
          https://doi.org/10.30598/barekengvol17iss4pp2337-2350 

December 2023     Volume 17 Issue 4 Page 2337–2350 

P-ISSN: 1978-7227   E-ISSN: 2615-3017 

 

BAREKENG: Journal of Mathematics and Its Applications 

   

2337 
      

 

 THE GRADUATION OF TRANSITION INTENSITIES FROM SEMI-

MARKOV PROCESSES TO PREMIUM PRICING 

 Faihatuz Zuhairoh1*, Dedi Rosadi2, Adhitya Ronnie Effendie3  

 
1Study Program of Mathematics Education, STKIP YPUP Makassar 

Andi Tonro Street No. 17 Makassar, 90223, Indonesia 

2,3Department of Mathematics, Faculty of Mathematics and Natural Sciences, Gadjah Mada University 

North Sekip Bulaksumur No 21,Yogyakarta 55281, Indonesia 

Corresponding author’s e-mail: * fzuhairoh@stkip.ypup.ac.id 

 

 
 ABSTRACT 

Article History: 
One of the important assumptions of the premium pricing of a health insurance product is the 

probability for someone suffers from a certain disease. In this paper, the disability income 

model is applied to a company using two covariates, namely age and sex. The purpose is to 

find out the magnitude of the probability for employees to experience disabilities due to work, 

a multi-state model can be used with semi-Markov assuming. There are several approaches to 

complete the multi-state model, one of which is the transition intensity approach. The intensity 

of the transition in this paper is estimated using the maximum likelihood approach, which will 

produce a crude estimate. Afterwards, the graduation process is performed on a crude 

estimate to obtain a finer shape of the transition intensity function with the Generalized 

Linear Model (GLM). The intensity of the transition from the graduation results is used to 

form transition probabilities which are eventually used as one of the assumptions in premium 

pricing. 
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1. INTRODUCTION 

Multi-state models have been developed in actuarial science, one of which is in determining premium 

pricing. This paper explains the multi-state model of disability income using the semi-Markov assumption. 

Disability income insurance is divided into three states namely, healthy, disabled, and dead. Premiums are 

paid for the insured person and we will get benefits during disability and one-time benefits when death 

occurs. 

In determining the premium of an insurance product, an actuary must pay attention to standard 

assumptions in actuarial science because the more assumptions that are violated, the greater the possibility 

of calculation errors. This resulted in both parties, the insured and the insurer experiencing losses. One of 

the essential assumptions in pricing a health insurance product is the chance of a person experiencing a 

specific disease or suffering from an infection. A person's health condition can be divided into several 

states, such as health, illness, disability, or death state. 

The fundamental difference with the permanent disability model is that there is a healing period so 

that people who are in a state of illness will recover from the illness or even in one insurance period a 

person can experience pain several times until the person dies. According to our understanding of the 

model, this suggests that there could be multiple periods of illness preceding death, with healthy (premium-

paying) intervals in between [1]. Health insurance pricing has also been developed based on prevalence 

rates [2]. 

The multi-state model in health insurance is divided into several finite states, for example healthy, 

disabled and dead. There are several approaches in solving multi-state model problems, including [3], 

namely by utilizing a deck cement table, then in subsequent studies providing an alternative solution using 

the Markov model assumptions, in this case, it is assumed that between each status always has a transition 

intensity including [4]. The intensity of the transition can also be used to predict future events. Several 

studies on forecasting with several methods were carried out by [5], [6] using the Richards method, [7] 

using Hybrid Vector Autoregression Feedforward NN with Genetic Algorithm Model, and [8] using the 

time-temperature superposition model and SRL model. 

In the Markov model, it is assumed that the intensity and probability of the transition at the time 

depend only on the current state [9], [10]. Transition probability plays an important role in determining 

insurance premiums, both outpatient and long-term care [11]. In addition to pricing premiums, we 

developed a Markov model for modeling the spread of infectious diseases [12], [13]. Although the current 

Markov model has been widely used in various fields, including health insurance, it is felt that this model 

still has many shortcomings. For example, in the discrete-time context, the transition time of the Markov 

model is not stochastic, whereas, in continuous time, the intensity of the transition is constant. Of course, 

this simplifies a really huge problem, so it is appropriate that the Markov model still needs to be refined. 

One way to do this is to add additional assumptions to the Markov model, namely, that apart from 

depending on the current state, the intensity and probability of the transition are also influenced by the time 

spent by the system in a particular state as written by [14]. As a result, the Markov property will be brought 

to a new definition, namely the semi-Markov process. 

The semi-Markov process is one type of stochastic process. It can be analogized as a merger between 

two types of stochastic methods: Markov chains and renewal processes. The semi-Markov process does not 

have the limitations that the Markov model lacks, where the fact shows that the distribution function of the 

transition intensity in a continuous-time semi-Markov process can be of any form. In contrast, in the case of 

discrete-time, the transition time of a semi-Markov process is stochastic, which makes the discrete-time 

semi-Markov process closer to reality. 

