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 ABSTRACT 

Article History: 
The Aedes aegypti mosquito is the main carrier of dengue virus transmission to humans. In this 

study, a mathematical model for the transmission of the dengue virus is constructed using 

vaccination and Wolbachia parameters in an attempt to control the virus's spread. 

Furthermore, the fundamental reproduction number is set as a parameter of the infection 

threshold. Based on the stability of the equilibrium point analysis, it is found that the disease-

free equilibrium point is locally asymptotically stable if 𝑅0 < 1. Then, a mathematical model 

of dengue was created by examining the seasonal aspect and adding a periodic term to the 

mosquito birth rate. Dengue virus transmission in mosquito populations is controlled by air 

temperature in addition to seasonal variables. In this study, three weather scenarios were 

simulated: scenario 1 for cold weather (air temperature 14 °C), scenario 2 for hot weather (air 

temperature 26 °C), and scenario 3 for moderate weather (air temperature between 14 and 26 

°C). 
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1. INTRODUCTION 

Dengue Hemorrhagic Fever (DHF) is an infectious disease caused by the dengue virus, which is 

transmitted by the mosquitoes Aedes aegypti and Aedes albopictus. Dengue fever is a major global health 

issue, particularly in tropical and subtropical regions. Every year, millions of people get infected with DHF, 

and thousands die as a result of the disease [1]. Efforts to control DHF have been carried out through various 

approaches, including vector control and prevention of the spread of the virus[2]. Common vector control 

methods involve using insecticides, fogging, eradicating mosquito breeding grounds, and vaccination[3]. 

Vaccines have historically been regarded as a highly effective approach in combating diseases. Consequently, 

persistent endeavors have been undertaken to create a potent dengue vaccine ever since the initial 

occurrence of the disease[3]. However, excessive use of pesticides can result in mosquito resistance to the 

chemicals, and other preventative measures frequently fail to effectively reduce mosquito populations[4]. The 

use of Wolbachia bacteria, which infect the Aedes aegypti mosquito, is one method for controlling DHF [5]. 

Wolbachia is a naturally occurring bacterium that can infect mosquitos and affect their capacity to transmit 

the dengue virus. Wolbachia can restrict the mosquito's ability to transmit the virus by suppressing virus 

replication in the mosquito's body, hence limiting disease transmission. Aedes aegypti carrying the symbiont 

Wolbachia and the introduction of natural predators of mosquito larvae are considered as biological control 

strategies[6], [7]. 

One of the important factors contributing to dengue transmission dynamics is the presence of mosquito 

populations, whose life cycle is influenced by climatic factors such as temperature and rainfall. In places with 

strong dry and rainy seasons, the mosquito population changes throughout the year, with more mosquitoes in 

the rainy season than in the dry season, resulting in an increase in the frequency of dengue infections during 

the rainy season[8], [9]. For instance, in Indonesia, the rainy season, which runs from November to March, 

usually has an increase in dengue fever infections. This shows that seasonal variations in mosquito 

populations influence the dynamics of dengue transmission[10].  

Mathematical models can be used to simulate various vector control strategies and analyze their impact 

on disease transmission. DHF tends to show seasonal variability in its distribution[11]. Aedes mosquitoes 

tend to reproduce and become more active during particular seasons[8]. The rainy season, with its more humid 

circumstances, frequently results in an increase in mosquito population, which can raise the risk of dengue 

transmission. Models with a seasonal component can help identify these seasonal patterns and provide more 

insight into the trend of dengue transmission over time. 

Several researches have created seasonal mathematical models, including the malaria transmission 

model[8], the chikungunya periodic model[12], the dynamic model of Zika virus transmission[13], and 

dengue[14], [15]. However, the dengue model constructed in[14] did not include Wolbachia as a variable 

controlling disease transmission. Hence, in this study, a mathematical model of the transmission of dengue 

was created, one that included vaccination, Wolbachia as a control variable, and seasonal aspects. The 

stability of the equilibrium point and the sensitivity of the basic reproduction number were then examined to 

determine which parameter has the most influence on the spread of the dengue virus. For seasonal variations 

in the dynamics of dengue virus transmission, numerical simulations were performed on dengue models with 

seasonal and non-seasonal aspects. 

This article consists of four sections. Section one explains the background of the problem. Section two 

gives the research methods for this work. Section three gives the results and discussion that consist of the 

proposed mathematical model of dengue, its stability, sensitivity analysis, and numerical analysis. And the 

last, Section 4, concludes all of this work. 

2. RESEARCH METHODS 

The method used in this research was as follow:  

1. Develop a mathematical model of dengue without seasonal effect. The proposed model is based on 

host-vector model with human as a vector and mosquitos as a vector.  

