(𝑝)𝑇)𝑡𝑣) + (2𝑑𝑒1 + 𝑑𝑒2

𝛼

𝛽
(−1 + 𝑒𝛽𝑟(𝑝)𝑇))).     (4) 

With the calculation of the total carbon emissions as follows: 

𝑇𝐸(𝑇) =
𝛼

2𝛽
(−1 + 𝑒−𝛽𝑟(𝑝)𝑇) (𝑤𝐸𝑒) +

1

𝑇
(2𝑑𝑐1𝐹𝑒 + 𝑑𝑐2𝑙𝐹𝑒

𝛼

𝛽
(−1 + 𝑒𝛽𝑟(𝑝)𝑇)) 

The first term in 𝑇𝐸(𝑇) is expressing storage emissions and the second term is for transportation emissions.  

 

In order to obtain a value of 𝑇 that minimizes the total cost, the conditions that must be met are 

𝑑𝑇𝐶(𝑇)

𝑑𝑇
= 0  and 

𝑑2𝑇𝐶(𝑇)

𝑑𝑇2 > 0 

We can find the optimal value of 𝑇 satisfying the two conditions above, using Maple software. 

 

3. RESULTS AND DISCUSSION 

3.1 Results 

Below, an example for calculation will be provided to illustrate the influence of changes in the purchase 

price of goods due to the all-unit discount factor on the quantity of goods and the inter-order time (T) in the 

inventory model dependent on inventory level and selling price. 

Table 1. Parameter Values for Inventory Model 

Definition Notation Value 

Fraction of goods stored per unit ℎ 4% 

Mileage from the supplier 𝑑 100 km 

Ordering cost for each order placed 𝑆 Rp10.000 

Warehouse average carbon emission 𝑤 1.14 kWh/unit/period 

Carbon emissions from the production process 𝐸𝑒  0,005 ton𝐶𝑂2/kWh 

Carbon emission tax price 𝑡𝑥 Rp30.000/ ton𝐶𝑂2 

Fuel consumption when the vehicle is empty 𝑐1 0.18 L/km 

Additional fuel consumption per unit load 𝑐2 0.057 L/km/unit 

Item weight 𝑙 0,01 ton/unit 

Fixed costs for the process of shipping goods 𝑡𝑓 Rp1,000/delivery 

Variable costs for the process of shipping goods 𝑡𝑣 Rp100/L 

Transportation carbon emission costs 𝑒1 Rp150/km 

Additional cost of transport carbon emission 𝑒2 Rp100/unit/km 

Fuel emission standards 𝐹𝑒 0.0026 ton𝐶𝑂2/L 

Initial demand factor 𝛼 0.013 

The factor of inventory- and price dependent demand 𝛽 0.00002 

Selling cost per unit 𝑝𝑖  120% 𝑃𝑖 

With an all-unit discount applied to the listed prices in the following table. 
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Table 2. Price Selling Terms Influenced by All-unit Discount 

𝑃𝑖 𝑞𝑖 Interval 𝑞𝑖 

Rp40,000 0 ≤ 25 

Rp32,500 26 26 - 39 

Rp25,000 40 ≥ 40 

Using the parameter values in Table 1 and Table 2, substituting the optimal value of 𝑇 into Equation 

(2), we obtain the quantity of items to be ordered at the beginning of the period, and substituting it to 

Equation (1) the minimum total cost is obtained. The results can be seen in Table 3 and Table 4. 

Table 3. Price Selling Terms Influenced by All-unit Discount 

𝑖 𝑃𝑖 𝑇 𝑄𝑖  𝑞𝑖 𝑇𝐶(𝑇) Note 

1 Rp40,000 0.3056 31 ≤ 25 Rp5,230,205 𝑄𝑖  Not Valid 

2 Rp32,500 0.3148 34 26 - 39 Rp4,729,196 𝑄𝑖 Valid 

3 Rp25,000 0.3304 38 ≥ 40 Rp4,135,595 𝑄𝑖 Not Valid 

From Table 3, by using 𝑟1(𝑝) =10,000-0.05𝑝, it is obtained that, to achieve the optimal total cost, the 

process of restocking the goods should be done every 0.3148 years, with 34 units ordered in each period, and 

the optimum total cost is Rp4,729,196. Using the logarithmic demand function of 𝑟2(𝑝) =10,000 – 150 ln(𝑝), 

in Table 4, the replenishment interval is shorter, every 0.3023 years with higher optimum total cost of 

Rp4,942,098, and the same order quantity of 34 units.  

