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 ABSTRACT 

Article History: 
In the classical risk process, ruin is the situation when the surplus falls below zero. Ruin 

probability is a tool used to predict bankruptcy in the insurance company. The ruin probability 

can be determined by solving the Integral-Differential equation that arises from the classical 

risk process. In this paper, we are interested in calculating the ruin probability when the claim 

distribution follows the Weibull distribution. Based on the Weibull parameter, the calculation is 

divided into two cases: when alpha equals 1 and when  . The Laplace transform gives the 

analytical solution of the Integral-Differential equation. However, when  the analytical 

solution cannot be determined since the Laplace transform is no longer applicable due to the 

presence of an improper integral that is not possible to solve analytically. Therefore, for the case 

alpha greater than 1, Euler’s method is applied to determine its numerical solution. The 

accuracy of the numerical solution is validated by comparing it with the analytical solution for 

the case  Then, using the accuracy determined from the first case, we apply the Euler 

method to determine the numerical solution for the case . The numerical method gives 

good accuracy to the analytical solution with the order of 10−3 calculated from 𝑢 = 0 until 𝑢 =
100. 
 

Received: 10th August 2023 

Revised: 18th October 2023  

Accepted: 17th November 2023 

 

 

 

Keywords: 

Euler’s Method; 

Laplace Transform; 

Ruin Probability; 

Survival Probability; 

Trapezoid Rule; 

Weibull Distribution. 

 

  

This article is an open access article distributed under the terms and conditions of the 
Creative Commons Attribution-ShareAlike 4.0 International License. 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

How to cite this article: 

D. A. Hamzah, T. S. A. Siahaan and V. C. Pranata., “RUIN PROBABILITY IN THE CLASSICAL RISK PROCESS WITH WEIBULL 

CLAIMS DISTRIBUTION,” BAREKENG: J. Math. & App., vol. 17, iss. 4, pp. 2351-2358, December, 2023. 

 
Copyright © 2023 Author(s)  

Journal homepage: https://ojs3.unpatti.ac.id/index.php/barekeng/  

Journal e-mail: barekeng.math@yahoo.com; barekeng.journal@mail.unpatti.ac.id  

Research Article  ∙  Open Access 

 

mailto:dadang.hamzah@president.ac.id
http://creativecommons.org/licenses/by-sa/4.0/
https://ojs3.unpatti.ac.id/index.php/barekeng/
mailto:barekeng.math@yahoo.com
mailto:barekeng.journal@mail.unpatti.ac.id


2352 Hamzah, et. al.     RUIN PROBABILITY IN THE CLASSICAL RISK PROCESS WITH…  

1. INTRODUCTION 

According to Dickson [1] in the classical risk process, there are three components that contribute to 

the insurer’s surplus at a fixed time . Those components are the amount of surplus at the time , the 

amount of premium income received until the time , and the amount paid for claims up to the time . From 

these three components, the variable that is random is the amount that is paid for claims. Let {𝑁(𝑡)}𝑡≥0 be a 

counting process which denotes the number of claims that occur in the fixed time interval [0, 𝑡]. In the 

classical risk process, the counting process {𝑁(𝑡)}𝑡≥0 is assumed to be a Poisson process. The individual 

claims amounts are modeled as a sequence of independent and identically distributed random variables 
{𝑋𝑖}𝑖=1

∞ , where 𝑋𝑖 denotes the amount of the 𝑖th claim. The aggregate claim amount up to time 𝑡 is defined as  

𝑆(𝑡) = ∑ 𝑋𝑖

𝑁(𝑡)

𝑖=1

 (1) 

with the assumption that 𝑆(𝑡) = 0 when 𝑁(𝑡) = 0, that is no the aggregate claim is 0 when there is no claim 

occurring. The aggregate claims process {𝑆(𝑡)}𝑡≥0 is known as a compound Poisson process. The surplus 

process {𝑈(𝑡)}𝑡≥0 is defined as  

𝑈(𝑡) = 𝑢 + 𝑐𝑡 − 𝑆(𝑡) (2) 

Where 𝑢 is the insurer’s initial surplus and 𝑐 is the insurer’s rate of premium income per unit of time 

assumed to be received continuously. Let 𝐹 be the distribution function of 𝑋1 and 𝑓 be its density function 

with the assumption 𝐹(0) = 0, so that all claim amounts are positive, and the density function is continuous. 

