
          https://doi.org/10.30598/barekengvol18iss1pp0163-0170 

 

March 2024     Volume 18 Issue 1 Page 0163–0170 

P-ISSN: 1978-7227   E-ISSN: 2615-3017 

 

BAREKENG: Journal of Mathematics and Its Applications 

   

163 
      

 

MODELING THE MANY EARTHQUAKES IN SUMATRA USING 

POISSON HIDDEN MARKOV MODELS AND EXPECTATION 

MAXIMIZATION ALGORITHM 

 Muhammad Arib Alwansyah 1*, Ramya Rachmawati2  

 
1,2Statistics Study Program Department of Mathematics, Faculty of Mathematics and Natural Science,  

The University of Bengkulu 

St. WR. Supratman Kandang Limun, Muara Bangkahulu, Bengkulu 38122, Indonesia 

Corresponding author’s e-mail: * muhammadaribalwansyah232@gmail.com 

  ABSTRACT 

Article History: 
The article titled "Modeling the Many Earthquakes in Sumatra Using Poisson Hidden Markov 

Models and Expectation Maximization Algorithm" presents a comprehensive study on 

earthquake prediction modeling in Sumatra. This research is crucial considering Sumatra's high 
seismic activity due to its location at the confluence of three major tectonic plates. Sumatra 

Island is one of the islands that are prone to earthquakes because it is located at the confluence 

of three plates, namely the large Indo-Australian plate, the Eurasian plate and the Philippine 

plate. In general, the number of earthquake events follows the Poisson distribution, but there 
are cases where there is overdispersion in the Poisson distribution. The Poisson Hidden Markov 

Models (PHMMs) method is used to overcome overdispersion, and then the Expectation-

Maximization Algorithm (EM algorithm) is used in each model to obtain the estimated 

parameters. From the models obtained, the best model will be selected based on the smallest 
Akaike Information Criterion (AIC) value. The data used is earthquake event data on Sumatra 

Island, obtained from the United States Geological Survey (USGS) catalog from January 2000 

to December 2022, with a depth of ≤70 Km and a magnitude of ≥4.4 Mw. From the research, 
the model with m = 3 is the best estimation model with an AIC value of 1503,286. From the best 

model, estimates are obtained for Poisson Hidden Markov Models with an average occurrence 

of earthquakes of 5.7633 ≈ 6 events within one month. 
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1. INTRODUCTION 

An earthquake is an event of shaking or shaking of the earth caused by a sudden release of energy, 

which is marked by the breaking of rock layers in the earth's crust [1]. Earthquakes caused by the movement 

of tectonic plates are called tectonic earthquakes. Other than that, earthquakes can occur due to volcanic 

activity which is referred to as volcanic earthquakes. The movement suddenly from the rock layers in the 

earth produces energy emitted in all directions in the form of earthquake waves or seismic waves. When these 

waves reach the earth's surface, the vibrations can damage everything on the earth's surface, such as buildings 

and other infrastructure that can cause casualties and property [2]. Indonesia is a country with a high level of 

earthquake risk [3]. An earthquake happens because Indonesia is located in the Pacific Ring of Fire, with 

many active volcanoes, so volcanic earthquakes often occur. Indonesia is also located at the confluence of 

three plates, namely the Indo-Australian Plate, the Pacific Plate, and the Eurasian Plate, so it is prone to 

tectonic earthquakes [4]. Sumatra Island is one of the most active tectonic regions in the world. According to 

[3], 6 of the 25 earthquake-prone areas in Indonesia are on the island of Sumatra, including Aceh, Jambi, 

Bengkulu, Lampung, West Sumatra and North Sumatra. The high risk of earthquakes on the island of Sumatra 

is influenced by the geographical conditions of the region, where active faults, volcanic paths and subduction 

zones traverse the entire area of the island of Sumatra. Several large-scale earthquakes caused damage and 

even claimed lives, namely the Mentawai earthquake that occurred in 2010 with a magnitude of 7.7 M, the 

Nias earthquake that occurred in 2005 with a magnitude of 8.6 M, and the Aceh earthquake in 2004, which 

claimed 250,000 lives and triggering earthquakes and tsunamis in several neighboring countries, namely 

Thailand, Sri Lanka, and India [3]. 