2. Calculate the equilibrium of the model by solving this equation: 

𝑑𝑆ℎ

𝑑𝑡
=
𝑑𝐼ℎ

𝑑𝑡
=
𝑑𝑉ℎ

𝑑𝑡
=
𝑑𝑅ℎ

𝑑𝑡
=
𝑑𝐴𝑣

𝑑𝑡
=
𝑑𝑆𝑣

𝑑𝑡
=
𝑑𝐼𝑣

𝑑𝑡
=
𝑑𝑃𝑣

𝑑𝑡
=
𝑑𝐴𝑤

𝑑𝑡
=
𝑑𝑆𝑤

𝑑𝑡
= 0            (1) 
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3. Determine the basic reproduction number 𝑅0 using the Next Generation Matrix (NGM). First, 

create a vector with the compartments that may induce virus transmission, 𝐱 = (𝐼ℎ, 𝐼𝑣)
𝑇. Then 

decompose 𝐱 into ℱ − 𝒱 to generate the Jacobi matrix of ℱ and 𝒱 which are evaluated at the non-

endemic equilibrium points 𝐸0, 𝔽 =
𝜕ℱ

𝜕𝐱
|
𝐸0

 and 𝕍 =
𝜕𝒱

𝜕𝐱
|
𝐸0

. The basic reproduction number is 

obtained from the largest eigenvalue modulus of the NGM, 

𝑅0 = 𝜌(𝔽𝕍
−1) = max|𝜆𝑖|              (2) 

where 𝜆𝑖 is eigen values of the NGM 

4. Analyze the stability of the equilibrium of the model using linearization matrix around the 

equilibrium point with Jacobian matrices: 

𝐽 =
𝜕𝑭

𝜕𝐱
|
𝐸0

               (3) 

where 𝑭 = {
𝑑𝑆ℎ

𝑑𝑡
,
𝑑𝐼ℎ

𝑑𝑡
,
𝑑𝑉ℎ

𝑑𝑡
,
𝑑𝑅ℎ

𝑑𝑡
,
𝑑𝐴𝑣

𝑑𝑡
,
𝑑𝑆𝑣

𝑑𝑡
,
𝑑𝐼𝑣

𝑑𝑡
,
𝑑𝑃𝑣

𝑑𝑡
,
𝑑𝐴𝑤

𝑑𝑡
,
𝑑𝑆𝑤

𝑑𝑡
} and 𝐱 = {𝑆ℎ, 𝐼ℎ , 𝑉ℎ, 𝑅ℎ ,

𝐴𝑣 , 𝑆𝑣 , 𝐼𝑣 , 𝑃𝑣 , 𝐴𝑤 , 𝑆𝑤}. 

5. Determine the sensitivity index of the model parameter by using basic reproduction number. A 

sensitivity analysis was performed on the basic reproduction number 𝑅0, which is the threshold for 

disease spread. The normalized sensitivity index of variable 𝑚 to parameter 𝑘 is defined by[16] : 

Υ𝑘
𝑚 ≔

𝜕𝑚

𝜕𝑘
×
𝑘

𝑚
.               (4) 

6. Develop a mathematical model of dengue with seasonal effect.  

7. Simulate the dynamics of the model with and without seasonal effect. The solution of the proposed 

model is solved numerically using Runge-Kutta 4th algorithm. 

3. RESULTS AND DISCUSSION 

In this section, we will explain the development of mathematical model of dengue with and without 

seasonal effect. Then, the dynamics of the model will be analyzed, such as the equilibrium the basic 

reproduction number, and the stability analysis of the equilibrium. The sensitivity analysis of the basic 

reproduction number is carried out to determine the most influence model parameter. The numerical 

simulation will complete the study of the model’s dynamics. 

3.1 Mathematical model with non-seasonal aspect 

In this sub-chapter, a mathematical model for the transmission of dengue fever will be developed, 

including control in the form of vaccine and Wolbachia but without taking into account the seasonal aspect. 

In this study, the total human population 𝑁ℎ was divided into four compartments, which were susceptible 

human 𝑆ℎ, dengue-infected human 𝐼ℎ, vaccinated human 𝑉ℎ, and immune human 𝑅ℎ. While the mosquito 

population is separated into two broad types, non-Wolbachia mosquitoes 𝑁𝑣 and mosquitoes with 

Wolbachia 𝑁𝑤. The non-Wolbachia mosquito population was separated into four compartments:  eggs of 

non-Wolbachia mosquitoes 𝐴𝑣, susceptible of non-Wolbachia mosquitoes 𝑆𝑣, mosquitoes infected with 

dengue 𝐼𝑣, and mosquitoes infected with Wolbachia 𝑃𝑣. Meanwhile, the Wolbachia mosquito population was 

separated into two compartments: mosquito eggs with Wolbachia 𝐴𝑤 and susceptible mosquitoes with 

Wolbachia 𝑆𝑤. Table 1 includes comprehensive explanations of each compartment. 

The mathematical model developed is a modification and combination of [14] and [17]. In contrast to 

[17] , the compartment 𝑉ℎ was added in this study to accommodate the number of persons who had been 

vaccinated. Vaccination is considered to be transitory, allowing the 𝑅ℎ compartment to lose its immunity and 

revert to the susceptible compartment 𝑆ℎ. Unlike [14], humans in the 𝑉ℎ compartment shift to the 𝑅ℎ 

compartment at a proportion equal to the vaccine's effectiveness. 𝑃𝑣, 𝐴𝑤, and 𝑆𝑤 compartments were also 

included to examine the impact of Wolbachia spread on the dynamics of Aedes aegypti mosquitoes. 

The model is based on assumptions about the dynamics of dengue virus transmission in real-world 

scenarios. The following assumptions are made in this study: i) the total human population and the total 

mosquito population are constant; ii) immunity from vaccination and recovery is temporary, so immune 
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humans will become vulnerable again when they lose their immunity; (iii) humans infected with dengue can 

spread the virus, causing mosquitos to become infected if they interact with infected humans; iv) mosquitos 

infected with dengue will remain infected for the rest of their lives; (v) there is no vertical transmission from 

parent to child; (vi) a Wolbachia-infected mosquito bite does not result in dengue infection. 