Then, the 𝑘th moment of 𝑋1 is denoted by, and the insurer’s rate of premium income 𝑐 > 𝜆𝑚1, where 𝜆 is 

the Poisson parameter. It is convenient to express 𝑐 = (1 + 𝜃)𝜆𝑚1, where 𝜃 is a non-negative real number 

known as the premium loading factor. The probability of ruin in infinite time, also known as the ultimate ruin 

probability, is defined as 

𝜓(𝑢) = Pr(𝑈(𝑡) < 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑡 > 0) (3) 

Next, let us define 𝜙(𝑢) = 1 − 𝜓(𝑢), that is the probability the ruin never occurs starting from initial 

surplus 𝑢 known as the survival probability. The survival probability can be determined by solving the 

Integral-Differential equation  

𝑑

𝑑𝑢
𝜙(𝑢) =

𝜆

𝑐
𝜙(𝑢) −

𝜆

𝑐
 ∫ 𝑓(𝑥)𝜙(𝑢 − 𝑥)𝑑𝑥

𝑢

0

 (4) 

with initial condition 𝜙(0) = 1 −
𝜆𝑚1

𝑐
=

𝜃

1+𝜃
. The value of the initial condition is between 0 and 1 since this 

indicates the probability. 

Many approaches have been developed to study the ruin probability. Hamzah and Febrianti in [2] study 

the solvability conditions of Laplace transform to solve Equation (4) where the claims distribution is 

Exponential. In that paper, the conditions of loading factor 𝜃 are discussed which guarantee the success of 

the Laplace transform method. Goovaerts and De Vylder in [3] develop a recursive algorithm to calculate the 

ultimate ruin probabilities. That method determines the lower and upper bound of the ruin probability. Boots 

and Shahbuddin [4] studied the ruin probabilities where the distribution of the claims is subexponential. 

Constantinescu et. al. [5] studied the ruin probabilities for the Gamma claims distribution. Goffard et. al. [6] 

developed a polynomial expansion method to approximate the ultimate ruin probability. Sanchez and Baltazar 

[7] employed Banach’s fixed point theorem to approximate the ruin probability. Santana and Rincon [8] 

studied the ruin probability for the discrete-time risk model. Dufresne and Gerber [9] studied three methods 

to calculate the ruin probability. One of the methods is called the upper and lower bound method which 

determines the upper estimate and the lower estimate of the ruin probability. Chau et. al. [10] applied the 

Fourier-cosine method for calculating ruin probabilities. Ignatov and Kaishev [11] study the ruin probability 

in the finite time domain where the calim is continuous. You et. al. [12] estimate the interval for ruin 

probability in the classical compound Poisson risk model. Dickson and Waters [13] study the probability and 

severity of ruin in finite and infinite time. Diasparra and Romera [14] study the bounds for ruin probability 

of discrete-time risk process. Finally, Das and Nath [15] studied the ruin probability where the claim is 

Weibull using the Fast Fourier Transform method and The Forth Moment Gamma De Vylder approximation. 

Based on the previous research, we are interested to solve the Integral-Differential Equation (4) using the 
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simplest numerical method which is Euler’s method. The integral term in Equation (4) will be approximated 

using the trapezoid rule. 

The Weibull distribution is a continuous random variable that is often used to analyze life data, model 

failure time, and access reliability. This distribution was first introduced by Wallodi Weibull in 1951 and has 

been widely used in reliability engineering, survival analysis, and other fields. Weibull distribution is often 

applied in insurance companies to model the distribution of claims due to its flexibility. The probability 

density function of the Weibull random variable is  

𝑓(𝑥; 𝛽, 𝛼) = {

𝛼

𝛽
 (

𝑥

𝛽
) exp {− (

𝑥

𝛽
)

𝛼

} , 𝑥 ≥ 0

0                                      , 𝑥 < 0

 (5) 

where 𝛼 > 0 is known as the shape parameter and 𝛽 > 0 is called the scale parameter. When 𝛼 = 1,  the 

Weibull distribution Equation (5) becomes the Exponential distribution with parameter 
1

𝛽
. In this paper, the 

discussion of ruin probability with Weibull claims is divided based on the shape parameter 𝛼. When the shape 

parameter 𝛼 = 1, the ruin probability can be determined analytically using the Laplace transform method. 

However, when 𝛼 > 1 the Laplace transform method is no longer applicable since there is a step that requires 

calculating an improper integral which is not possible to solve analytically. Then, for the case 𝛼 > 1, we use 

Euler’s method to solve the Equation (4). The error estimate of Euler’s method is determined by comparing 

it with the analytical solution determined from the Laplace transform. This result will be used as the error 

estimate for the case of 𝛼 > 1. 

2. RESEARCH METHODS 

Consider the Equation (4) with claim distribution 𝑓 is Weibull distribution as in Equation (5). 