Almost all events or incidents that occur in nature are probabilistic or random. A process that can 

predict or explain these events is called a stochastic process. The Poisson process is a stochastic process 

whose formation is based on the Poisson distribution and its independence properties. If a random variable 

has a Poisson distribution, the mean and variance are assumed to be the same [5]. However, in practice, it is 

more common to find data that experiences overdispersion, namely a situation where the variance of the 

dependent variable is greater than the average [6]. There is the influence of other variables or sources of 

diversity from an event that cannot be observed directly, which results in the probability of an event occurring 

depending on the previous event, which is one of the causes of overdispersion [7]. The causes of these events 

sometimes form a Markov chain. 

The Markov chain is an event process where the conditional probability of the next event 𝑋𝑡+1 depends 

only on the time of the current event 𝑋𝑡 [8]. One special form of the Markov chain is the hidden Markov 

model. The hidden Markov model is a discrete-time model consisting of two parts. The first part is the hidden 

or unobservable cause of the event and forms a Markov chain, while the second part is the observation process 

or the observed part, which depends on the event's cause [9]. 

In general, the event characteristics of the many earthquakes in a certain period are approximated by a 

Poisson distribution. Research on earthquake events using the Poisson distribution in Sulawesi conducted by 

Pertiwi showed that large earthquakes (𝑀 ≥ 5) in the East Luwu, Morowali, and North Morowali areas did 

not occur in grouping types [10]. However, there are times when applying the Poisson distribution, especially 

in the case of earthquakes, when there is a variance value greater than the average (overdispersion), so that 

the initial assumptions are not fully met and the distribution as a model is inaccurate. Therefore, this research 

uses an additional method, namely the Expectation Maximization Algorithm, to overcome the problem of 

overdispersion and the need to know the average and modeling of earthquake events on the island of Sumatra 

to minimize the negative impact of earthquakes. 

Based on the brief description above, the study aims to implement Poisson Hidden Markov Models 

(PHMMs) combined with the Expectation Maximization (EM) algorithm to model and estimate the average 

number of earthquakes in Sumatra per month. 

 

2. RESEARCH METHODS 

Data for earthquake events from January 2000 to December 2022 was utilized, considering events with 

a depth of ≤70 Km and a magnitude of ≥4.4 Mw. The study employs PHMMs to address the overdispersion 
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in the Poisson distribution of earthquake occurrences. The EM algorithm is applied to each model to estimate 

parameters, and the Akaike Information Criterion (AIC) is used for model selection. 

2.1 Markov Chain 

The Markov chain is a stochastic process that states that if a random variable 𝑿 is given with a time 

index 𝒕 (𝑿𝒕), then the value of 𝑿𝒔 for s > 𝒕 is not affected by the value of 𝑿𝒖 for 𝒖 < 𝒕, with 𝒔, 𝒕, 𝒖 ∈ 𝑵 [5]. 

The following are important definitions of the Markov chain.  

1. Homogeneous Markov Chain. According to [11], a Markov chain is said to be homogeneous if the 

transition probability from the state 𝒊 at time 𝒕 to state 𝒋 at time 𝒕 + 𝟏 can be expressed as 𝑷(𝑿𝒕+𝟏 =
𝒋|𝑿𝒕 = 𝒊)  =  𝑷(𝑿𝟐 = 𝒋|𝑿𝟏 = 𝒊)  =  𝒑𝒊𝒋. 

2. Aperiodic State. According to [12], a state i is aperiodic if 𝒅(𝒊) = 𝟏, 𝒅(𝒊) is the greatest common factor for 𝒏 so 

that 𝑷(𝑿𝒕+𝒏 =  𝒊|𝑿𝒕  =  𝒊)  >  𝟎. 

3. Irreducible Markov Chain. According to [11], a Markov chain is irreducible if all states communicate. 

2.2 Poisson Hidden Markov Models 

2.2.1 Hidden Markov Models 

The hidden Markov Model is one of the stochastic processes when the future only depends on the 

present condition and has a hidden state that cannot be observed [13]. The hidden Markov Model stochastic 

process consists of observable or observable parts {𝑋𝑡: 𝑡𝜖𝑁}, otherwise referred to as the “dependent state 

process,” and the unobserved part {𝐶𝑡: 𝑡𝜖𝑁} that satisfies the Markov property. In the observed section, 

distribution 𝑋𝑡 only depends on the current conditions 𝐶𝑡 and does not depend on previously observed 

conditions 𝑋𝑡−1. The following is a representation of Hidden Markov Models: 

 

 

 

 

 