Susceptible humans will increase with a recruitment rate of Λ. Susceptible humans will become 

infected if bitten by a mosquito carrying the dengue virus, with a virus transmission rate of  
𝛽ℎ𝐼𝑣𝑆ℎ

𝑁ℎ
. Infected 

humans will recover with a recovery rate of 𝛾𝐼ℎ after receiving treatment. Vaccination was administered at a 

rate of 𝛿𝑆ℎto the susceptible human compartment. This model examines the imperfect vaccine component, 

specifically conditions where the vaccine's efficiency has not reached 100%. As a result, humans who have 

been vaccinated have a risk of being infected with dengue at a rate of (1 − 𝑞)
𝛽ℎ𝐼𝑣𝑉ℎ

𝑁ℎ
. The 𝑅ℎ compartment 

consists of immunity from medication and vaccination. As soon as immunity starts to decrease, 

compartment 𝑅ℎ will switch to compartment 𝑆ℎ. Each of the 𝑆ℎ, 𝐼ℎ, 𝑉ℎ, and 𝑅ℎ compartments will decrease 

at a rate of 𝜇ℎ death on its own.  

In the mosquito population, it is hypothesized that Aedes aegypti mosquitoes carrying Wolbachia are 

discharged into the environment and mate with non-Wolbachia Aedes aegypti mosquitoes. Wolbachia 

bacteria in Wolbachia-infected mosquitos will spread to other mosquitos, weakening the dengue virus in 

mosquitos. As a result, these mosquitoes will be unable to spread the dengue virus. 

   

   (a)           (b) 

Figure 1. Dengue Virus Transmission Diagram (a) in Human Population (b) in Mosquitos Population 

Figure 1 shows the dengue virus transmission diagram. A complete description of the model 

parameters is given in Table 2. Based on the explanation above, a mathematical model for the distribution of 

dengue without seasonal aspects is obtained in the following Equation (5): 

𝑑𝑆ℎ

𝑑𝑡
= Λ− 𝛽ℎ

𝐼𝑣

𝑁ℎ
𝑆ℎ − (𝛿 + 𝜇ℎ)𝑆ℎ + 𝑝𝑅ℎ  

𝑑𝐼ℎ

𝑑𝑡
= 𝛽ℎ

𝐼𝑣

𝑁ℎ
𝑆ℎ + (1 − 𝑞)𝛽ℎ

𝐼𝑣

𝑁ℎ
𝑉ℎ − (𝛾 + 𝜇ℎ)𝐼ℎ  

𝑑𝑉ℎ

𝑑𝑡
= 𝛿𝑆ℎ − (1 − 𝑞)𝛽ℎ

𝐼𝑣

𝑁ℎ
𝑉ℎ − (𝑞 + 𝜇ℎ)𝑉ℎ  

𝑑𝑅ℎ

𝑑𝑡
= 𝛾𝐼ℎ + 𝑞𝑉ℎ − (𝑝 + 𝜇ℎ)𝑅ℎ  

𝑑𝐴𝑣

𝑑𝑡
= 𝜃𝑣 − (𝜀 + 𝜎 + 𝜇𝑣)𝐴𝑣        (5) 

𝑑𝑆𝑣

𝑑𝑡
= 𝜀𝐴𝑣 −

𝛽𝑣𝐼ℎ𝑆𝑣

𝑁ℎ
− (𝛽1 + 𝜇𝑣)𝑆𝑣  

𝑑𝐼𝑣

𝑑𝑡
=
𝛽𝑣𝐼ℎ𝑆𝑣

𝑁ℎ
− (𝛽0 + 𝜇𝑣)𝐼𝑣  

𝑑𝑃𝑣

𝑑𝑡
= 𝜎𝐴𝑣 + 𝛽0𝐼𝑣 + 𝛽1𝑆𝑣 − 𝜇𝑣𝑃𝑣  

𝑑𝐴𝑤

𝑑𝑡
= 𝜃𝑤 − (𝜂 + 𝜇𝑤)𝐴𝑤  

𝑑𝑆𝑤

𝑑𝑡
= 𝜂𝐴𝑤 − 𝜇𝑤𝑆𝑤  
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Table 1.  Model Compartment Description 

Notation  Description Unit  

𝑆ℎ(𝑡) Humans who are susceptible to dengue infection when 𝑡 Person  

𝐼ℎ(𝑡) Humans infected with the dengue virus when 𝑡 Person  

𝑉ℎ(𝑡) Humans who have been vaccinated when 𝑡 Person  

𝑅ℎ(𝑡) Humans who are immune when 𝑡 Person  

𝐴𝑤(𝑡) Mosquito eggs with Wolbachia when 𝑡 Mosquito 

𝑆𝑤(𝑡) Wolbachia mosquitoes that are susceptible to dengue infection when 𝑡 Mosquito 

𝐴𝑣(𝑡) Non-Wolbachia mosquito eggs when 𝑡 Mosquito 

𝑆𝑣(𝑡) Non-Wolbachia mosquitoes that are susceptible to dengue infection when 𝑡 Mosquito 