Applying the Laplace transform to both sides of Equation (4) we determine the Laplace transform of 𝜙∗(𝑠) 

as 

𝜙∗(𝑠) =
𝑐𝜙(0)

𝑐𝑠 − 𝜆(1 − 𝑓∗(𝑠))
 (6) 

where 𝑓∗(𝑠) is the Laplace transform of claim probability function 𝑓(𝑥). The survival probability is 

determined by taking the inverse of Laplace transform that is 𝜙(𝑢) = ℒ−1{𝜙∗(𝑠)}. Now consider the 

Equation (5) for the case 𝛼 > 1, for simplicity let 𝛼 = 2 and 𝛽 = 1. Now the Equation (5) become  

𝑓(𝑥) = 2𝑥 exp{−𝑥2} (7) 

Taking the Laplace transform of Equation (7), we have to solve the integral  

 ∫ 2𝑥 exp{−(𝑥2 + 𝑠𝑥)}𝑑𝑥
∞

0
 

(8) 

 

The integral Equation (8) cannot be solved analytically, thus the inverse of Equation (6) is not available. 

Therefore, to solve the Equation (4) for 𝑓 as in Equation (5) with 𝛼 > 1 numerical approach is preferred. 

Consider the partition of interval 𝑢 ∈ [0, 𝑙] that is 𝑢0 = 0 < 𝑢1 < 𝑢2 < ⋯ < 𝑢𝑁 = 𝑙 with step size Δ𝑢 =
𝑙

𝑁
 such that 𝑢𝑛 = 𝑛Δ𝑢, 𝑛 = 0,1, … , 𝑁. The first derivative on the right-hand side of Equation (4) can be 

approximated by the first-order numerical differentiation that is  

𝑑

𝑑𝑢
𝜙(𝑢) ≈

𝜙(𝑢 + Δ𝑢) − 𝜙(𝑢)

Δ𝑢
 (9) 

Let 𝜙(𝑢) = 𝜙(𝑢𝑛) and 𝜙(𝑢 + Δ𝑢) = 𝜙(𝑢𝑛+1). Then the Equation (9) become 

𝑑

𝑑𝑢
𝜙(𝑢𝑛) ≈

𝜙(𝑢𝑛+1) − 𝜙(𝑢𝑛)

Δ𝑢
 (10) 

Let 𝑥0 = 0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁 = 𝑢 be the partition of 𝑥 ∈ [0, 𝑢] with step size Δ𝑥 =
𝑢

𝑁
 such that 𝑥𝑖 =

𝑖Δ𝑥, 𝑖 = 0,1, … , 𝑁. The integral term on the right-hand side of Equation (4) can be approximated by the 

Trapezoid rule 
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∫ 𝑓(𝑥)𝜙(𝑢 − 𝑥)𝑑𝑥 ≈
Δ𝑥

2
∑ 𝑓(𝑥𝑖)𝜙(𝑢 − 𝑥𝑖) + 𝑓(𝑥𝑖+1

𝑁−1

𝑖=0

)𝜙(𝑢 − 𝑥𝑖+1)
𝑢

0

 (11) 

  

Substituting Equation (10) and Equation (11) to Equation (4), the numerical scheme for solving Equation 

(4) is  

𝜙(𝑢𝑛+1) = 𝜙(𝑢𝑛) + 𝛥𝑢 {
𝜆

𝑐
𝜙(𝑢𝑛) −

𝜆

𝑐

𝛥𝑥

2
 ∑ 𝑓(𝑥𝑖)𝜙(𝑢 − 𝑥𝑖) + 𝑓(𝑥𝑖+1)𝜙(𝑢 − 𝑥𝑖+1)

𝑁−1

𝑖=0

} (12) 

  

The computation start from 𝑛 = 0 until 𝑛 = 𝑁 with Δ𝑥 = Δ𝑢 

3. RESULTS AND DISCUSSION 

 In this section, the computation of ruin probability with Weibull claims distribution will be discussed. 

The calculation of ruin and survival probability will be divided into two cases based on the Weibull parameter 

𝛼 that is the case where 𝛼 = 1 and the case 𝛼 > 1.  

Case I: 𝜶 = 𝟏 

Let us consider Equation (5) with 𝛼 = 1, that is 

𝑓(𝑥; 𝛽, 1) = {

1

𝛽
exp {−

𝑥

𝛽
} , 𝑥 ≥ 0

0                     , 𝑥 < 0

 (13) 

The Equation (13) is the probability function of exponential distribution with parameter 
1

𝛽
. Applying the 

Laplace transform by using Equation (6) we get  

𝜙(𝑢) = 1 − 𝜓(0) exp {−
𝜙(0)

𝛽
𝑢} (14) 

where 𝜓(0) = 1 − 𝜙(0) =
1

1+𝜃
.  Using 𝜃 = 0.1 and 𝛽 = 10 we get 𝜙(0) = 0.09091, and 𝜓(0) =

0.909091. Then, with Δ𝑢 = Δ𝑥 = 0.01 the exact and the numerical solution of survival probability 𝜙(0) for 

𝑢 = 0 until 𝑢 = 100 can be viewed in Table 1.  