 
Figure 1. Basic Graph of Hidden Markov Model 

Hidden Markov Model {𝑋𝑡: 𝑡𝜖𝑁} is a dependent mixed distribution, with 𝑋(𝑡) and 𝐶(𝑡) representing 

past events from time 1 to time 𝑡, which the simple model concludes with the equation [14]: 

 

𝑃(𝐶𝑡 | 𝐶
(𝑡−1)) = 𝑃 (𝐶𝑡 | 𝐶𝑡−1), 𝑡 = 2, 3,… (1) 

𝑃(𝑋𝑡|  𝐶
(𝑡−1), 𝐶(𝑡)) = 𝑃 (𝑋𝑡 | 𝐶𝑡), 𝑡 ∈ 𝑁 (2) 

If the Markov chain {𝐶𝑡} has 𝑚 hidden states, we say {𝑋𝑡} is a Hidden Markov Model with m states. The 

following is the definition of the probability mass function 𝑋𝑡 if the Markov chain at time 𝑡 is in state 𝑖 in the case of 

discrete observations [14]: 

𝑝𝑖(𝑥) = 𝑃𝑟(𝑋𝑡 = 𝑥 | 𝐶𝑡 = 𝑖),   𝑖 = 1, 2, … ,𝑚 (3) 

Distribution 𝑝𝑖 with 𝑚 hidden states can be said to be state-dependent distributions. 

2.2.2 Marginal Distribution and Moment Hidden Markov Models 

In the stationary case, the expected value depends on 𝐸(𝑔(𝑋𝑡)) and 𝐸(𝑔(𝑋𝑡, 𝑋𝑡+𝑘)) for each function 

𝑔 is as follows [14]: 

 

𝐶1 𝐶2 𝐶3 𝐶4 

𝑋1 𝑋2 𝑋3 𝑋4 
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𝑔(𝑋𝑡) =∑𝛿𝑖

𝑚

𝑖=1

𝐸(𝑔(𝑋𝑡)|𝐶𝑡 = 𝑖) 
(4) 

and 

𝐸(𝑔(𝑋𝑡 , 𝑋𝑡+𝑘))  =  ∑ 𝐸(𝑔(𝑋𝑡 , 𝑋𝑡+𝑘)

𝑚

𝑖,𝑗=1

 |𝐶𝑡  =  𝑖, 𝐶𝑡+𝑘 =  𝑗))𝛿𝑖𝛾𝑖𝑗(𝑘)  
 

      =  ∑ 𝐸(𝑔1(𝑋𝑡|𝐶𝑡 = 𝑖)

𝑚

𝑖,𝑗=1

)𝐸(𝑔2(𝑋𝑡+𝑘|𝐶𝑡+𝑘 = 𝑗)𝛿𝑖𝛾𝑖𝑗(𝑘) 
(5) 

Equation (3) and Equation (4) are useful for getting the expected value of the Hidden Markov Model. For 

example, if there are two states of the Hidden Markov Model where the Markov chain is a Poisson distribution 

and is stationary, then [4]: 

 

𝐸(𝑋𝑡)  =  𝛿1𝜆1  +  𝛿2𝜆2 (6) 

2.3 Likelihood Scaling 

 In the case of discrete state-dependent distributions, the element probability values 𝛼𝑡 will get smaller 

as 𝑡 increases and eventually round off to 0, or the so-called underflow. Likelihood scaling is one way to 

overcome the underflow problem by calculating the logarithm value of the likelihood, or what is commonly 

called the opportunity vector scaling forward probability vector scaling 𝛼𝑡. Defined a vector for 𝑡 = 0,1, … , 𝑇 

is: 

∅𝑡 = 𝛼𝑡/𝑤𝑡 (7) 

with: 𝑤𝑡 =  ∑ 𝛼𝑡(𝑖)𝑖 = 𝛼𝑡1
′.  

2.4 Estimation of Expectation Maximization Algorithm 

  The Estimation Maximization Algorithm method estimates parameter in the Hidden Markov Model. In 

the context of the Hidden Markov Model, the Estimation Maximization Algorithm is known as the Baum-

Welch algorithm, where the Markov chain in the Hidden Markov Model is homogeneous and does not have 

to be stationary. The parameters of the Hidden Markov Model that are estimated using the Estimation 

Maximization Algorithm are the state distribution depending on 𝑝𝑖, the probability transition matrix, and the 

initial distribution 𝛿. In its application, the Estimation Maximization Algorithm requires tools, namely 

forward opportunities and backward opportunities, where both opportunities can be used for state prediction 

[15]. 