Table 4. Price Selling Terms Influenced by All-units Discount 

𝑖 𝑃𝑖 𝑇 𝑄𝑖  𝑞𝑖 𝑇𝐶(𝑇) Note 

1 Rp40,000 0.2794 31 ≤ 25 Rp5,766,351 𝑄𝑖  Not Valid 

2 Rp32,500 0.3023 34 26 - 39 Rp4,942,098 𝑄𝑖 Valid 

3 Rp25,000 0.3320 38 ≥ 40 Rp4,113,166 𝑄𝑖 Not Valid 

3.2 Sensitivity Analysis 

In the previous discussion, numerical simulations were conducted for each type of inventory model. 

Furthermore, in this section, sensitivity analysis is performed, aiming to provide an overview of the impact 

parameter value changes and their interpretations. Sensitivity analysis in this subsection is conducted for the 

second model, which is the inventory model with a demand function dependent on inventory levels and selling 

prices. 

3.2.1 The influence of changing values of 𝒂, 𝜷, and 𝑺 for 𝒓𝟏(𝒑) = 𝟏𝟎, 𝟎𝟎𝟎 − 𝟎. 𝟎𝟓𝒑 

The influence of changes in the values of 𝛼, 𝛽, and 𝑆 for 𝑟1(𝑝) = 10,000 − 0.05𝑝 on inter-order time 

(𝑇), total cost (𝑇𝐶), and total carbon emissions (𝑇𝐸) can be seen in Table 5. 

Table 5. Effect of Changes in Ordering Cost for Joint Order Policy 

Parameter Value 
% 

Change 
𝑸 𝑻 

T % 

Change 
TC 

TC % 

Change 

Carbon 

Emission 

𝛼 

0.0104 −20 30 0.3512 11.5628 Rp3,810,139 -19.4336 0.3654 

0.0117 −10 32 0.3315 5.3049 Rp4,270,077 -9.7081 0.3880 

0.0130 0 33 0.3148 0 Rp4,729,196 0 0.4095 

0.0143 +10 35 0.3003 -4.6060 Rp5,187,616 9.6934 0.4300 

0.0156 +20 37 0.2877 -8.6086 Rp5,645,431 19.3740 0.4497 

𝛽 

0.000016 −20 37 0.3451 9.6251 Rp4,704,760 -0.5167 0.3923 

0.000018 −10 35 0.3289 4.4760 Rp4,717,247 -0.2526 0.4009 

0.000020 0 33 0.3148 0 Rp4,729,196 0 0.4095 

0.000022 +10 32 0.3023 -3.9707 Rp4,740,672 0.2426 0.4181 

0.000024 +20 31 0.2911 -7.5285 Rp4,751,728 0.4764 0.4267 

𝑆 

8,000 −20 33 0.3077 -2.2554 Rp4,722,771 -0.1358 0.4141 

9,000 −10 33 0.3113 -1.1118 Rp4,726,002 -0.0675 0.4117 

10,000 0 33 0.3148 0 Rp4,729,196 0 0.4095 

11,000 +10 34 0.3182 1.0800 Rp4,732,355 0.0667 0.4074 

12,000 +20 35 0.3216 2.1601 Rp4,735,481 0.1328 0.4053 
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The primary demand factor (α) exerts the most substantial influence on carbon emissions compared to 

the parameters β and S, as it significantly affects both the production and consumption levels of goods. The 

connection between primary demand and carbon emissions becomes apparent in situations where an upsurge 

in demand for goods leads to heightened production and consumption, subsequently increasing reliance on 

fossil energy and, consequently, carbon emissions. 