Table 1. Exact Solution, Numerical Solution, And Error Values Of Survival Probability. 

𝒖 𝝓𝑬𝒙𝒂𝒄𝒕 𝝓𝑵𝒖𝒎𝒆𝒓𝒊𝒄 Error 

0 0.0909 0.0909 0 

10 0.1699 0.1698 7.78e-05 

20 0.2420 0.2417 0.00025 

30 0.3079 0.3073 0.00054 

40 0.3680 0.3670 0.00096 

50 0.4229 0.4214 0.00153 

60 0.4731 0.4708 0.00226 

70 0.5188 0.5157 0.00314 

80 0.5607 0.5565 0.00419 

90 0.5988 0.5934 0.00540 

100 0.6337 0.6269 0.00678 

The error is determined by calculating the absolute values between the Exact and the Numerical 

values which is 

𝐸𝑟𝑟𝑜𝑟 =  |𝜙𝐸𝑥𝑎𝑐𝑡(𝑢) − 𝜙𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑢)| 

Graphically, the exact and numerical solution of survival probability can be viewed in Figure 1. It can 

be seen that for 𝑢 = 0 until 𝑢 = 100 the exact and the numerical solution looks to agree with each other, 

however, the error is continuously increasing as 𝑢 increases. In this case, the maximum error is at the order 
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of 10−3. Therefore, from this observation, the error can be kept at the order of 10−3 if the survival probability 

is calculated until 𝑢 = 100. The graphic of the error can be seen in Figure 2.  

 
Figure 1. Exact Solution and Numerical Solution of Survival Probability. 

 
Figure 2. The Graphic Of Error Values Between The Numerical And Exact Solution Of Survival Probability. 

 

Case II: 𝜶 > 𝟏 

Let us consider the Equation (5) when 𝛼 = 2, then the Equation (5) become 

 

𝑓(𝑥) = {

2𝑥

𝛽2
exp {− (

𝑥

𝛽
)

2

} , 𝑥 ≥ 0

0                              , 𝑥 < 0

 (15) 

When solving Equation (4) with claim distribution Equation (15) using the Laplace transform Equation 

(6) we need to find the Laplace transform of Equation (15) that is 

 

𝑓∗(𝑥) = ∫
2𝑥

𝛽2
exp {− (

𝑥

𝛽
)

2

− 𝑠𝑥} 𝑑𝑥
∞

0

 
(16) 
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However, the integral Equation (16) cannot be solved analytically then the numerical method is selected. By 

applying the Euler method in Equation (12) the results can be seen in Table 2. 

Table 2: Numerical Solution of Equation (4) With Weibull Claim Equation (15) With 𝜶 = 𝟐 and 𝜷 = 𝟏𝟎. 

𝒖 𝝓(𝒖) 𝝍(𝒖) 

0 0.0909 0.9090 

10 0.4631 0.5368 

20 0.6900 0.3099 

30 0.8214 0.1785 

40 0.8975 0.1024 

50 0.9416 0.0583 

60 0.9671 0.0328 

70 0.9819 0.0180 

80 0.9905 0.0094 

90 0.9956 0.0043 

100 0.9985 0.0014 

The results show that the survival probability 𝜙(𝑢) is increasing as the initial investment is increasing. 

In contrast, the ruin probability 𝜓(𝑢) is decreasing as the initial investment is increasing. This condition 

agrees with the actual situation that is, as the initial investment increases the insurance company will have 

more money to cover the claims that occurred. Therefore the company will be more sustainable to continue 

its operations.  

4. CONCLUSIONS 

Euler’s method offers a direct approach for solving the Integral-Differential Equation (4) without 

considering the solvability conditions of the integral that appeared in the Laplace transform. From case I and 

case II, we have seen that the Euler method can produce a good approximation to the Integral-Differential 

Equation (4) with accuracy at 10−3 for 𝑢 = 0 until 𝑢 = 100. However, the accuracy decreases as the value 

𝑢 increases more than 100. The numerical solution produced from the Euler method is reliable as long as the 

numerical result does not exceed 1 or below 0 since the value represents the probability of an event. In this 

case, the survival probability value determined from the Euler method exceeds 1 if 𝑢 is greater than 200. 

Another numerical method such as Heun or Runge-Kutta method can be considered for future research.  
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