1.  Forward Opportunities 

 Forward opportunities 𝛼𝑡 for 𝑡 = 1,2,… , 𝑇 defined as a row vector: 

 

𝛼𝑡 = 𝛿𝑃(𝑥1)Γ𝑃(𝑥2)… Γ𝑃(𝑥𝑡) = 𝛿𝑃(𝑥1)∏ Γ(𝑥𝑠)
𝑡

𝑠=2
 

(8) 

 

Where 𝛿 is the initial Markov chain distribution. Based on the definition of future opportunities above, 

𝑡 = 1, 2,… , 𝑇 − 1 can be written 𝛼𝑡+1 = 𝛼𝑡Γ𝑃(𝑥𝑡+1), or 𝛼𝑡+1(𝑗) = (∑ 𝛼𝑡(𝑖)𝛾𝑖𝑗
𝑁
𝑖=1 )𝑝𝑗(𝑥+1) means 

𝛼𝑡(𝑗) where 𝑗 is a component 𝛼𝑡 joint opportunities Pr (𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋𝑡 = 𝑥𝑡 , 𝐶𝑡 = 𝑗) 

2.  Reverse Opportunity 

 Reverse Opportunity 𝛽𝑡 for 𝑡 = 1, 2,… , 𝑇 defined as a row vector: 

 

𝛽′𝑡 = Γ𝑃(𝑥1)Γ𝑃(𝑥2)… Γ𝑃(𝑥𝑇)1′ = ( ∏ ΓP
𝑡

𝑠=𝑡+1
(𝑥𝑠)) 1′ 

(9) 

 



BAREKENG: J. Math. & App., vol. 18(1), pp. 0163- 0170, March, 2024.     167 

 

 

Where to 𝑡 = 𝑇, 𝛽𝑇 = 1. Based on the definition of backward opportunity above, 𝑡 = 1,2,… , 𝑇 − 1, 
can be written 𝛽′𝑡 = Γ𝑃(𝑥1)𝛽

′
𝑡1

. 

3.  Forward Opportunity and Backward Opportunity 

A combination of forward and backward opportunities  𝛼𝑡 and 𝛽𝑡 can be used to calculate 𝑃(𝑋(𝑇) =
𝑥(𝑇), 𝐶𝑡 = 𝑖). Where the combination of these opportunities is needed in the Expectation Maximization 

Algorithm in the Hidden Markov Model. 

In its application, it takes two properties of them: 

a. 𝑡 =  1, 2, … , 𝑇, 

𝑃(𝐶𝑡 = 𝑗|𝑋(𝑇) = 𝑥(𝑇)) = 𝛼𝑡(𝑗) 𝛽𝑡(𝑗)/𝐿𝑇 (10) 

b. 𝑡 =  2, … , 𝑇. 

𝑃(𝐶𝑡−1 = 𝑗, 𝐶𝑡 = 𝑘|(𝑋(𝑇) = 𝑥(𝑇)) = 𝛼𝑡−1(𝑗)𝛾𝑗𝑘𝑝𝑘(𝑥𝑡)𝛽𝑡(𝑘)/𝐿𝑇  (11) 

 

Unobserved Markov chain state sequences may have missing data, resulting in incomplete data. The 

Expectation-Maximization Algorithm, as an iterative method, functions in calculating the maximum 

likelihood estimate for incomplete data. In each iteration of the Expectation Maximization Algorithm, 

there are 𝐸 (Expectation) and 𝑀 (Maximization) stages [16]. 

1. Expectation Stage 

  Replace all values 𝑣𝑗𝑘 and 𝑢𝑗(𝑡) with their conditional expectations if it is given an observation 𝑥(𝑇). 

 

𝑢 𝑗(𝑡) = 𝑃(𝐶𝑡 = 𝑗|𝒙(𝑇)) = 𝛼𝑡(𝑗)𝛽𝑡(𝑗)/𝐿𝑇 (12) 

  and 

𝑣 𝑗𝑘(𝑡) = 𝑃(𝐶𝑡−1 = 𝑗, 𝐶𝑡 = 𝑘|𝒙(𝑇)) = 𝛼𝑡−1(𝑗)𝛾𝑗𝑘𝑝𝑘(𝑥𝑡)𝛽𝑡(𝑘)/𝐿𝑇 (13) 

 