The main contribution of this paper is how to overcome the rough estimation generated by the semi-

Markov model, one of which is using graduation. Previously it had been developed only with the Markov 

model by [15]. A crude estimate of the transition intensities in this paper will be estimated with the 

maximum likelihood approach because it can be graduated to obtain a smoothly transition intensity. The 

graduation process is done with a Generalized Linear Model (GLM) [16], [17]. The integrated transition 

intensity estimator is used to form transition probabilities associated with the Kolmogorov Backward and 

Forward differential equations [18]. This estimator is ultimately used as one of the assumptions in 

determining health insurance premiums. 
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This article is structured as follows. We present a theoretical framework of the multi-state model, 

semi-Markov process, Chapman-Kolmogorov equation, maximum likelihood method, and GLM in section 

2. In Section 3, we describe the estimation procedure of the multi-state model with semi-Markov 

assumptions, crude transition intensity, graduation process of transition intensity using GLM, transition 

probability, and premium pricing. Afterward, in Section 4, we applied the multi-state model using data 

retrieved from www.soa.org to calculate premiums based on covariates of age and sex. Finally, in the end, 

namely Section 5, we give a conclusion regarding the formula to calculate the premium value of the multi-

state model assuming semi-Markov with a graduation process to produce better results. 

2. RESEARCH METHODS 

2.1 Multi-state Model  

𝑆, 𝑇 is a multi-state model with 𝑆 = 1,2, ⋯ , 𝑚 explain space state like finite set and 𝑇 is a subset of 

the set of pairs which is 𝑇 ⊆ {(𝑖, 𝑗)|𝑖 ≠  𝑗;  𝑖, 𝑗 ∈  𝑆} [3]. The characteristic of a multi-state process is 

affected by the transition probabilities between state 𝑖 and 𝑗 following this, 

𝑝𝑡 𝑥
𝑖𝑗

= Pr {𝑌𝑥+𝑡 = 𝑗|𝑌𝑥 = 𝑖} (1) 

so that 𝑡𝑝𝑥
𝑖𝑗

  is the probability that a life aged 𝑥 in state 𝑖 is in state 𝑗 at age 𝑥 + 𝑡, where 𝑗 may be equal to 

𝑖. In addition, a multi-state process can also be influenced by the intensity of the transition. 

𝜇𝑥
𝑖𝑗

= 𝑠 lim
ℎ→0

 𝑝ℎ 𝑥
𝑖𝑗

ℎ
, 𝑖 ≠ 𝑗 (2) 

It shows the transition intensity to the direct transfer of risk state, if known in advance in state 𝑖, both 

𝑝𝑖𝑗 and  𝜇𝑖𝑗 depend on the history and processes owned. 

2.2 Semi-Markov Process  

A semi-Markov process is a process that makes a transition from one state to another, as in a Markov 

process. However, the amount of time spent in each state before transitioning to the next is any random 

variable that depends on the following form of a new process.  

Suppose there is a stochastic process {𝑆𝑡, 𝐻𝑡; 𝑡 ≥ 0} where 𝑆𝑡 is a random event at time 𝑡, and 𝐻𝑡 is 

the sojourn time in state 𝑆𝑡 until time 𝑡 since the last transition to that state; formally [3]: 

𝐻𝑡 = max{𝜏: 𝜏 ≤ 𝑡, 𝑆𝑡−ℎ = 𝑆𝑡∀ ℎ ∈ [0, 𝜏]} (3) 

Assume for the moment that {𝑆𝑡, 𝐻𝑡; 𝑡 ≥ 0}  is a time-continuous. The present state, 𝑆𝑡 = 𝑖, and the 

amount of time since the most recent transition into that state, 𝐻𝑡 = 𝑣, are the most recent pieces of 

information that can determine the conditional probabilities for the future of the process at time 𝑡. Because 

of this, the aforementioned conditional probabilities are independent of any knowledge of the process's 

course before time 𝑡. Consequently, we employ the subsequent transition probabilities [19]. 

𝑃𝑖𝑗(𝑡, 𝑢, 𝑣, 𝑤) = Pr(𝑆𝑢 = 𝑗 ∧ 𝐻𝑢 ≤ 𝑤 | 𝑆𝑡 = 𝑖 ∧  𝐻𝑡 = 𝑣)  (4) 

for 0 ≤ 𝑡 < 𝑢 and 𝑣, 𝑤 ≥ 0. 

2.3 Chapman-Kolmogorov Equations  

The Chapman-Kolmogorov equation states that the path that starts at state 𝑖 at time 𝑡 goes to status 𝑗 

at time 𝑢 through several states 𝑘 continuously at any time 𝑤. The Chapman-Kolmogorov equation can be 

written as follows [3] 

𝑃𝑖𝑗(𝑡, 𝑢) = ∑ 𝑃𝑖𝑘(𝑡, 𝑤)𝑃𝑘𝑗(𝑤, 𝑢)

𝑘∈𝑆

, (𝑡 ≤ 𝑤 ≤ 𝑢) (5) 

Proof. Using the Markov property, we have, 

𝑃𝑖𝑗(𝑡, 𝑢) =   Pr{𝑆𝑢 = 𝑗|𝑆𝑡 = 𝑖} 
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 =   ∑ Pr{𝑆𝑢 = 𝑗 ∧ 𝑆𝑤 = 𝑘|𝑆𝑡 = 𝑖}𝑘∈𝑆  

  = ∑ Pr{𝑆𝑤 = 𝑘|𝑆𝑡 = 𝑖} Pr{𝑆𝑢 = 𝑗|𝑆(𝑡) = 𝑖 ∧ 𝑆𝑤 = 𝑘}𝑘∈𝑆  

  = ∑ Pr{𝑆𝑤 = 𝑘|𝑆𝑡 = 𝑖} Pr{𝑆𝑢 = 𝑗|𝑆𝑤 = 𝑘}𝑘∈𝑆  

 =   ∑ 𝑃𝑖𝑘(𝑡, 𝑤)𝑃𝑘𝑗(𝑤, 𝑢)𝑘∈𝑆   

It is possible to derive two sets of differential equations for the transition probabilities. First, think 

about the forward differential equations for Kolmogorov: 