A larger β value corresponds to a reduced order quantity required to meet the desired inventory level. 

This is due to the influence of β on the responsiveness of inventory levels to changes in demand. A higher β 

value indicates that the company tends to place smaller but more frequent orders, emphasizing a preference 

for frequent ordering in smaller quantities. 

In this scenario, the advantage of placing smaller, more frequent orders lies in lower ordering costs. 

Although each order incurs higher costs, the overall storage costs diminish as the company maintains smaller 

inventory quantities. From a carbon emissions standpoint, the frequent ordering and increased volume of 

stored goods in the warehouse significantly contribute to an overall rise in carbon emissions. 

Within inventory models, striking a balance between ordering costs and holding costs is crucial. When 

ordering costs are elevated, companies tend to reduce order frequency and opt for larger quantities, resulting 

in longer reorder intervals. This delicate balance aims to optimize both cost efficiency and environmental 

impact in inventory management. 

3.2.2 The influence of changing values of  𝒘 and 𝒄𝟏 for 𝒓𝟏(𝒑) = 𝟏𝟎, 𝟎𝟎𝟎 − 𝟎. 𝟎𝟓𝒑 

The influence of changes in the values of  𝑤 and 𝑐1 for 𝑟1(𝑝) = 10,000 − 0.05𝑝 on inter-order time 

(𝑇), total cost (𝑇𝐶), and total carbon emissions (𝑇𝐸) can be seen in Table 6. 

Table 6. Effect of Changes in Ordering Cost for Joint Order Policy 

Parameter Value 
% 

Change 
𝑸 𝑻 

T % 

Change 
TC 

TC % 

Change 

Carbon 

Emission 

𝑤 

0.912 −20 34 0.3154 0.1905 Rp4,728,622 -0.0121 0.3898 

1.026 −10 34 0.3151 0.0952 Rp4,728,909 -0.0060 0.3997 

1.140 0 34 0.3148 0 Rp4,729,196 0 0.4095 

1.254 +10 34 0.3144 -0.1270 Rp4,729,482 0.0060 0.4193 

1.368 +20 34 0.3141 -0.2223 Rp4,729,768 0.0121 0.4291 

𝑐1 

0.144 −20 34 0.3122 -0.8259 Rp4,726,900 -00485 0.3512 

0.162 −10 34 0.3135 -0.4129 Rp4,728,050 -0.0242 0.3804 

0.180 0 34 0.3148 0 Rp4,729,196 0 0.4095 

0.198 +10 34 0.3160 0.3160 Rp4,730,337 0.0241 0.4383 

0.216 +20 34 0.3172 0.7623 Rp4,731,474 0.0481 0.4669 

 

Parameter 𝑤 represents the average carbon emissions in the warehouse. An escalation in the average 

carbon emissions, accompanied by an increase in emissions from the production process (𝐸𝑒), contributes to 

a growing total carbon footprint. On the other hand, parameter 𝑐1 denotes the fuel consumption when the 

vehicle is empty. A higher fuel consumption during periods of vehicle emptiness leads to increased 

transportation costs, potentially inflating the overall inventory expenses. Conversely, for parameter T, the 

fuel consumption when the vehicle is empty does not exert a direct influence on the reorder interval. 

3.2.3 The influence of changing values of 𝜶, 𝜷, and 𝑺 for 𝒓𝟐(𝒑) = 𝟏𝟎, 𝟎𝟎𝟎 − 𝟏𝟓𝟎 𝐥𝐧(𝒑) 

The influence of changes in the values of 𝛼, 𝛽, and 𝑆 for  𝑟2(𝑝) = 10,000 − 150 ln(𝑝) on inter-order 

time (𝑇), total cost (𝑇𝐶), and total carbon emissions (𝑇𝐸) can be seen in Table 7. 
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Table 7. Effect of Changes in Ordering Cost for Joint Order Policy 

