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  ABSTRACT 

Article History: 
The neglect of a healthy lifestyle among the Indonesian population has led to an increased risk 
of diabetes mellitus, which currently affects 643 million people worldwide. Early and accurate 

diagnosis is crucial for preventing the progression of the disease. This study utilized the C4.5 

machine learning algorithm to develop a model to classify individuals as diabetic or non-

diabetic based on diabetes-associated factors. The data used in this research consisted of 
medical records from patients with and without diabetes at Padang General Hospital. The 

model's performance evaluation resulted in a recall value of 91%. By promoting a healthy 

lifestyle and raising awareness about the importance of regular check-ups, the burden of 

diabetes can be reduced, and the overall health of the population can be improved. 
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1. INTRODUCTION 

The adoption of a healthy lifestyle can significantly reduce the risk of various diseases [1]. However, 

many people in Indonesia still tend to overlook this aspect; this fact is supported by a survey conducted by 

AIA Group across 15 Asia-Pacific countries, which ranked Indonesia 11th in terms of the adoption of a 

healthy lifestyle [2]. Consequently, the Indonesian population remains vulnerable to various diseases, one of 

which is diabetes mellitus. 

Diabetes mellitus, commonly referred to as diabetes, is a disease primarily caused by hyperglycemia, 

which is the accumulation of glucose in the bloodstream. Nevertheless, it is believed that the cause of type 2 

diabetes is also influenced by factors, such as excessive body mass index, aging, and family history [3]. If 

the accumulation of glucose is due to the immune system attacking the pancreas’s insulin-producing cells, it 

is classified as type 1 diabetes. On the other hand, when insufficient insulin is produced, or the body’s cells 

do not effectively utilize the insulin hormone, it is categorized as type 2 diabetes [4]. The number of cases 

for both types of diabetes continues to rise, but type 2 diabetes constitutes a larger ratio, accounting for 90% 

of all diabetes cases [3].  

As of 2021, approximately 643 million individuals worldwide were affected by diabetes. Indonesia 

ranked fifth among countries with the highest number of diabetes patients, reaching 19.5 million cases, and 

it is predicted to increase further to 28.6 million by 2045 [3]. The alarming statistics necessitate various efforts 

to prevent the escalating number of diabetes patients, and one of these approaches involves utilizing medical 

record data [5]. In the realm of healthcare, a wealth of medical record data exists that could become invaluable 

if properly leveraged [6]. Thus, the effective utilization of medical record data is vital to gather information 

for curbing the prevalence of diabetes. Machine learning is a method that can facilitate this process. 

Previous research has demonstrated that machine learning approaches improve the accuracy of 

predicting disease risk factors compared to conventional methods [7]. Mercaldo employed a machine-

learning decision tree to predict diabetes based on glucose levels, body mass index, age, and other 

attributes[8]. Similarly, Azrar implemented the C4.5 algorithm to classify women experiencing diabetes [9]. 

Using the Pima Indian Diabetes Dataset, the highest accuracy was achieved using the C4.5 algorithm, 

reaching 75.65%. Further confirmation of C4.5’s superiority in classifying diabetes patients over other 

machine-learning methods was provided by Ente’s work [6].  

Based on the description above, this research aims to build and determine the performance of the C4.5 

algorithm in classifying type 2 diabetes based on its risk factors. As in the previous research, the C4.5 

algorithm can classify diabetic patients with relatively good accuracy scores. The selection of the C4.5 

algorithm is also due to its advantage: it is easy to interpret and interesting because it can be visualized in 

images [10]. The difference between this research and previous studies lies in the research feature. This 

research includes gender as a research feature. Therefore, unlike the other research, this research is applicable 

to both men and women patients. 

 

2. RESEARCH METHODS 

2.1 Diabetes 

Diabetes is a disease caused by hyperglycemia, characterized by the accumulation of glucose in the 

bloodstream. However, several other factors are believed to contribute to type 2 diabetes, including: 

a. Glucose Level 

Elevated glucose levels are a primary indicator of diabetes. Glucose levels are categorized as high when 

they exceed 200 mg/dL [3]. 

b. Body Mass Index (BMI) 

BMI is a method of categorizing body mass or body fat. Excessive body fat accumulation can lead to type 

2 diabetes, as excess body fat can disrupt cellular function, resulting in insulin resistance[11]. An 

individual is classified as having excess body fat if their BMI is greater than 25.0. 
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c. Gender 