𝑑

𝑑𝑡
𝑃𝑖𝑗(𝑧, 𝑡) = ∑ 𝑃𝑖𝑘(𝑧, 𝑡)𝜇𝑘𝑗(𝑡) − 𝑃𝑖𝑗(𝑧, 𝑡)𝜇𝑗(𝑡)

𝑛

𝑘=0,𝑘≠𝑗

 (6) 

and Kolmogorov backward differential equations: 

𝑑

𝑑𝑧
𝑃𝑖𝑗(𝑧, 𝑡) = 𝑃𝑖𝑗(𝑧, 𝑡)𝜇𝑖(𝑧) − ∑ 𝑃𝑘𝑗(𝑧, 𝑡)𝜇𝑖𝑘(𝑧)

𝑛

𝑘=0,𝑘≠𝑖

 (7) 

3. RESULTS AND DISCUSSION 

3.1 The Estimation Procedure Multi-States Model for Disability Income  

 
Figure 1. Multi-State Model For Disability Income  

There are three states depicted in Figure 1: healthy, disabled, and dead. The arrows represent the 

transitions between the three states. Consider the intensity of the transition to be the following: 

𝜇𝑥
01(𝑡) :   Intensity of transition from healthy to disabled state; 

𝜇𝑥
10(𝑡, 𝑣) :  Intensity of transition from disabled to healthy state; 

𝜇𝑥
02(𝑡) :  Intensity of transition from health to death; 

𝜇𝑥
12(𝑡, 𝑣) :  Intensity of transition from disability to death; 

It has been explained previously in Equation (3) that 𝐻𝑡 = 𝑣 is the sojourn time in one state until the 

individual moves to another state. So, for the transition in Figure 1 the sojourn time is only considered 

when someone is disabled. How long a person is disabled until they recover or until the person dies. 

The set of simultaneous differential equations is as follows: 

1. 
𝑑

𝑑𝑡
𝑃𝑥

00(𝑧, 𝑡) = ∫ (𝑃𝑥
00(𝑧, 𝑟)𝜇𝑥

01(𝑟)𝑃𝑥
11(𝑟, 𝑡, 0)𝜇𝑥

10(𝑡, 𝑡 − 𝑟))𝑑𝑟
𝑡

𝑧
− 𝑃𝑥

00(𝑧, 𝑡)[𝜇𝑥
01(𝑡) + 𝜇𝑥

02(𝑡)] 

2. 
𝑑

𝑑𝑡
𝑃𝑥

01(𝑧, 𝑡) = 𝑃𝑥
00𝜇𝑥

01(𝑡) − ∫ (𝑃𝑥
00(𝑧, 𝑟)𝜇𝑥

01(𝑟)𝑃𝑥
11(𝑟, 𝑡, 0)𝜇𝑥

10(𝑡, 𝑡 − 𝑟))𝑑𝑟
𝑡

𝑧
−

                           ∫ (𝑃𝑥
00(𝑧, 𝑟)𝜇𝑥

01(𝑟)𝑃𝑥
11(𝑟, 𝑡, 0)𝜇𝑥

12(𝑡, 𝑡 − 𝑟))𝑑𝑟
𝑡

𝑧
 

3. 
𝑑

𝑑𝑡
𝑃𝑥

02(𝑧, 𝑡) = 𝑃𝑥
00𝜇𝑥

02(𝑡) + ∫ (𝑃𝑥
00(𝑧, 𝑟)𝜇𝑥

01(𝑟)𝑃𝑥
11(𝑟, 𝑡, 0)𝜇𝑥

12(𝑡, 𝑡 − 𝑟))𝑑𝑟
𝑡

𝑧
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4. 
𝑑

𝑑𝑡
𝑃𝑥

10(𝑧, 𝑡) = ∫ (𝑃𝑥
11(𝑧, 𝑟)𝜇𝑥

10(𝑟)𝑃𝑥
00(𝑟, 𝑡, 0)𝜇𝑥

01(𝑡, 𝑡 − 𝑟))𝑑𝑟 − 𝑃𝑥
10(𝑧, 𝑡)[𝜇𝑥

01(𝑡) + 𝜇𝑥
02(𝑡)]

𝑡

𝑧
 

5. 
𝑑

𝑑𝑡
𝑃𝑥

11(𝑧, 𝑡) = 𝑃𝑥
10𝜇𝑥

01(𝑡) − ∫ (𝑃𝑥
11(𝑧, 𝑟)𝜇𝑥

10(𝑟)𝑃𝑥
00(𝑟, 𝑡, 0)𝜇𝑥

01(𝑡, 𝑡 − 𝑟))𝑑𝑟
𝑡

𝑧
−

                           ∫ (𝑃𝑥
11(𝑧, 𝑟)𝜇𝑥

12(𝑟)𝑃𝑥
00(𝑟, 𝑡, 0)𝜇𝑥

02(𝑡, 𝑡 − 𝑟))𝑑𝑟
𝑡

𝑧
 

6. 
𝑑

𝑑𝑡
𝑃𝑥

00(𝑧, 𝑡) = ∫ (𝑃𝑥
11(𝑧, 𝑟)𝜇𝑥

12(𝑟)𝑃𝑥
00(𝑟, 𝑡, 0)𝜇𝑥

02(𝑡, 𝑡 − 𝑟))𝑑𝑟
𝑡

𝑧
− 𝑃𝑥

10(𝑧, 𝑡)𝜇𝑥
02(𝑡) 

3.2 Crude Estimates of the Transition Intensities  

The next step is to estimate the parameters that aim to find a function of each transition probability. 