𝐼𝑣(𝑡) Dengue-infected non-Wolbachia mosquitoes when 𝑡 Mosquito 

𝑃𝑣(𝑡) Non-Wolbachia mosquitoes infected with Wolbachia bacteria when 𝑡 Mosquito 

Table 2.  Model Parameter Description  

Notation Description Value Unit 

Λ Human recruitment rate  𝑁ℎ

365×70
 [13] Person.Day-1 

𝜇ℎ Human mortality rate 1

365×70
 [13] Day-1 

𝛽ℎ The probability of dengue virus transmission from 

mosquitos to humans 

0.002 [14] Person∙Day-1 

∙Mosquito-1 

𝛿 The average number of humans vaccinated 0.2 [12]  Day-1 

𝑝 Waning immunity period 1

365
 [Assume] Day-1 

𝑞 Vaccine effectiveness 80% [Assume] Day-1 

𝛾 The cure rate for infected humans 1

14
 [14]  Day-1 

𝜃𝑤 The recruitment rate of Wolbachia-infected 

mosquitoes 

𝜇𝑤𝑁𝑊 [12]  Mosquito.Day-1 

𝜇𝑤 The death rate of Wolbachia-infected mosquitoes 1

21
 [12] Day-1 

𝜂 Rate of transformation of Wolbachia mosquito eggs 

into Wolbachia mosquitoes 

0.00854 [12] Day-1 

𝜃𝑣 The recruitment rate of non-Wolbachia mosquitoes 𝜇𝑣𝑁𝑣 [12]  Mosquito. Day-1 

𝜇𝑣 The death rate of non-Wolbachia mosquitoes 1

21
 [12]  Day-1 

𝜀 The transformation rate of non-Wolbachia eggs to 

non-Wolbachia mosquitoes 

0.0238 [12]  Day-1 

𝜎 Wolbachia release rate to nature 0.2 [12] Day-1 

𝛽𝑣 The proportion of dengue virus transmission from an 

infected human individual to a mosquito 

0.1718 [12] Day-1 

𝛽1 The proportion of contact between non-Wolbachia 

susceptible mosquitoes and Wolbachia-infected 

mosquitoes 

0.0087 [12] 

 

Day-1 

𝛽0 The proportion of contact between dengue-infected 

mosquitos and Wolbachia-infected mosquitos 

0.0195 [12] Day-1 

𝑁ℎ Total human population 106 [Assume] Person  

𝑁𝑣 Total population of non-Wolbachia mosquitos 8000 [Assume] Mosquito  

𝑁𝑤 Total population of Wolbachia mosquitoes 3000 [Assume] Mosquito  

3.2 Stability Analysis of Equilibrium Points 

The model equilibrium point is reached when there is no change in the dynamics of the system, or 

when 
𝑑𝑆ℎ

𝑑𝑡
=
𝑑𝐼ℎ

𝑑𝑡
=
𝑑𝑉ℎ

𝑑𝑡
=
𝑑𝑅ℎ

𝑑𝑡
=
𝑑𝐴𝑣

𝑑𝑡
=
𝑑𝑆𝑣

𝑑𝑡
=
𝑑𝐼𝑣

𝑑𝑡
=
𝑑𝑃𝑣

𝑑𝑡
=
𝑑𝐴𝑤

𝑑𝑡
=
𝑑𝑆𝑤

𝑑𝑡
= 0. The dengue model in the system 

(1) has two equilibrium points, the non-endemic equilibrium points 𝐸0 and the endemic equilibrium point 𝐸1. 

The non-endemic equilibrium point is reached when there is no disease transmission in the 

population (𝐼ℎ = 𝐼𝑣 = 0). Equation (1) has the following equilibrium point 𝐸0: 

𝐸0 = (𝑆ℎ0, 0, 𝑉ℎ0, 𝑃𝑣0, 𝐴𝑣0, 𝑆𝑣0, 0, 𝑃𝑣0, 𝐴𝑤0, 𝑆𝑤0)               (6) 
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where 𝑆ℎ0 =
Λ(𝑞+𝜇ℎ)(𝑝+𝜇ℎ)

𝜇ℎ(𝜇ℎ
2+(𝑝+𝑞+𝛿)𝜇ℎ+(𝑝+𝑞)𝛿+𝑝𝑞)

, 𝑉ℎ0  =
Λδ(𝑝+𝜇ℎ)

𝜇ℎ(𝜇ℎ
2+(𝑝+𝑞+𝛿)𝜇ℎ+(𝑝+𝑞)𝛿+𝑝𝑞)

, 𝑅ℎ0 =

Λδ𝑞

𝜇ℎ(𝜇ℎ
2+(𝑝+𝑞+𝛿)𝜇ℎ+(𝑝+𝑞)𝛿+𝑝𝑞)

, 𝐴𝑣0 =
𝜃𝑣

𝜇𝑣+𝜎+𝜀
, 𝑆𝑣0 =

𝜃𝑣𝜀

(𝜇𝑣+𝜎+𝜀)(𝜇𝑣+𝛽1)
, 𝑃𝑣0 =

(𝜇𝑣𝜎+𝛽1𝜎+𝛽1𝜀)𝜃𝑣
(𝜇𝑣+𝜎+𝜀)(𝜇𝑣+𝛽1)𝜇𝑣

, 𝐴𝑤0 =

𝜃𝑤

𝜇𝑤+𝜂
, 𝑆𝑤0 =

𝜂𝜃𝑤

𝜇𝑤(𝜇𝑤+𝜂)
. 