Men tend to have a higher amount of visceral fat (fat around the abdominal area) compared to women. In 

contrast, women have more subcutaneous fat (fat around the thigh area) relative to visceral fat. Visceral 

fat is more metabolically active than subcutaneous fat, making men more susceptible to obesity, which is 

closely linked to BMI and diabetes. 

d. Age 

Increasing age can lead to a decreased sensitivity of body cells to insulin, resulting in elevated glucose 

levels in the body [12]. Additionally, Song [13] states that the prevalence of diabetes is not limited to the 

elderly population; it continues to rise among young adults (18-27 years) and middle-aged adults (28-40 

years). This is believed to be due to an unhealthy lifestyle.  

e. Family History 

Diabetes involves a genetic component [14]. Genetic factors contributing to diabetes can be passed down 

to children if their parents have diabetes [15].  

2.2 C4.5 Algorithm  

The C4.5 algorithm is a decision tree method used to analyze the relationship between input and output 

attributes. To construct a decision tree using the machine learning C4.5 algorithm, data is randomly divided 

into training and testing datasets. The training data is used to build the model, while the testing data is used 

to evaluate the performance of the established model. After data splitting, the decision tree is formed by 

following the flowchart shown in Figure 1. 

 
Figure 1. C4.5 Algorithm Flowchart 

As defined in Figure 1, the decision tree is constructed by calculating entropy and information gain. 

The selection of which attribute becomes a node is determined by the highest information gain value. This 

process continues iteratively until all entropies at the decision tree’s endpoints reach zero. Entropy and 

information gain are defined as follows: 

Definition 1. Entropy is a parameter used to quantify the level of uncertainty associated with an attribute [16] 

[17]. 

 𝐸𝑛𝑡(𝐷) = −𝛴𝑘=1
|𝑦|

𝑝𝑘 𝑙𝑜𝑔2 𝑝𝑘 (1) 

Definition 2. Information gain is used to calculate the effectiveness of a feature in classifying data [17]. 

 
𝐼𝐺(𝐷, 𝑎) = 𝐸𝑛𝑡(𝐷) − 𝛴𝑣=1

𝑉
|𝐷𝑣|

|𝐷|
𝐸𝑛𝑡(𝐷𝑣) 

(2) 

where: 

𝐸𝑛𝑡(𝐷)  : entropy of dataset D 

𝑘    : class of dataset D 

|𝑦|   : total of class  

https://lucid.app/lucidchart/1ee20d8b-a84c-4b34-be96-cef3f805a103/edit?crop=content&page=0&signature=f1db794bed9116b6f81863ee27efd4ce95c40d386ac65853ec0ff12bc4d6c7c1


196 Purwaningrum, et. al.    IMPLEMENTATION OF MACHINE LEARNING ALGORITHM C4.5 IN CLASSIFICATION OF…  

 

𝑝𝑘    : k-th class probability  

𝐼𝐺(𝐷, 𝑎) : information gain of feature a 

𝑉    : possible value of feature a  

Given the dataset D and the continuous feature a, suppose we observe n values of a in D and arrange 

them in ascending order {𝑎1, 𝑎2, … , 𝑎𝑛}. With the split point t, D is partitioned into the subsets 𝐷𝑡
− and 𝐷𝑡

+, 

where 𝐷𝑡
− includes samples with values t and less than t, and 𝐷𝑡

+ includes samples with values greater than t.  

𝑇𝑎 = {
𝑎𝑖 + 𝑎𝑖+1

2
, 1 ≤ 𝑖 ≤ 𝑛 − 1} 

(3) 

2.3 Performance Measure 

This classification of diabetes disease is classified into two classes: diabetes and non-diabetes, making 

it suitable for binary classification, and enabling the utilization of a confusion matrix to measure the model’s 

performance [18]. Table 1 illustrates the structure of a confusion matrix. 

Table 1. Confusion Matrix 

 Predicted Positive Predicted Negative 
Actual Positive TP FN 
Actual Negative FP TN 

As shown in Table 1, TP (True Positive) signifies the correct identification of a diabetic patient as 

diabetic, while TN (True Negative) signifies the accurate identification of a non-diabetic patient as non-

diabetic. FN (False Negative) represents the misclassification of a diabetic patient as non-diabetic, and FP 

(False Positive) denotes the incorrect classification of a non-diabetic patient as diabetic. 

The information of confusion matrix can be used to calculate accuracy, precision, recall, and f-1 score 

[18], as noted in Table 2. 