The estimation method uses maximum likelihood estimation. The principle of this method is to maximize 

the parameter estimator so that the value will be close to the parameter. 

It is assumed that during the observation, what can be observed is the time and transitions made by 

an individual. For age intervals, we use (𝑥, 𝑥 + 1) without losing generality, to assume that the transition 

intensity is a constant, 𝜇𝑥
01, 𝜇𝑥

02, 𝜇𝑥
10, 𝜇𝑥

12. 

Suppose 𝑇𝑖𝑚 is a continuous random variable, the time spent by individual 𝑚 in state 𝑖 before 

moving to another state (sojourn time in state 𝑖) with the hazard function 𝜇(𝑡𝑖𝑚) = 𝜇. The relationship 

between the hazard function and the density function is obtained. 

𝑓(𝑡𝑖𝑚) = 𝜇(𝑡𝑖𝑚)𝑒− ∫ 𝜇(𝑠)𝑑𝑠
𝑡𝑖𝑚

0  

 = 𝜇𝑒− ∫ 𝜇𝑑𝑠
𝑡𝑖𝑚

0  

 = 𝜇𝑒−𝜇 𝑡𝑖𝑚 

This form is the probability density function of the Exponential distribution. So, if the transition intensity is 

constant, 𝑇𝑖𝑚 has an Exponential distribution.  

Furthermore, according to the Poisson process, the random variable 𝑁𝑖𝑗𝑚, namely the number of 

transitions from state 𝑖 to state 𝑗 made by individual m, has a Poisson distribution with an average 𝑡𝑖𝑚𝜆𝑥
𝑖𝑗

, 

written.  

𝑁𝑖𝑗𝑚~ Poisson (𝑡𝑖𝑚𝜇𝑥
𝑖𝑗

) 

with 

𝑃𝑟( 𝑁𝑖𝑗𝑚 = 𝑛𝑖𝑗𝑚) = 𝑓𝑁𝑖𝑗𝑚
(𝑡𝑖) =

𝑒−𝜇𝑥
𝑖𝑗

𝑡𝑖𝑚(𝜇𝑥
𝑖𝑗

𝑡𝑖𝑚)
𝑛𝑖𝑗𝑚

𝑛𝑖𝑗𝑚!
. (8) 

Then the likelihood function is 

𝐿(𝜇𝑥
𝑖𝑗

) = 𝐿(𝜇𝑥
𝑖𝑗

) = ∏ ∏ (∏ 𝑓(𝜇𝑥
𝑖𝑗

, 𝑡𝑖)𝑁
𝑚=1 )𝑗∈𝑆𝑖∈𝑆  (9) 

for example,
 

𝑛𝑖𝑗 : ∑ 𝑛𝑖𝑗𝑚
𝑁
𝑚=1  the number of transitions from state 𝑖 to state 𝑗 made by all individuals in the age interval 

(𝑥, 𝑥 + 1) 

𝑡𝑖 : ∑ 𝑡𝑖𝑚
𝑁
𝑚=1

 

the total sojourn time in state 𝑖 for all individuals. 

So that,  

𝐿(𝜇𝑥
𝑖𝑗

) = ∏ ∏
𝑒−𝜇𝑥

𝑖𝑗
𝑡𝑖(𝜇𝑥

𝑖𝑗
𝑡𝑖)𝑛𝑖𝑗

𝑛𝑖𝑗!
𝑗∈𝑆𝑖∈𝑆  

If the part that does not contain 𝜇𝑥
𝑖𝑗

 is ignored, then  

𝐿(𝜇𝑥
𝑖𝑗

) = ∏ ∏ 𝑒−𝜆𝑥
𝑖𝑗

𝑡𝑖(𝜆𝑥
𝑖𝑗

)𝑛𝑖𝑗

𝑗∈𝑆𝑖∈𝑆

 

and the log-likelihood function is 
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log 𝐿(𝜇𝑥
𝑖𝑗

) = ∏ ∏ log (𝑒−𝜇𝑥
𝑖𝑗

𝑡𝑖(𝜇𝑥
𝑖𝑗

)
𝑛𝑖𝑗

)𝑗∈𝑺𝑗∈𝑺  

           = ∑ ∑ −𝜇𝑥
𝑖𝑗

𝑡𝑖 + 𝑛𝑖𝑗 log(𝜇𝑥
𝑖𝑗

)𝑗∈𝑺𝑗∈𝑺  (10) 

The derivative of Equation (10) is

 

𝑑 𝑙𝑜𝑔 𝐿(𝜇𝑥
𝑖𝑗

)

𝑑𝜇𝑥
𝑖𝑗 = −𝑡𝑖 +

𝑛𝑖𝑗

𝜇𝑥
𝑖𝑗 (11) 

If the value of Equation (11) is equal to zero then 𝜇𝑥
𝑖𝑗

=
𝑛𝑖𝑗

𝑡𝑖
. So that the estimator for 𝜇𝑥

𝑖𝑗
 is obtained.  

�̂�𝑥
𝑖𝑗

=
𝑛𝑖𝑗

𝑡𝑖
  

 

(12) 

3.3 The Graduation of Transition Intensities with Generalized Linear Model  

The transition intensity estimator obtained with the maximum likelihood approach is still a crude 

estimate where only a certain age group is presented when using the age covariate. To smooth it out, a 

graduation process is carried out. Through the graduation process we can obtain estimates of all age groups 

without exception. Graduation guarantees that the resulting survival or multi-status model displays 

smoother and more representative desired traits. 