2. Maximization Stage 

 After changing the value 𝑣𝑗𝑘 and 𝑢𝑗(𝑡) with 𝑢̂𝑗(𝑡) and 𝑣 𝑗𝑘, then the continuous-time double layered 

levy (CDLL) maximization is carried out, which is related to three parameters, namely the parameter 

of the state-dependent distribution (𝜆1, 𝜆2, … , 𝜆3), initial distribution 𝛿, and the transition 

opportunity matrix. The CDLL log-likelihood contains a series of observations 𝑥1, 𝑥2, … , 𝑥𝑇  as well 

as lost data 𝑐1, 𝑐2, … , 𝑐𝑇 shown in the following equation: 

 

log (P(𝑋(𝑇), 𝑐(𝑇))) =∑𝑢𝑗

𝑚

𝑗=1

(1)𝑙𝑜𝑔𝛿𝑗 +∑∑(∑𝑣𝑗𝑘(𝑡)

𝑇

𝑡=2

)

𝑚

𝑘=1

𝑚

𝑗=1

𝑙𝑜𝑔∑𝑢𝑗

𝑚

𝑗=1

+∑∑𝑢𝑗(𝑡)𝑙𝑜𝑔𝑝𝑗(𝑥𝑡)

𝑇

𝑡=1

𝑚

𝑗=1

 
(14) 

2.5 Model Selection based on Akaike Information Criterion (AIC) 

The criteria for selecting the best estimation model in this study are based on the AIC (Akaike Information 

Criterion) value. The AIC equation in selecting the model proposed by Akaike is [14]: 

 

𝐴𝐼𝐶 = −2 𝑙𝑜𝑔 𝐿 + 2𝑝 (15) 

Where 𝑙𝑜𝑔 L is the log-likelihood value of each model and 𝑝 is the number of parameters in the model, this 

study will the EM algorithm method to find 3 estimation models, namely the model with a hidden state 𝑚 = (2,3,4). 
The best estimation model based on the AIC standard is the model with the smallest AIC value [4]. 

2.6 Earthquake 

An earthquake is when the earth vibrates or shakes due to the sudden movement or shift of the rock layers in the 

earth's crust due to the movement of tectonic plates. The energy accumulation that causes earthquakes results from the 

movement of tectonic plates. The resulting energy is emitted in all directions in earthquake waves so that the effects can 

be felt up to the earth's surface. Earthquakes are one of the natural phenomena that cannot be avoided or prevented. 

Therefore an earthquake is one of the biggest disasters because of the risks it can cause [17]. 
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3. RESULTS AND DISCUSSION 

The article could benefit from a more thorough discussion of the implications of these findings for 

earthquake preparedness and risk management in Sumatra. 

3.1 Data Types and Sources 

The data used is earthquake event data on Sumatra Island, obtained from the United States Geological 

Survey (USGS) catalog from January 2000 to December 2022, with a depth of ≤ 70 Km and a magnitude of 

≥ 4.4 Mw. The data screening criteria are due to these conditions. Earthquakes can be felt and have the 

potential to damage the surrounding area. 

3.2 Data Analysis Method 

The analysis process in this study uses R studio Version 4.2.2 software. The data analysis method used 

in this study is as follows: 

1.  Descriptive analysis, used to determine overdispersion in earthquake data. 

2.  Poisson Hidden Markov Models are used to obtain the input parameters, which are then estimated from 

these parameters. 

3.  Estimating the Expectation Maximization-Algorithm, used to obtain the best model from a given 

hidden state by looking at the smallest Akaike Information Criterion value. 

3.3 Data Overdispersion Check 

Checking for overdispersion was carried out on data on the number of earthquake events on the island 

of Sumatra that occurred with a depth of ≤ 70 Km and a magnitude of ≥ 4.4 Mw monthly. The following is 

data on the number of earthquake events:  

Table 1. Data on the Many Earthquakes 

Month Number of Earthquakes 

Jan-2000 4 

Feb-2000 1 

Mar-2000 6 

Apr-2000 4 

⋮ ⋮ 
Nov-2022 12 

Dec-2022 10 

Based on Table 1, in January 2000, there were 4 earthquakes. In February 2000, there was 1 

earthquake. In March 2000, there were 6 earthquakes. In April 2000, there were 4 earthquakes, until in 

December 2022, there will be 10 earthquakes. The characteristics of the data follow the Poisson distributed 

data. The following results of the calculation of the average and variance are shown in Table 2 below. 