Table 2. Performance Measure Metrics 

Metric Description Formula 

Accuracy The model's correct prediction rate (TP+TN)/ (TP+TN+FP+FN) 

Precision The ability of the model to not identify negative data as positive. TP/ (TP+FP) 

Recall The ability of the model to not identify positive data as negative. TP/ (TP+FN) 

f-1 score Shows an excellent level of precision and Recall 
2 x [(Precision x Recall)/ 

(Precision + Recall)] 

The metrics in Table 2 can be used as the model performance evaluation. The higher the metric value, 

the better the model is built. Other than in metric form, model performance can also be graphically 

represented as a Receiver Operating Characteristic (ROC) Curve. By modifying the threshold, an ROC curve 

is generated based on the True Positive Rate (TPR) and False Positive Rate (FPR). 

 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

(4) 

The ROC curve basically represents the combination of multiple confusion matrices, which can then 

provide insight into the model’s ability to distinguish between two classes. Figure 2 portrays an example of 

the ROC curve: 
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Figure 2. ROC curve and AUC 

Figure 2 shows that the ROC curve lies in the range [0,1] of the FPR and TPR areas. The ideal point 

of ROC is at (0,1). At this point, the model correctly classifies each class. Based on Figure 2, there is also 

AUC, which stands for Area Under Curve. Besides ROC, the AUC can also be used to evaluate the quality 

of the model. The higher the AUC value, the better the model at distinguishing between two classes. 

2.4 Data Description 

Data was collected from the medical records of diabetes and non-diabetes patients at Padang Central 

Hospital from 2018 to 2022. Figure 3 depicts a snippet of the dataset used. 

Table 3. Dataset 

No Glucose BMI Gender Age Family History Class 

1 180 35.2 Male 54 No History Diabetes 

2 139 32.0 
Male 58 No History Non-

Diabetes 

3 159 26.4 Male 28 History Diabetes 

4 188 48.8 Male 37 History Diabetes 

5 131 23.8 
Female 31 No History Non-

Diabetes 

… … … … … … … 

354 193 40.9 Female 47 History Diabetes 

355 110 34.2 Male 27 History Diabetes 

356 172 33.3 Male 52 History Diabetes 

357 197 37.1 Male 43 History Diabetes 

358 171 42.4 Female 29 History Diabetes 

 
Based on Table 3, the dataset comprises 6 columns and 358 rows. The six columns are: glucose, BMI, 

gender, age, family history, and class. Furthermore, the description of the dataset’s features is presented in 
Table 4. 

Table 4. Dataset Feature Description 

Feature Description Data Type 
Glucose (X1) Blood glucose level (mg/dL) Numerical 
BMI (X2) Body Mass Index (kg/(m)2) Numerical 
Gender (X3) Gender of the patient (Male or Female) Categorical 
Age (X4) Age of the patient (in years) Numerical 
Family History (X5) Presence or absence of diabetes in the family Categorical 
Class (Y) Class label indicating diabetes or non-diabetes Categorical 

 
As shown in Table 4, the utilized input features are contributing to diabetes, namely glucose level 

(X1), BMI (X2), gender (X3), age (X4), and family history (X5). Among these five input features, three are 
numerical features: glucose, BMI, and age, while the other two are categorical features: gender and family 
history. The statistical descriptions of the numerical features are presented in Table 5. 
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Table 5. Statistical Description of Numerical Features 
 Glucose BMI Age 

Count 358 358 358 

Mean 140.7737 33.1315 34.3045 

Std 42.1652 7.0987 12.0149 

Min 70 18.2000 21 

25% 103 27.8000 25 

50% 139 32.8500 30.5000 

75% 178 37.5500 42 

Max 300 59.4000 81 

According to Table 5, all numerical features have the same data count, which is 358, indicating that 

there are no missing values for any feature. There is more statistical data information, such as glucose is 

within the range [70, 300], with a mean of 140.7737, a standard deviation of 42.1652, and the 25th, 50th, and 

75th percentile, respectively, are 103, 139, and 178. The statistical description of categorical features can be 

seen in Table 6. 

Table 6. Statistical Description of Categorical Features 
 Gender Family History 

Total 358 358 

Unique 2 (male, female) 2 (history, no history) 

Modus Female No history 

Total of Modus 197 184 

Similar to the numerical features, according to Table 6, the categorical features also do not have any 

missing values, as each feature has a count of 358. Additionally, there is more statistical information. For 

instance, the “Gender” feature has two unique values: ‘Female’ and “Male”. The mode of the “Gender” 

feature is “Female”, with a count of 197 data. 