The data used for the graduation process for each transition intensity consists of a set of (𝑛𝑢, 𝑡𝑢) 

where 𝑛𝑢 is the number of transitions corresponding to the central exposures 𝑡𝑢 which is defined for each 

unit of  𝑢 . Unit 𝑢 ≡ (𝑥1, 𝑥2, 𝑥3, … ), which is a cross classification pair of covariates. Graduation is 

constructed using a Generalized Linear Model (GLM) based on the response variable  𝑁𝑖𝑗
𝑢 which is 

distributed with Poisson. 

The variables that will be used are as follows: response variable, many transitions between states and 

predictor variables, age (𝑥) at the time of disabled (in years) and gender (𝑧). 𝑢 ≡ (𝑥, 𝑧) covariate couples of 

age and gender. Based on the GLM framework, the function for each 𝜇𝑖𝑗 is connected by a function 𝑔 to a 

linear predictor. 

𝑔(𝜇𝑖𝑗
𝑢 ) = 𝜂𝑢 (13) 

where 𝑔 is a bijective and differentiable function, so the inverse is there, 

𝜇𝑖𝑗
𝑢 = 𝑔−1(𝜂𝑢) and 𝜂𝑢 = ∑ 𝑥𝑘𝑢𝑘 𝛽𝑘 (14) 

where 𝑥𝑘 is the covariate structure and 𝛽𝑘 is an unknown regression parameter.  

The value of 𝛽𝑘 is estimated based on the assumption that the response variable, the number of 

transitions has a Poisson distribution, 𝑁𝑖𝑗
𝑢~Poi(𝜇𝑖𝑗

𝑢 𝑡𝑢)
 
is independent for all 𝑢 ≡ (𝑥, 𝑧)

 
with the mean and 

variance as follows.

 𝜆𝑢 = 𝐸[𝑁𝑢] = 𝑡𝑢𝜇𝑖𝑗
𝑢 ,          Var(𝑁𝑢) = 𝜆𝑢 = 𝜇𝑖𝑗

𝑢 𝑡𝑢 (15)
 

If expressed in the form 𝝀 = (𝜆𝑢), the log-likehood function of the response variable 𝑁𝑖𝑗
𝑢 is 

𝑙(𝒏. 𝝀) = ∑ {𝑙𝑛
1

𝑛𝑢!
+ 𝑛𝑢 𝑙𝑛( 𝜆𝑢) − 𝜆𝑢}𝑢  (16) 

where
 

𝐧 = (𝑛𝑢). The parameter 𝛽𝑘 enters the log-likehood by substitution through the following 

relationship. 

𝜆𝑢 = 𝑡𝑢𝜇𝑖𝑗
𝑢 = 𝑡𝑢𝑔−1(𝜂𝑢) = 𝑡𝑢𝑔−1(∑ 𝑥𝑘𝑢𝛽𝑘𝑘 ) (17) 

and its value, �̂�𝑘 
is estimated by maximizing Equation (16).  

Next, after the �̑�𝑘 value is obtained, the graduation process continues. The link function for the 

Poisson distribution is log-link, then 

𝜂 = 𝑙𝑜𝑔( 𝜆𝑢) = 𝑙𝑜𝑔(𝑡𝑢) + 𝑙𝑜𝑔(𝜇𝑖𝑗
𝑢 ) = 𝑙𝑜𝑔(𝑡𝑢) + ∑ 𝑥𝑘𝑢�̂�𝑘𝑘  (18) 
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𝑙𝑜𝑔( 𝑡𝑢)
 
is the offset, namely an additional variable with a known regression coefficient of +1. So the 

transition intensity, 𝜇𝑖𝑗
𝑢  is related to the covariate through the following relationship. 

𝑙𝑜𝑔( 𝜆𝑖𝑗
𝑢 ) = ∑ 𝑥𝑘𝑢�̂�𝑘𝑘 ⇔ 𝜆𝑖𝑗

𝑢 = exp(∑ 𝑥𝑘𝑢�̂�𝑘𝑘 )  (19)

 
Therefore, the graduation formula for transition intensity is 

�̂�𝑖𝑗
𝑢 = exp (∑ 𝑥𝑘𝑢�̂�𝑘

𝑘

) (20) 

3.4 Transition Probability  

The transition probabilities are calculated using constant intensity piece by piece because we 

previously assumed that the transition intensity is constant. First, for all 𝑖, 𝑗 in 𝐒, let 𝑃𝑖𝑗
(𝑚)(𝑧) denote the 

transition probability function associated with ll-time intervals contained in (𝑡𝑚−1, 𝑡𝑚), for 𝑚 = 1,2, … 

with 𝑡0 = 0. Let us assume 𝑃𝑖𝑗(𝑡, 𝑡 + 𝑧) = 𝑃𝑖𝑗
(𝑚)

(𝑧) if 𝑡𝑚−1 < 𝑡 < 𝑡 + 𝑧 ≤ 𝑡𝑚 for any 𝑡, let 𝑚𝑡 denote the 

time interval which contains 𝑡. 

Let 𝜇𝑖𝑗(𝑡) = 𝜇𝑖𝑗
(𝑚)

 if 𝑡𝑚−1 < 𝑡 ≤ 𝑡𝑚  for 𝑚 = 1,2, … , then 𝐐(𝑚) = |𝜇𝑖𝑗
(𝑚)

| and 𝐏(𝑚)(𝑧) = |𝑃𝑖𝑗
(𝑚)

(𝑧)|. 