Before analyzing the stability of the equilibrium point, the basic reproduction number of the system 

Equation (1) must first be calculated. The basic reproduction number is the number of secondary infections 

resulting from the primary infection to which the entire population is susceptible [18]. The basic reproduction 

number 𝑅0 is the threshold for the spread of the disease. If 𝑅0 < 1 the infection will become extinct, but if 

𝑅0 > 1 it will result in a pandemic situation. The amount of 𝑅0  is determined using the Next Generation 

Matrix (NGM) method [18]. First, create a vector with the compartments that may induce virus 

transmission, 𝐱 = (𝐼ℎ, 𝐼𝑣)
𝑇. Then decompose 𝐱 into ℱ − 𝒱 to generate the Jacobi matrix of ℱ and 𝒱 which 

are evaluated at the non-endemic equilibrium points 𝐸0, 𝔽 =
𝜕ℱ

𝜕𝐱
|
𝐸0

 and 𝕍 =
𝜕𝒱

𝜕𝐱
|
𝐸0

. Obtained ℱ =

(

𝛽ℎ𝐼𝑣𝑆ℎ

𝑁ℎ
+ (1 − 𝑞)𝛽ℎ

𝐼𝑣

𝑁ℎ
𝑉ℎ

𝛽𝑣𝐼ℎ𝑆𝑣

𝑁ℎ

), 𝒱 = (
(𝛾 + 𝜇ℎ)𝐼ℎ
(𝛽0 + 𝜇𝑣)𝐼𝑣

), 𝔽 = (
0

𝛽ℎ𝑆ℎ

𝑁ℎ
+ (1 − 𝑞)

𝛽ℎ𝑉ℎ

𝑁ℎ
𝛽𝑣𝑆𝑣

𝑁ℎ
0

), and 𝕍 =

(
𝛾ℎ + 𝜇ℎ 0
0 𝛽0 + 𝜇𝑣

). Furthermore, the Next Generation Matrix (NGM) can be formed using the 

formula 𝑁𝐺𝑀 = 𝔽𝕍−1 as follows: 

𝑁𝐺𝑀 = (
0

𝛽ℎ(𝑆ℎ0+(1−𝑞)𝑉ℎ0)

(𝛽0+𝜇𝑣)𝑁ℎ
𝛽𝑣𝑆𝑣0

𝑁ℎ(𝛾ℎ+𝜇ℎ)
0

)              (7) 

where 𝑆ℎ0 =
Λ(𝑞+𝜇ℎ)(𝑝+𝜇ℎ)

𝜇ℎ(𝜇ℎ
2+(𝑝+𝑞+𝛿)𝜇ℎ+(𝑝+𝑞)𝛿+𝑝𝑞)

, 𝑉ℎ0  =
Λδ(𝑝+𝜇ℎ)

𝜇ℎ(𝜇ℎ
2+(𝑝+𝑞+𝛿)𝜇ℎ+(𝑝+𝑞)𝛿+𝑝𝑞)

, and 𝑆𝑣0 =
𝜃𝑣𝜀

(𝜇𝑣+𝜎+𝜀)(𝜇𝑣+𝛽1)
. 

The basic reproduction number is obtained from the largest eigenvalue modulus of the NGM matrix,𝑅0 =
𝜌(𝔽𝕍−1) = max|𝜆𝑖|, as follows:  

𝑅0 =
√(𝛾ℎ+𝜇ℎ)(𝛽0+𝜇𝑣)𝛽ℎ(𝑆ℎ0+(1−𝑞)𝑉ℎ0)𝛽𝑣𝑆𝑣0

(𝛾ℎ+𝜇ℎ)(𝛽0+𝜇𝑣)𝑁ℎ
.             (8) 

Theorem 1. The non-endemic equilibrium point 𝐸0 is locally asymptotically stable if 𝑅0 < 1. 

Proof. The Jacobi matrix of system (1) which is evaluated at the equilibrium point 𝐸0 as follows:  

𝐽0 =

(

 
 
 
 
 
 
 
 
 
 
 

−
𝛽ℎ𝐼𝑣

𝑁ℎ
− 𝛿 − 𝜇ℎ 0 0 𝑝 0 0 −

𝛽ℎ𝑆ℎ

𝑁ℎ
0 0 0

𝛽ℎ𝐼𝑣

𝑁ℎ
−𝛾 − 𝜇ℎ (1 − 𝑞)𝛽ℎ

𝐼𝑣

𝑁ℎ
0 0 0

𝛽ℎ𝑆ℎ

𝑁ℎ
+ (1 − 𝑞)𝛽ℎ

𝑉ℎ

𝑁ℎ
0 0 0

𝛿 0 −𝜇ℎ 0 0 0 0 0 0 0
0 𝛾 𝜌 −𝜇ℎ 0 0 0 0 0 0
0 0 0 0 −𝜇𝑣 − 𝜎 − 𝜀 0 0 0 0 0

0 −
𝛽𝑣𝑆𝑣

𝑁ℎ
0 0 𝜀 −

𝛽𝑣𝐼ℎ

𝑁ℎ
− 𝛽1 − 𝜇𝑣 0 0 0 0

0
𝛽𝑣𝑆𝑣

𝑁ℎ
0 0 0

𝛽𝑣𝐼ℎ

𝑁ℎ
−𝛽0 − 𝜇𝑣 0 0 0

0 0 0 0 𝜎 𝛽1 𝛽0 −𝜇𝑣 0 0
0 0 0 0 0 0 0 0 −𝜇𝑤 − 𝜂 0
0 0 0 0 0 0 0 0 𝜂 −𝜇𝑤)