The class feature (Y) acts as an output feature and is classified into two classes: diabetes and non-

diabetes. The distribution of the dataset classes is shown in Figure 3:  

 
Figure 3. Dataset Classes Distribution 

Based on Figure 3, there are 53.91% data for non-diabetes and 46.09% data for diabetes. It shows that 

the proportions of the dataset classes are almost the same. A further distribution of dataset classes of 

numerical features can be seen in Figure 4. 

   
(a) (b) (c) 

Figure 4. Dataset Classes Distribution of (a) Glucose Feature, (b) BMI Feature, and (c) Age Feature 
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In Figures 4 part (a) and (b), the histogram data show that diabetes tends to occur in people with high 

blood glucose and BMI levels. In terms of age, Figure 4(c) indicates that diabetes is more prevalent among 

individuals aged 20 to 40 years. The distribution of dataset classes with respect to gender and family history 

is shown in Figure 5 below: 

  

(a) (b) 

Figure 5. Dataset classes distribution of (a) gender feature and (b) family history feature 

Figure 5 (a) shows that men have a higher percentage of experiencing diabetes compared to women, 

with a rate of 65.5%. Then, individuals with a history of diabetes are at higher risk, with an 84.8% chance of 

having diabetes, as shown in Figure 5 (b). 

 

3. RESULTS AND DISCUSSION 

The dataset is randomly split into training data and testing data at a ratio of 70:30, 80:20, and 90:10. 

Using Equation (3), the 80:20 dataset generates 285 thresholds for each of its numerical features: 𝑻𝒈𝒍𝒖𝒄𝒐𝒔𝒆 =

{𝟕𝟏, … , 𝟐𝟐𝟑. 𝟓}, 𝑻𝑩𝑴𝑰 = {𝟏𝟖. 𝟐, … , 𝟓𝟕. 𝟐}, and 𝑻𝒂𝒈𝒆 {𝟐𝟏, … , 𝟕𝟏}. The entropy and information gain 

calculations to select the root node are presented in Table 7. 

Table 7. Selecting Root Node  

Attribute 
Total Sample Diabetes Non-Diabetes Entropy 

Information Gain 
286 128 158 0.99205 

Glucose ≤ 71 3 0 3 0.00000 0.00904  
> 71 283 128 155 0.99342 

 

 
... ... ... ... ... ...  
≤ 134.5 144 3 141 0.14609 0.65606  
> 134.5 142 125 17 0.52855 

 

 ... ... ... ... ... ... 

 ≤ 223.5 285 127 158 0.99145 0. 00407 

 > 223.5 1 1 0 0.00000  

BMI ≤ 18.2 2 0 2 0.00000 0.00602  
> 18.2 284 128 156 0.99298 

 

 ... ... ... ... ... ...  
≤ 57.2 285 127 158 0.99145 0.00407  
> 57.2 1 1 0 0.00000 

 

Gender Male 159 46 113 0.86783 0.09312  
Female 127 82 45 0.93788 

 

Age ≤ 21 285 128 157 0.66658 0.02102  
> 21 1 0 1 0.99765 

 

 ... ... ... ... ... ...  
≤ 71 284 127 157 0.99252 0.00300  
> 71 2 1 1 0.00000 

 

Family 

History 

History 142 112 30 0.74390 0.36931 

 
No-History 144 16 128 0.50326 

 

 



200 Purwaningrum, et. al.    IMPLEMENTATION OF MACHINE LEARNING ALGORITHM C4.5 IN CLASSIFICATION OF…  

 

In Table 7, for each possible value of the attributes, the entropy of the subsets created by splitting on 

that value, the highest information gain is glucose with a threshold of 134.5. Therefore, the decision tree is 

formed as Figure 6 follows: 

 
Figure 6. The temporary form of a decision tree  

As stated in Figure 6, It is observed that the root node “glucose ≤ 134.5” contains 286 training data, 

comprising 128 diabetes and 158 non-diabetes cases. Since the majority class within the root node is “non-

diabetes”, this node is labeled as “non-diabetes”. The combination of the two classes in the root node results 

in a relatively high entropy value of 0.99, indicating that the root node has not yet reached purity. Therefore, 

feature splitting is necessary until leaf nodes with entropy 0 are reached, indicating nodes that have achieved 

purity (containing only one class of dataset). The result of the decision tree with an 80:20 splitting dataset 

with the program implemented in Google Collaboratory is shown in Figure 7.  