To find a solution, we can determine 𝐀(𝑚), 𝐃(𝑚), 𝐂(𝑚), and hence the transition probability matrix 𝑃(𝑚)(𝑧) 

for any 𝑧, 𝑧𝑚−1 < 𝑧 ≤ 𝑧𝑚, and 𝑚 = 1,2, … 

𝐏(𝑚)(𝑧) = 𝐀(𝑚)𝑑𝑖𝑎𝑔 (𝑒𝑑1
(𝑚)

𝑧, … , 𝑒𝑑𝑁
(𝑚)

𝑧) 𝐂(𝑚) (21) 

then, via the Chapman-Kolmogorov equation, we can write 𝑃𝑖𝑗(𝑡, 𝑢) = ∑ 𝑃𝑖ℎ(𝑡, 𝑡𝑚𝑢−1)𝑃ℎ𝑗
(𝑚𝑢)

(𝑢 −ℎ∈𝐒

𝑡𝑚𝑢−1) 

𝑃𝑖𝑗(𝑡, 𝑢) = ∑ 𝑏𝑖ℎ
(𝑚𝑢)

𝑐ℎ𝑗
(𝑚𝑢)

𝑒𝑑ℎ

(𝑚𝑢)(𝑢−𝑡𝑚𝑢−1)
𝑁

ℎ=1

 (22) 

3.5 Premium Pricing  

One of the main objectives in actuarial valuation in the insurance world is to determine the amount of 

the premium. Premiums can be interpreted as a sum of money paid within a certain period by the insured to 

the insurance party in accordance with the agreement contained in the policy. In this paper, the calculation 

of premiums is only based on net premiums, so other operational costs are not counted. Then in the 

calculation used 𝑛 year term discrete life insurance valuation model. 

In the outpatient health insurance application discussed in this research, a patient only needs to pay 

the premium once at the start of the policy. Furthermore, patients do not need to pay again if they undergo a 

health examination within the policy period. The outpatient health insurance model with a multi-state model 

developed in this research, then carried out the following things. 

1. 𝑝𝑘 𝑥 is replaced by the probability that an individual aged x at state i will be at state j at age x + t. The 

model with 3 states as in Figure 1 is replaced by 

a. probability that someone aged x, healthy at the beginning of the period will remain healthy during k  

periods, 𝑝11(𝑥, 𝑥 + 𝑡𝑘) = 𝑝𝑥
11(0, 𝑡𝑘)  

b. the probability that someone aged x suffers from a disability at the beginning of the period will 

remain disabled during k periods, 𝑝22(𝑥, 𝑥 + 𝑡𝑘) = 𝑝𝑥
22(0, 𝑡𝑘) 

2. 𝑞𝑥+𝑘 is replaced by the transition intensity of someone aged x from healthy status in the k-th period, to 

disability or death in the next 1 period, which is denoted by, 𝜇𝑥
𝑖𝑗

(𝑡𝑘+1).  

Therefore, the premium formula used is:  
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𝐴𝑃𝑉 = 𝑏1 ∑ 𝑣𝑡(𝑝𝑥
11(0, 𝑡)𝜇𝑥+𝑡

01 )

𝑛

𝑡=1

+ 𝑏2 ∑ 𝑣𝑡(𝑝𝑥
22(0, 𝑡)𝜇𝑥+𝑡

02 + 𝑝𝑥
11(0, 𝑡)𝜇𝑥+𝑡

12 )

𝑛

𝑡=1

 (23) 

with  𝑏1 = benefits if disabled 

 𝑏2 = benefits in case of death 

 𝑣 =
1

1+𝑖
, i = interest rate 

The data in this paper is taken from www.soa.org by making some simplifications to fit as an 

application of the disability income model. Data used ranging from ages 20 to 70 years who take out 

insurance. Table 1 shows a summary of data on the number of changes made by insurance participants 

along with the total sojourn time in healthy and disabled states. The transition from Figure 1 that is not in 

the data is the transition from healthy to dead. 

Based on gender, the transitions that exist for the male gender are the transition from healthy to 

disabled, the transition from disabled to healthy, and the transition from disabled to dead, while for the 

female gender the transitions that exist are only the transition from healthy to disabled and transition from 

disability to health. 

Table 1. The Total Sojourn Time and the Number of Transitions in Each State is Based on Age  

Age 𝒏𝟎𝟏 𝒏𝟎𝟐 𝒏𝟏𝟎 𝒏𝟏𝟐 𝒕𝟏 𝒕𝟐 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

34 3 0 2 1 15 15 

35 1 0 1 0 6 6 

36 2 0 1 1 9 9 

37 0 0 0 0 0 0 

38 3 0 2 1 18 24 

39 4 0 3 1 33 18 

40 1 0 1 0 6 6 

41 3 0 3 0 48 12 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
   Data source: www.soa.org 

Based on the values in Table 1, using Equation (12) an estimator for the transition intensity is 

obtained which is given in Table 2. Next, a plot of the estimated transition intensity is presented in Figure 

2. The estimated value of transition intensity obtained in Table 2 is still a crude estimator.  

Table 2. Transition Intensity Estimator  

Age 𝝁𝟎𝟏
𝒙  𝝁𝟏𝟎

𝒙  𝝁𝟏𝟐
𝒙  

⋮ ⋮ ⋮ ⋮ 

34 0.20000 0.13333 0.06667 

35 0.16667 0.16667 0.00000 

36 0.22222 0.11111 0.11111 

37 0.00000 0.00000 0.00000 

38 0.16667 0.08333 0.04167 

39 0.12121 0.16667 0.05556 

40 0.16667 0.16667 0.00000 

41 0.06250 0.25000 0.00000 

⋮ ⋮ ⋮ ⋮ 
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Therefore, the transition intensity 𝜇𝑖𝑗 is graduated by the GLM method based on Poisson modeling 

assumptions. The variables that will be used are as follows. 