 
 
 
 
 
 
 
 
 
 
 

.(9) 

Furthermore, the eigenvalues obtained from the Jacobi matrix 𝐽0 are 𝜆1 = −𝜇𝑣, 𝜆2 = −(𝜇𝑣 + 𝜎 + 𝜀), 𝜆3 =
−𝜇ℎ, 𝜆4 = −(𝜇ℎ + 𝜌), 𝜆5 = −𝜇𝑤, 𝜆6 = −(𝜇𝑤 + 𝜂), 𝜆7 = −(𝛿 + 𝜇ℎ), 𝜆8 = −(𝛽1 + 𝜇𝑣), and 𝜆9,10 are the 

roots of Equation (6) below: 

𝜆2 + 𝑎1𝜆 + 𝑎2 = 0              (10) 

where 𝑎1 = 𝜇ℎ + 𝜇𝑣 + 𝛽0 + 𝛾 dan 𝑎2 =
((𝛾+𝜇ℎ)(𝜇ℎ+𝛿)(𝜇𝑣+𝛽1)(𝜇𝑣+𝛽0)(𝜇𝑣+𝜎+𝜀)𝑁ℎ

2−𝛽ℎ𝛽𝑣Λθ𝑣𝜀)

(𝜇𝑣+𝜎+𝜀)(𝜇𝑣+𝛽1)𝑁ℎ
2(𝜇ℎ+𝛿)

. 

According to the assumption of parameter positivity, 𝑎1 > 0. The eigenvalue 𝜆9,10  will be negative if 𝑎2 >

0.  
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𝑎2 =
((𝛾+𝜇ℎ)(𝜇ℎ+𝛿)(𝜇𝑣+𝛽1)(𝜇𝑣+𝛽0)(𝜇𝑣+𝜎+𝜀)𝑁ℎ

2−𝛽ℎ𝛽𝑣Λθ𝑣𝜀)

(𝜇𝑣+𝜎+𝜀)(𝜇𝑣+𝛽1)𝑁ℎ
2(𝜇ℎ+𝛿)

> 0  

⇔ ((𝛾 + 𝜇ℎ)(𝜇ℎ + 𝛿)(𝜇𝑣 + 𝛽1)(𝜇𝑣 + 𝛽0)(𝜇𝑣 + 𝜎 + 𝜀)𝑁ℎ
2 − 𝛽ℎ𝛽𝑣Λθ𝑣𝜀) > 0  

⇔ (𝛾 + 𝜇ℎ)(𝜇ℎ + 𝛿)(𝜇𝑣 + 𝛽1)(𝜇𝑣 + 𝛽0)(𝜇𝑣 + 𝜎 + 𝜀)𝑁ℎ
2 > 𝛽ℎ𝛽𝑣Λθ𝑣𝜀  

⇔ 1 >
𝛽ℎ𝛽𝑣Λθ𝑣𝜀

(𝛾+𝜇ℎ)(𝜇ℎ+𝛿)(𝜇𝑣+𝛽1)(𝜇𝑣+𝛽0)(𝜇𝑣+𝜎+𝜀)𝑁ℎ
2 = 𝑅0

2  

In other words, if 𝑅0
2 < 1 ⇔ 𝑅0 < 1, the eigenvalue 𝜆9,10 will be negative. Therefore, the non-endemic 

equilibrium point 𝐸0 is asymptotically stable if 𝑅0 < 1.      ∎ 

Based on Theorem 1, it is concluded that the non-endemic equilibrium point is asymptotically stable 

if 𝑅0 < 1. This means that disease-free conditions (the spread of dengue will stop or even become extinct) 

will be achieved if the threshold 𝑅0 in equation (8) can be reduced so that the value reaches 𝑅0 < 1. It is 

possible to achieve it by decreasing parameters that have a positive impact on 𝑅0 and increasing parameters 

that have a negative impact on 𝑅0. The basic reproduction number 𝑅0 in equation (8) has a complicated form. 

Therefore, in subsection 3.3, a sensitivity analysis is provided to find out which parameters have the most 

influence on changes in the 𝑅0 value. 

The proposed dengue mathematical model is very complicated, though, which makes it hard to figure 

out the endemic equilibrium point analytically. This results in difficulty in analyzing the stability of the 

endemic equilibrium point analytically. Therefore, the stability analysis of the endemic equilibrium point 𝐸1 

can be carried out numerically by using the phase field with the help of the parameter values in Table 2. 