Parameter Value 
% 

Change 
𝑸 𝑻 

T % 

Change 
TC 

TC % 

Change 

Carbon 

Emission 

𝛼 

0.0104 −20 30 0.3373 11.5779 Rp3,981,567 -19.4356 0.3773 

0.0117 −10 32 0.3183 5.2927 Rp4,462,259 -9.7092 0.4007 

0.0130 0 34 0.3023 0 Rp4,942,098 0 0.4229 

0.0143 +10 36 0.2884 -4.5980 Rp5,421,210 9.6945 0.4441 

0.0156 +20 38 0.2763 -8.6007 Rp5,899,691 19.3762 0.4644 

𝛽 

0.000016 −20 37 0.3317 9.7254 Rp4,916,450 -0.5189 0.4045 

0.000018 −10 35 0.3160 4.5319 Rp4,929,559 -0.2537 0.4137 

0.000020 0 33 0.3023 0 Rp4,942,098 0 0.4229 

0.000022 +10 32 0.2902 -4.0026 Rp4,954,137 0.2436 0.4321 

0.000024 +20 31 0.2763 -7.5752 Rp4,965,733 0.4782 0.4412 

𝑆 

8,000 −20 33 0.2955 -2.2494 Rp4,935,408 -0.1353 0.4277 

9,000 −10 33 0.2989 -1.1247 Rp4,938,772 -0.0672 0.4252 

10,000 0 33 0.3023 0 Rp4,942,098 0 0.4229 

11,000 +10 34 0.3056 1.0916 Rp4,945,388 0.0665 0.4206 

12,000 +20 35 0.3089 2.1832 Rp4,948,642 0.1324 0.4184 

 

The influence of changing values of 𝛼, 𝛽, and 𝑆 as depicted in Table 7 is similar with the one in Table 

5. The changes on inter-order time (T), total cost (TC) and carbon emissions in Table 7 is slightly higher than 

in Table 5 due to different demand function used. 

3.2.4 The influence of changing values of 𝒘 and 𝒄𝟏 for  𝒓𝟐(𝒑) = 𝟏𝟎, 𝟎𝟎𝟎 − 𝟏𝟓𝟎 𝐥𝐧(𝒑) 

The influence of changes in the values of  𝑤 and 𝑐1 for  𝑟2(𝑝) = 10,000 − 150 ln(𝑝) on inter-order 

time (𝑇), total cost (𝑇𝐶), and total carbon emissions (𝑇𝐸) can be seen in Table 8. 

Table 8. Effect of Changes in Ordering Cost for Joint Order Policy 

Parameter Value % Change 𝑸 𝑻 
T % 

Change 
TC 

TC % 

Change 

Carbon 

Emission 

𝑤 

0.912 −20 34 0.3029 0.1984 Rp4,941,522 -0.0116 0.4031 

1.026 −10 34 0.3026 0.0992 Rp4,941,810 -0.0058 0.4130 

1.140 0 34 0.3023 0 Rp4,942,098 0 0.4229 

1.254 +10 34 0.3020 -0.0992 Rp4,942,386 0.0058 0.4327 

1.368 +20 34 0.3017 -0.1984 Rp4,942,673 0.0116 0.4426 

𝑐1 

0.144 −20 34 0.2999 -0.7939 Rp4,939,707 -0.0483 0.3621 

0.162 −10 34 0.3011 -0.3969 Rp4,940,905 -0.0241 0.3926 

0.180 0 34 0.3023 0 Rp4,942,098 0 0.4229 

0.198 +10 34 0.3035 0.3969 Rp4,943,287 0.0240 0.4529 

0.216 +20 34 0.3047 0.7939 Rp4,944,470 0.0479 0.4827 

 
 Results depicted in Table 8 have a similar tendency in the direction of changes on inter-order time 

(T), total cost (TC) and carbon emissions due the changes in parameter 𝑤 and 𝑐1 with the one in Table 6, 

although the magnitude is a little higher.  