1. Response variable : 𝑁𝑖𝑗
𝑢, number of transitions from state i to state j 

2. Predictor variables : patient age (x) at first examination (in years) and gender (z). 𝑢 ≡ (𝑥, 𝑧), pair of 

age and gender covariates. 

 

Figure 2. The Crude Transition Intensity Estimation Plot 
 

Parameter estimation for GLM was carried out using R software with the glm package, the results in 

Table 3 were obtained. Table 3 shows parameter estimates for the transition from a healthy to disabled 

state, Table 4 shows parameter estimates for the transition from a disabled to healthy state, and Table 5 

shows parameter estimates for the transition from a disabled to dead state, where for these parameter 

estimates there is only data for female because there is no transition from disability to death for male. 

Table 3. Parameter Estimation for 𝝁𝟎𝟏- Graduation  

 Gender Estimate Std. Error 𝑧-value Pr(> |𝑧|)  

(Intercept) 
M -1.76237 0.732826 -2.405 0.0162 * 

F -0.362714 0.570452 0.636 0.525  

𝑥 
M 0.009364 0.015151 0.618 0.5365  

F -0.005703 0.012256 -0.465 0.642  

𝑧 
M 0.113014 0.018225 6.201 5.60E-10 *** 

F 0.064482 0.009456 6.819 9.16e-12 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Table 4. Parameter Estimation for 𝝁𝟏𝟎- Graduation  

 Gender Estimate Std. Error 𝑧-value Pr(> |𝑧|)  

(Intercept) 
M -1.65077 0.66624 -2.478 0.0132 * 

F -1.4417 0.670964 -2.149 0.0317 * 

𝑥 
M 0.01436 0.01372 1.047 0.2952  

F 0.006655 0.013463 0.494 0.6211  

𝑧 
M 0.10796 0.01777 6.077 1.22E-09 *** 

F 0.153031 0.023359 6.551 5.70E-11 *** 

 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 5. Parameter Estimation for 𝝁𝟏𝟐- Graduation 

 Gender Estimate Std. Error 𝑧-value Pr(> |𝑧|)  

(Intercept) 
M - - - -  

F -2.61392 1.408836 -1.855 0.0635 . 

𝑥 
M - - - -  

F 0.001484 0.028893 0.051 0.959  

𝑧 
M - - - -  

F 0.120776 0.05664 2.132 0.033 * 

 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

From the estimation results using R software, with a significance level of 5%, there are several 

variables that are not significant in the model, but these variables will be maintained in the model, so that 

based on Equation (20) the graduation formula for male for each transition intensity is obtained as 

following. 

𝜇01
(𝑥,𝑧)

= exp(−1,7624 + 0,0094𝑥 + 0,1130𝑧)

 
𝜇10

(𝑥,𝑧)
= exp(−1,6508 + 0,0143𝑥 + 0,1080𝑧)

 Meanwhile for female it is as follows. 

𝜇01
(𝑥,𝑧)

= exp(−0,3627 − 0,0057𝑥 + 0,0645𝑧)

 
𝜇10

(𝑥,𝑧)
= exp(−1,4417 + 0,0066𝑥 + 0,1530𝑧)

 
𝜇12

(𝑥,𝑧)
= exp(−2,6139 + 0,0015𝑥 + 0,1208𝑧)

 

Figure 3 shows that the graduation results provide a smoother estimate of the transition intensity. 

Therefore, the transition intensity from the GLM results is used to find the transition probability. The 

intensity of the coarse transition still shows substantial fluctuations in each age range, following the opinion 

of [3] that graduation ensures that the resulting multi-state model displays smoother and represents 

desirable properties for practical use, for example, the calculation of premiums and reserves. The obtained 

transition intensity estimator is calculated based on sample data from a large population, which likely 

contains some random fluctuations. Assuming that the intensity �̂�𝑖𝑗
𝑥  is the actual intensity, which is 

independent of each other, the crude estimates are the final estimator value. However, the correct form of 

intensity is that each is closely related to the other, so the next step is to carry out a graduation of crude 

estimates to obtain a more refined intensity. This is done systematically by revising crude estimates. Figure 

3 shows a comparison plot of the crude transition intensity estimates and the graduation results. 

Based on the parameter estimates above, the transition intensity values obtained from the graduation 

results based on gender are in Table 6 and Table 7. 

Table 6. Transition Probabilities for Male  

Age 𝑷𝟎𝟎 𝑷𝟎𝟏 𝑷𝟎𝟐 𝑷𝟏𝟎 𝑷𝟏𝟏 𝑷𝟏𝟐 𝑷𝟐𝟎 𝑷𝟐𝟏 𝑷𝟐𝟐 

20 0.95106 0.04894 0.0000 0.21962 0.78038 0.0000 0.0000 0.0000 1.0000 

21 0.94953 0.05048 0.0000 0.22220 0.77780 0.0000 0.0000 0.0000 1.0000 

22 0.94798 0.05202 0.0000 0.22480 0.77520 0.0000 0.0000 0.0000 1.0000 

23 0.94643 0.05357 0.0000 0.22743 0.77257 0.0000 0.0000 0.0000 1.0000 

24 0.94514 0.05486 0.0000 0.23740 0.76260 0.0000 0.0000 0.0000 1.0000 

25 0.94332 0.05668 0.0000 0.23276 0.76724 0.0000 0.0000 0.0000 1.0000 

26 0.94176 0.05824 0.0000 0.23546 0.76454 0.0000 0.0000 0.0000 1.0000 

27 0.94048 0.05952 0.0000 0.24570 0.75430 0.0000 0.0000 0.0000 1.0000 

28 0.93869 0.06131 0.0000 0.24280 0.75720 0.0000 0.0000 0.0000 1.0000 

29 0.93704 0.06296 0.0000 0.24369 0.75631 0.0000 0.0000 0.0000 1.0000 
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Age 𝑷𝟎𝟎 𝑷𝟎𝟏 𝑷𝟎𝟐 𝑷𝟏𝟎 𝑷𝟏𝟏 𝑷𝟏𝟐 𝑷𝟐𝟎 𝑷𝟐𝟏 𝑷𝟐𝟐 