3.3 Sensitivity Analysis 

The sensitivity index is calculated using parameter sensitivity analysis, which gives a sense of the 

magnitude of the influence of changes in parameter values on the dynamics of the model. The parameters 

with an index value of one or a negative one has the largest influence on the model change rate. A sensitivity 

analysis was performed on the basic reproduction number 𝑅0, which is the threshold for disease spread. The 

normalized sensitivity index of variable 𝑚 to parameter 𝑘 is defined by[16]: 

Υ𝑘
𝑚 ≔

𝜕𝑚

𝜕𝑘
×
𝑘

𝑚
.      (11) 

Thus, to obtain the sensitivity index of the 𝛽 parameter to the basic reproduction number 𝑅0 it is calculated 

using the formula: 

Υ𝑅0
𝛽
≔

𝜕𝑅0

𝜕𝛽
×
𝛽

𝑅0
.      (12) 

Parameters with a positive (negative) index will be directly proportional (inversely) to the basic 

reproduction number 𝑅0. In other words, an increase (reduction) in the positive index parameter will 

accelerate (slow down) the rate of disease transmission. In contrast, an increase (reduction) in the parameter 

with a negative index will halt (accelerate) the spread of the disease. By applying the formula in Equation 

(7) to the basic reproduction number 𝑅0 in Equation (4), the parameters {Λ, 𝛽ℎ , 𝛽𝑣 , 𝜃𝑣} each have a sensitivity 

index of 0.5. While the other parameters have a complex sensitivity index. Therefore, the parameter values 

in Table 2 are used to obtain the sensitivity index values. In Table 3, all of the parameter sensitivity index 

values are listed. According to Table 3, there are parameters with positive indices such 

as {Λ, 𝛽ℎ, 𝛽𝑣 , 𝜃𝑣 , 𝛿, 𝑝, 𝜀} and negative indices such as {𝜇ℎ , 𝑞, 𝜇𝑣 , 𝜎, 𝛽1, 𝛽0}. If the infection rate 𝛽ℎ  increases 

(decreases) by 10%, then the value of 𝑅0 will increase (decrease) by 5%. In the opposite case, if the 

effectiveness of the 𝑞 vaccine increases (reduces) by 10%, the 𝑅0 value decreases (increases) by 2.045%. 

Table 3. Parameter Sensitivity Index 

Parameter  Sensitivity Index Parameter Sensitivity Index 

Λ 0.5 𝜇𝑣 -0.8652 

𝜇ℎ -0.1107 𝜀 0.4562 

𝛽ℎ 0.5 𝜎 -0.3684 
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Parameter  Sensitivity Index Parameter Sensitivity Index 

𝛿 0.0016 𝛽𝑣 0.5 

𝑝 0.4910 𝛽1 -0.0772 

𝑞 -0.2045 𝛽0 -0.1453 

𝜃𝑣 0.5   

3.4 Mathematical Models Of Dengue Transmission Dynamics With Seasonal Aspect 

In this sub-chapter, mathematical models of dengue transmission in the Equation (1) is modified by 

including the seasonal aspect. It is assumed that the birth rate of mosquitoes varies according to season using 

the sine function with a one-year period, as shown below: 

(1 + 𝐴 sin (
2𝜋𝑡

365
))    (13) 

where 𝐴 is the strength of seasonality, 0 ≤ 𝐴 ≤ 1. Thus, the mathematical model of dengue transmission 

dynamics with seasonal aspect can be stated as follows: 

𝑑𝑆ℎ

𝑑𝑡
= Λ − 𝛽ℎ

𝐼𝑣

𝑁ℎ
𝑆ℎ − (𝛿 + 𝜇ℎ)𝑆ℎ + 𝑝𝑅ℎ  

𝑑𝐼ℎ

𝑑𝑡
= 𝛽ℎ

𝐼𝑣

𝑁ℎ
𝑆ℎ + (1 − 𝑞)𝛽ℎ

𝐼𝑣

𝑁ℎ
𝑉ℎ − (𝛾 + 𝜇ℎ)𝐼ℎ  

𝑑𝑉ℎ

𝑑𝑡
= 𝛿𝑆ℎ − (1 − 𝑞)𝛽ℎ

𝐼𝑣

𝑁ℎ
𝑉ℎ − (𝑞 + 𝜇ℎ)𝑉ℎ  

𝑑𝑅ℎ

𝑑𝑡
= 𝛾𝐼ℎ + 𝑞𝑉ℎ − (𝑝 + 𝜇ℎ)𝑅ℎ  

𝑑𝐴𝑣

𝑑𝑡
= 𝜃𝑣 (1 + 𝐴 sin (

2𝜋𝑡

365
)) − (𝜀 + 𝜎 + 𝜇𝑣)𝐴𝑣        (14) 

𝑑𝑆𝑣

𝑑𝑡
= 𝜀𝐴𝑣 −

𝛽𝑣𝐼ℎ𝑆𝑣

𝑁ℎ
− (𝛽1 + 𝜇𝑣)𝑆𝑣  

𝑑𝐼𝑣

𝑑𝑡
=
𝛽𝑣𝐼ℎ𝑆𝑣

𝑁ℎ
− (𝛽0 + 𝜇𝑣)𝐼𝑣  

𝑑𝑃𝑣

𝑑𝑡
= 𝜎𝐴𝑣 + 𝛽0𝐼𝑣 + 𝛽1𝑆𝑣 − 𝜇𝑣𝑃𝑣  

𝑑𝐴𝑤

𝑑𝑡
= 𝜃𝑤 (1 + 𝐴 sin (

2𝜋𝑡

365
)) − (𝜂 + 𝜇𝑤)𝐴𝑤  

𝑑𝑆𝑤

𝑑𝑡
= 𝜂𝐴𝑤 − 𝜇𝑤𝑆𝑤  

Compartment descriptions and parameters can be seen in Table 1 and Table 2.  