 

Figure 7. Final Decision Tree of 80:20 dataset ratio 

https://lucid.app/lucidchart/6d995e74-8abd-451b-b725-d019eb0b7f7a/edit?crop=content&page=0&signature=e559d37fb47dc1bfb5f6c3810bb9bf86f5ff50b6809059df88aef689aa4709b4
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As shown in Figure 7 above, the generated decision tree comprises 33 nodes. The blue-colored nodes 

represent instances where the diabetes class is the majority, the orange-colored nodes represent instances 

where the non-diabetes class is the majority, and the white-colored nodes signify an equal ratio of both 

classes. The shade of the color reflects the purity of the node; darker shades indicate higher purity.  

The decision tree traversal begins from the root node. If a patient’s glucose level is equal to or lower 

than 134.5, the decision process follows the left branch; otherwise, it proceeds along the right branch. This 

process continues iteratively until a leaf node is reached, classifying the patient into a specific dataset class. 

The same approach was applied to split the dataset at ratios of 70:30, 80:20 and 90:10, produce the 

matrices in Figure 8 and Figure 9 below: 

   
(a) (b) (c) 

Figure 8. Confusion matrix of testing data with (a) 70:30 dataset, (b) 80:20 dataset, and (c) 90:10 dataset 

   
(a) (b) (c) 

Figure 9. Confusion matrix of training data with (a) 70:30 dataset, (b) 80:20 dataset, and (c) 90:10 dataset 

Figure 8 and Figure 9 represent the results of a confusion matrix for determining the values of true 

positives (TP), false negatives (FN), false positives (FP), and true negatives (TN) from Table 1. For instance, 

in Figure 9 (a), out of 108 testing data points, there were 46 TP values, 3 FN values, 2 FP values, and 57 TN 

values. This data is used to calculate accuracy, precision, recall, and F1-score, as presented in Table 2. The 

TP and TN values are larger than the FP and FN values. This pattern holds true for their respective training 

dataset as well, with some splits resulting in all zero FP and FN values. They suggest that the model is 

classifying more data correctly than incorrectly.  

Based on the generated confusion matrices, the ROC curves are formed as Figure 10 follows: 

   
(a) (b) (c) 

Figure 10. ROC curve of (a) 70:30 dataset, (b) 80:20 dataset, and (c) 90:10 dataset 
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As shown in Figure 10, the ROC curves obtained for the testing data are closely situated near the point 

(0,1), indicating that the model performs well for classification. Furthermore, due to the absence of false 

positives and false negatives, the ROC curves for the training data display a perfect shape. These observations 

imply that the model excels at distinguishing between the diabetes and non-diabetes classes. In addition to 

the graphical representation of the ROC curves, the model’s performance can also be summarized in Table 

8. 

Table 8. Metrics of Performance Evaluation 

 Splitting Dataset Accuracy Precision Recall f-1 score AUC 
Testing Data       
 70:30 0.9500 0.9500 0.9300 0.9400 0.9520 

 80:20 0.9300 0.9400 0.9100 0.9300 0.9310 

 90:10 0.9700 0.1000 0.9400 0.9700 0.9740 

       

Training Data       

 70:30 0.1000 0.1000 0.1000 0.1000 0.1000 

 80:20 0.1000 0.1000 0.1000 0.1000 0.1000 

 90:10 0.1000 0.1000 0.1000 0.1000 0.1000 

Based on Table 8, the highest recall value for testing data is achieved in the dataset with a ratio of 

90:10. A recall value of 0.940, or 94% in percentage terms, indicates that out of the total number of individuals 

who are diabetic, 94% of them are correctly predicted as diabetic by the model. This reflects the model’s 

ability to effectively identify a significant portion of true positive cases among all actual positive cases. For 

training data, the accuracy for each splitting dataset is 100%.  

4. CONCLUSIONS 

Based on the data obtained from the medical records of diabetic and non-diabetic patients at Padang 

Central Hospital, diabetes was categorized based on its risk factors, including blood glucose level, BMI, 

gender, age, and family history, utilizing the C4.5 algorithm. A thorough analysis of the data indicated that 

diabetes tends to manifest in individuals with elevated blood glucose levels and higher BMIs, particularly 

among males aged 20 to 40 who have a family history of diabetes. Utilizing this information, a decision tree 

model was constructed using the Google Colaboratory platform. The dataset was divided into training and 

testing sets at various ratios: 70:30, 80:20, and 90:10. The model with a 90:10 training and testing data ratio 

achieved the highest recall value of 94%. This signifies that the model effectively identifies 94% of the actual 

diabetic cases among the entire set of individuals who have diabetes. 
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