30 0.93562 0.06438 0.0000 0.25033 0.74967 0.0000 0.0000 0.0000 1.0000 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

Table 6 shows the probability of transition between states for the male gender, where it is known that 

there is no transition from the healthy to the dead state or from people with disabilities to the dead state. 

The resulting transition probability value increases with age in the transition from a healthy to a disabled 

state and from a disabled to a healthy state. In contrast, the transition probability value decreases with 

increasing age in self-transitions in a healthy and disabled state. The transition probability of remaining in 

the death state is equal to 1 because it is an absorption state, meaning that anyone who has entered a 

specific state will not be able to leave that state. 

Table 7. Transition Probabilities for Female 

Age 𝑷𝟎𝟎 𝑷𝟎𝟏 𝑷𝟎𝟐 𝑷𝟏𝟎 𝑷𝟏𝟏 𝑷𝟏𝟐 𝑷𝟐𝟎 𝑷𝟐𝟏 𝑷𝟐𝟐 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

⋮ 

0.94313 

0.94098 

0.93661 

0.93610 

0.93274 

0.93228 

0.93808 

0.92850 

0.92299 

0.92246 

0.91739 

⋮ 

0.05467 

0.05673 

0.06092 

0.06141 

0.06463 

0.06506 

0.06910 

0.06868 

0.07397 

0.07448 

0.07933 

⋮ 

0.00220 

0.00229 

0.00247 

0.00249 

0.00264 

0.00265 

0.00283 

0.00286 

0.00304 

0.00307 

0.00328 

⋮ 

0.22123 

0.22222 

0.22293 

0.23414 

0.23511 

0.23621 

0.23694 

0.23853 

0.23938 

0.24008 

0.24580 

⋮ 

0.71479 

0.71375 

0.71229 

0.71174 

0.70114 

0.60958 

0.60880 

0.60760 

0.60437 

0.60353 

0.60297 

⋮ 

0.06398 

0.06403 

0.06408 

0.06412 

0.06475 

0.06481 

0.06496 

0.06587 

0.06525 

0.06639 

0.06523 

⋮ 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

⋮ 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

⋮ 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

⋮ 
 

The same thing can also be explained in Table 7, where the transition between states for the female 

gender increases with age in different states.  
 

 

  (a) (b) (c) 

Figure 3. (a) Comparison of estimated crude transition intensity and graduation from disabled to healthy; (b) 

Comparison of estimated crude transition intensity and graduation from healthy to disabled; and (c) 

Comparison of estimated crude transition intensity and graduation from disabled to dead 

After knowing the transition probability values in Table 6 and Table 7, the premium for each age 

will be calculated using Equation (23) with an SBI interest rate of 6%, then the premium table in Table 8 

is obtained. In this example case, the benefit value when disabled is used. 5 million rupiah and benefits 

upon death of 7 million rupiah. 
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Table 8. Average Premium Prices for Age Groups 

Age 
Premium Price 

Male Female 

≤ 30 315,846 758,150 

31-40 426,118 888,349 

41-50 526,528 1,008,465 

51-60 631,739 1,127,991 

> 60 740,034 1,238,489 

Table 8 shows the average premium price for each age group, where the amount of premium that 

must be paid will increase with increasing age for both males and females. The premium paid for females is 

more significant than for males because, according to the data, the number of disabled patients is dominated 

by females.  

4. CONCLUSIONS 

The intensity of the transition is the rate of change in a person's state from one state to another in a 

unit of time, the value or form of its function is unknown, so it needs to be estimated using statistical data. 

One method for estimating transition intensity is the maximum likelihood approach that varies by age. The 

general form of transition intensity estimator is �̂�𝑥
𝑖𝑗

=
𝑛𝑖𝑗

𝑡𝑖
. The estimator obtained is still a crude estimate 

value, then graduated to obtain the transition intensity function with the GLM. The graduation formula for 

transition intensity is �̂�𝑖𝑗
𝑢 = exp(∑ 𝑥𝑘𝑢�̂�𝑘𝑘 ) which is different for each age and gender. Graduation ensures 

that the resulting multi-state model displays smoother and represents desirable properties for practical use, 

for example, the calculation of premiums and reserves. The obtained transition intensity estimator is 

calculated based on sample data from a large population, which likely contains some random fluctuations. 

Each estimated transition intensity value will be utilized to calculate transition probabilities. The 

general form of transition probability estimator with the backward and forward Kolmogorov differential 

equations. These transition probabilities are used to calculate premium rates for disability income models. 

The premium is obtained by following the flow of term life insurance premiums and multiple decrements 

using 𝑁𝑆𝑃 = 𝑏1 ∑ 𝑣𝑡(𝑝𝑥
11𝜇𝑥+𝑡

01 )𝑛
𝑡=1   + 𝑏2 ∑ 𝑣𝑡(𝑝𝑥

22𝜇𝑥+𝑡
02 + 𝑝𝑥

11𝜇𝑥+𝑡
12 )𝑛

𝑡=1 . 
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