3.5 Numerical simulation 

Air temperature has the potential to influence dengue virus transmission in mosquito populations. 

Therefore, three weather scenarios are included in this simulation: scenario 1 for cold weather (air 

temperature 14 °C), scenario 2 for hot weather (air temperature 26 °C), and scenario 3 for moderate weather 

(air temperature between 14 and 26 °C)[8] . Table 4 shows the parameter scores in the three scenarios.  Then 

three variations of the seasonal strength factor 𝐴 are used, namely 𝐴 = 0.1, 𝐴 = 0.3, and 𝐴 = 0.8 [14]. The 

simulation was carried out using the parameter values listed in Table 2 at a simulation time of 𝑡 = 365 days. 

The initial values for each compartment were (𝑆ℎ0, 𝐼ℎ0, 𝑉ℎ0, 𝑅ℎ0, 𝐴𝑣0, 𝑆𝑣0, 𝐼𝑣0, 𝑃𝑣0, 𝐴𝑤0, 𝑆𝑤0) =
(83297, 233, 0, 90, 4500, 2500, 1500, 100, 800, 200 ). The solution of the proposed model is solved 

numerically using Runge-Kutta 4th algorithm. 

Table 4. Parameter scores of three scenarios 

Parameter Scenario 1  

(cold climate) 

Scenario 2  

(hot climate) 

Scenario 3  

(mild climate) 

𝛽ℎ 0.11 0.95 0.2 

𝛽𝑣 0.12 0.99 0.2 

𝜇𝑣 0.04 0.03 1/15 
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Figure 2 shows the simulation results for Scenario 1 (cold climate). Based on Figure 2, there aren't 

many changes between the population dynamics 𝐼𝑣 and 𝐼ℎ when there are seasonal effects and when there 

aren't. The simulation results for scenario 2 (hot climate) are shown in Figure 3. Figure 3 (c) shows that 

seasonal factors have a significant impact on the dengue infected human population 𝐼ℎ. The peak of infection 

in this scenario is the highest of the three, reaching 11 thousand people. The simulation results for scenario 3 

(mild climate) are presented in Figure 4. According to Figure 4, there are very slight variations in population 

dynamics between 𝐼𝑣 and 𝐼ℎ under seasonal and non-seasonal. Even after reaching a high peak of infection, 

the total human population infected with dengue𝐼ℎ may decrease to zero in all three scenarios. This is due to 

the parameters of vaccination and the release of Wolbachia into the wild. 

Meanwhile, based on the simulation results of the three scenarios in Figure 2 – Figure (4), it can be 

seen that the population dynamics of susceptible-Wolbachia mosquitoes (𝑆𝑤) are strongly influenced by 

seasonal effects. The greater the seasonality, the greater the fluctuation in the population of susceptible-

Wolbachia mosquitoes. This means that in certain periods, the population of susceptible-Wolbachia 

mosquitoes will boom. And conversely, in other periods, the population of susceptible-Wolbachia mosquitoes 

will decrease quite drastically.  

Figure 2 – Figure (4)also displays the dynamics of the vaccinated human population (𝑉ℎ) based on 

the application of the three scenarios. In Figure 2 (scenario 1) and Figure 4 (scenario 3), the 𝑉ℎ population is 

not significantly affected by seasonal factors applied to mosquito population dynamics. However, in Figure 

3 (Scenario 2), the 𝑉ℎ population is quite affected by seasonal factors. Based on Figure 3, the greater the 

seasonal effect, the greater the influence on the population size (𝑉ℎ). Overall, seasonal effects influence the 

dynamics of the entire population in the dengue model that has been prepared. 

  

  (a)        (b) 

 

    (c)        (d) 

Figure 2. The Dengue Model Dynamic of (a)𝑰𝒗 (b)𝑺𝒘 (c)𝑰𝒉 (d)𝑽𝒉 with Seasonal and Non-Seasonal Aspects for 

Scenario 1 
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  (a)        (b) 

 

  (c)        (d) 

Figure 3. The Dengue Model Dynamic (a)𝑰𝒗 (b)𝑺𝒘 (c)𝑰𝒉 (d)𝑽𝒉 with Seasonal And Non-Seasonal Aspects For 

Scenario 2 
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  (a)        (b) 

 

  (c)        (d) 

Figure 4. The Dengue Model Dynamic (a)𝑰𝒗 (b)𝑺𝒘 (c)𝑰𝒉 (d)𝑽𝒉 with Seasonal And Non-Seasonal Aspects For 

Scenario 3 

4. CONCLUSIONS 

A mathematical model for the spread of dengue has been developed by evaluating the seasonal variables 

that influence the dynamics of the mosquito population. The periodic term on the mosquito birth rate 

represents the seasonal aspect. Based on the stability of the equilibrium point analysis, it is discovered that 

the equilibrium point free of disease is locally asymptotically stable if 𝑅0 < 1. Then, using three different 

scenarios based on air temperature changes, a numerical simulation was performed. Based on numerical 

simulations, it was discovered that seasonal variables provide mosquito dynamics with an annual recurring 

pattern. The largest peak of infection in humans is produced by numerical simulation in scenario 2 (air 

temperature 26 °C), with 11 thousand infected persons. Following the model used which involves vaccination 

and Wolbachia release, the peak of the infection may reduce to zero infections. 
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