 

3.3 Discussion 

3.3.1 Main Demand (𝜶) 

The main demand (𝜶) has the greatest impact on carbon emissions compared to the parameters 𝛽 and 

𝑆 because it is a factor that influences the level of production and consumption of goods. The connection 

between primary demand and carbon emissions can be understood from the condition where higher demand 

for goods leads to an increase in the production and consumption of those goods. As a result, during this 

process, more fossil energy will be used, resulting in an increase in carbon emissions. 
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3.3.2 The Factor of Increasing Demand (𝜷) 

The larger the value of 𝜷, the smaller the quantity of orders needed to achieve the desired inventory 

level. This is because b affects the responsiveness of inventory level changes to demand changes. With a 

larger 𝜷 value, a company can respond to demand changes with smaller but more frequent orders. 

Additionally, the parameter 𝜷 also reflects the demand elasticity with respect to inventory levels. Demand 

elasticity measures the sensitivity of demand to changes in inventory levels. 

If the 𝜷 value is positive, it indicates a positive relationship between inventory levels and demand, 

meaning that demand tends to increase when inventory levels increase. Conversely, if the 𝜷 value is negative, 

it indicates a negative relationship between inventory levels and demand, meaning that demand tends to 

decrease when inventory levels increase. Thus, the 𝜷 value in an inventory model with time and price-

dependent demand provides an insight into demand elasticity, the required order quantity, and the time 

between orders needed to achieve the desired inventory level. 

 

3.3.3 Ordering Cost for Each Order Placed (𝑺) 

The larger the value of 𝜷, the smaller the quantity of orders needed to achieve the desired inventory 

level. This is because b affects the responsiveness of inventory level changes to demand changes. With a 

larger 𝜷 value, a company can respond to demand changes with smaller but more frequent orders. 

Additionally, the parameter 𝜷 also reflects the demand elasticity with respect to inventory levels. Demand 

elasticity measures the sensitivity of demand to changes in inventory levels. 

 

3.3.4 Average Carbon Emissions in The Warehouse (𝒘) 

The increase in average carbon emissions in the warehouse, along with the increase in emissions 

generated from the production process (𝐸𝑒), will result in a larger total carbon emission. 

 

3.3.5 Fuel Consumption When the Vehicle is Empty (𝒄𝟏) 

The larger the fuel consumption when the vehicle is empty, the higher the transportation cost generated, 

which can consequently result in an increase in the total inventory cost. On the other hand, for 𝑇, the fuel 

consumption when the vehicle is empty does not have a direct impact on the inter-order time. 

 

4. CONCLUSIONS 

From our analysis in the previous sections, we can draw the following conclusions. 

1. Based on the results obtained from Table 3 and Table 4, utilizing the demand functions 𝑟1(𝑝)= 10,000 

- 0.05𝑝 and 𝑟2(𝑝) = 10,000 − 150 ln(𝑝)  respectively, the optimal restocking strategy differs. For 

𝑟1(𝑝), the optimal total cost is achieved by restocking every 0.3148 years, ordering 34 units in each 

period, resulting in an optimum total cost of Rp4,729,196. On the other hand, utilizing the logarithmic 

demand function 𝑟2(𝑝), the replenishment interval is shorter at every 0.3023 years, with the same 

order quantity of 34 units, but a higher optimum total cost of Rp4,942,098. These findings highlight 

the sensitivity of the optimal restocking strategy to the choice of demand function, with varying 

implications for total cost and replenishment frequency. 

2. Overall, it is found that the quantity of goods ordered is influenced by the inter-order time and 

purchase price. The cheaper the purchase price per unit supported by high demand, the greater 

quantity of goods ordered.  

3. Additionally, a longer inter-order time allows for more time to produce larger quantities of the order 

at a lower cost.  

4. Furthermore, based on the sensitivity analysis results, it is known that an increase in the main demand 

(𝛼) and an increase in the ordering cost (𝑆) have a greater impact compared to other tested parameters 

on total inventory cost (𝑇𝐶) and inter-order time (𝑇). 
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5. For future research, exploring dynamic models that consider evolving market conditions, variable 

demand patterns, and real-time pricing fluctuations to achieve a more nuanced understanding of 

inventory management dynamics. 
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