Table 2. Descriptive Statistics of Earthquake Event Data 

N 𝒙̅ 𝒔𝟐 Maximum Minimum 

264 9.1014 21.4224 39 0 

 

Based on Table 2 shows that the average value is 9.1014, the variant value is 21.4224, the maximum 

value is 39 and the minimum value is 0. Because the variant value is greater than the average value, it can be 

said that the data on the number of earthquake events occur in overdispersion to the Poisson distribution. 

3.4 Modeling Using Poisson Hidden Markov Models 

3.4.1 Determination of Input Parameters 

The determination of the input parameters is a step in finding the initial parameter values for each 

model, namely finding the average parameter for the number of earthquakes 𝜆𝑖 = (𝜆1, . . . , 𝜆𝑚) where every 

𝜆𝑖 has a Poisson distribution criterion with the initial probability of the event 𝛿 and the transition probability 

matrix Γ. 
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Table 3. Calculation Results of Input Parameters in Each State 

Model i 𝝀 𝜹 
𝚪 

1 2 3 4 

𝒎 = 𝟐 
1 8.765 0.986 0.989 0.011   

2 32 0.014 0.750 0.250   

𝒎 = 𝟑 

1 7.746 0.841 0.866 0.126 0.009  

2 14.675 0.145 0.725 0.25 0.025  

3 32 0.014 0.5 0.25 0.25  

𝒎 = 𝟒 

1 6.256 0.580 0.675 0.313 0.006 0.006 

2 12.348 0.406 0.463 0.528 0 0.009 

3 27 0.004 0 0 0 1 

4 33.677 0.011 0.667 0.333 0 0 

 

3.4.2 Poisson Hidden Markov Model Parameter Estimation with Expectation Maximization 

Algorithm 

The next step is to calculate the estimated parameter values 𝜆̂, 𝛿̂, and Γ̂ for each model using the 
Expectation Maximization algorithm. 

Table 4. Parameter Estimation Results of the Expectation Maximization Algorithm in Each Poisson Hidden 

Markov Model 

Model AIC i 𝝀̂ 𝜹̂ 
𝚪̂ 

1 2 3 4 

𝒎 = 𝟐 1584.895 
1 8.759 1 0.9889 0.011   

2 31.346 0 0.738 0.262   

𝒎 = 𝟑 1503.286 

1 5.7633 1 0.941 0.059 0  

2 10.006 0 0.0101 0.974 0.016  

3 31.833 0 0.444 0.301 0.254  

𝒎 = 𝟒 1515.821 

1 6.224 1 0.936 0.034 0.020 0.0103 

2 10.189 0 0.013 0.986 0 0 

3 28.438 0 0 0 0 1 

4 29.410 0 1 0 0 0 

 

Based on Table 4, the parameter estimation results in each hidden state use Poisson Hidden Markov 

Models with the Expectation Maximization Algorithm. From the results obtained, the smallest AIC value is 

1503.286, so the model with 3 hidden states (𝑚 = 3) is the best model compared to 𝑚 = 2 and 𝑚 = 4. The 

following are the best parameter estimation results for Poisson Hidden Markov Models with 3 hidden states: 

𝝀̂ = (5.7633, 10.006, 31.833) 

𝜹̂ = (1 ,0 ,0) 

𝚪̂ = [
0.941 0.059 0
0.010 0.974 0.016
0.444 0.301 0.254

] 

With the expected value and variance of Poisson Hidden Markov Models, namely: 

𝐸(𝑋𝑡) = ∑𝛿𝑖

3

𝑖=1

𝜆𝑖 

 = 𝛿1𝜆1 + 𝛿2𝜆2 + 𝛿3𝜆3 

 = (5.7633 × 1) + (10.006 × 0) + (31.833 × 0) 
 = 5.7633 

𝑉𝑎𝑟(𝑋𝑡) = 𝐸(𝑋𝑡) = 5.7633 

So, it can be concluded that of the three models for estimating the number of earthquake events in Sumatra, 
the model with 3 hidden states is the best model for estimating the number of earthquake events with an 

estimated parameter value of the average number of earthquakes that have occurred as many as 5.7633 ≈ 6 
events within a period one month. 
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4. CONCLUSIONS 

The model with three hidden states (𝑚 = 3) was found to be the best estimation model based on the 

smallest AIC value of 1503,286. The best model estimates an average of approximately 6 earthquake events 

in Sumatra within one month. 
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