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 ABSTRACT  

Article History: 
The problem of this research comes from a situation or condition that is not static. The 

description of these problems is the condition of the learning system, which tends to change due 

to the COVID-19 pandemic, causing learning conditions to be dynamic. From a statistical 
perspective, the dynamic situation can be modeled using a predictive distribution approach so 

its characteristics can be studied. The purpose is to provide policy recommendations on 

appropriate learning models for lecturers in improving students' strategic competence, which is 

an ability that students need to master in solving various mathematical problems. The main 
discussion of this paper consists of three parts: clustering, predictive distribution, and statistical 

inference. The purpose of clustering is to group students based on test results to determine the 

level of strategic competence. In addition, clustering is also used as an initial process to predict 

students' strategic competence level if the learning used is still the same. The benefits of 
statistical inference in the distribution procedure in this study are used to determine the type of 

data distribution from each arrival of new information or data. The results of the statistical 

inference determine whether or not it is necessary to update the learning model of the lecturer. 
This research produces a new alternative statistical inference needed to make decisions. Based 

on the simulation results and discussion, the use of a predictive distribution approach to predict 

dynamic data is very appropriate. The distribution approach can be used for detecting changes 

in new data distribution with historical data for the dynamic condition. If the changes are 
insignificant, direct instruction can still be used for the learning model in statistics courses. A 

new learning model is recommended for the statistics group course at a higher level when the 

changes are significant. 
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1. INTRODUCTION 

To provide sufficient understanding to students about the importance of applying statistics, it is 

necessary to provide statistics courses. Statistics is a branch of mathematics concerned with developing and 

studying methods for collecting, analyzing, interpreting, and presenting empirical data [1]. 

Current research issues in academic circles focus on Sustainable Development Goals (SDGs) [2][3]. 

SDGs are the main focus of countries that are members of the United Nations in state management procedures 

[3]. These SDGs exist thanks to the awareness that natural resources originating from the environment are 

believed to be depleted. So, we humans who live in it must use the environment rationally and protect it for 

the sake of the survival of humanity and all living creatures on earth. 

SDGs are a series of goals set by the United Nations to achieve a better and more sustainable life for 

everyone globally. SDGs are global and national commitments to improve society, including 17 global goals 

and targets for 2030 [4], declared by both developed and developing countries at the United Nations General 

Assembly in September 2015 [3]. 

One of the important competencies related to achieving the SDGs is mastery of statistics [5]. Mastering 

statistics enables individuals to understand and analyze data, contributing to improving education quality in 

Indonesia. Mastery of Statistics courses also contributes to achieving the SDGs indicators, namely the fourth 

indicator related to Education Quality. 

Statistics and mathematics are closely related fields and often intersect in various ways. Mathematics 

provides the theoretical foundation for statistical methods and concepts like probability theory, calculus, and 

linear algebra. Statistical analysis usually involves mathematical calculations, such as finding the mean, 

median, and standard deviation and using mathematical models to make predictions and draw conclusions 

from data. Statistics also contributes to mathematics by providing real-world applications for mathematical 

theories and concepts.  

The relationship between statistics and mathematics is symbiotic, with each field informing and 

improving the other. Discussion of mathematics learning means not also discussing statistics learning. 

Likewise, mathematical knowledge contains statistical knowledge. 

Kilpatrick et al. [6] stated the results of their research on knowledge, mathematical knowledge, 

understanding, and people's skills for successful mathematics learning. Mathematical proficiency is an aspect 

of achieving successful mathematics learning. Mathematical proficiency has five strands: conceptual 

understanding, procedural fluency, strategic competence, adaptive reasoning, and productive disposition. 

At the level of higher education in university, strategic competence is considered the most important 

for successful mathematics learning. Strategic competence is the ability to formulate, represent, and solve 

mathematical problems. The indicators understand the problem, choose the suitable formulation, present a 

problem in various forms of mathematical representation, choose a strategy to solve the problem, use or 

develop problem-solving strategies, solve the problem, and interpret answers. 

The problem of this research comes from a situation or condition that is not static. The description of 

these problems is the condition of the learning system, which tends to change due to the COVID-19 pandemic, 

causing learning conditions to be dynamic. From a statistical perspective, the dynamic situation can be 

modeled using a predictive distribution approach so its characteristics can be studied. 

This paper uses predictive distribution to analyze data in making decisions. Another term for predictive 

distribution is posterior predictive distribution. A predictive distribution is a distribution of possible 

unobserved values conditional on the observed values. For example, we want to look for the conditional 

probability distribution of observation  𝑦 (unobserved) given observation 𝐱, then the conditional probability 

function is 

𝑓(𝑦|𝐱) = ∫ 𝑓(𝑦|𝜃)𝑓(𝜃|𝐱) 𝑑𝜃.     (1) 

To understand predictive distributions, it is necessary to understand prior and posterior distributions, 

which will be discussed in the next section. 

The aim of this research is to produce a new alternative statistical inference needed to make decisions 

for learning model in statistics course. The purpose is to provide policy recommendations on appropriate 
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learning models for lecturers in improving students' strategic competence, which is an ability that students 

need to master in solving various mathematical problems. 

 

2. RESEARCH METHODS 

 2.1 Statistics Course 

In the statistics group course, students are required to reason statistically, which includes understanding 

the data, making hypotheses about what the data might show, investigating hypotheses, and writing valid 

conclusions [7]. Strategic competence is required for achieving, as statistical reasoning is only one part of 

strategic competence. The five strands are illustrated in the intertwined rope in Figure 1[6]. 

 

Figure 1. Intertwined Strands of Proficiency 

In our department, the statistics group course consists of three courses. There are basic statistics in the 

third semester, probability theory in the sixth semester, and inferential statistics in the seventh semester. The 

basic statistics course is considered the lowest level; the probability theory course is the intermediate level, 

and the inferential statistics course is at the top level of the statistics group course for strategic competence 

level, see Figure 2. 

 

Figure 2. Strategic Competence Level in Statistics Group Course 

An appropriate learning model is needed to improve students' strategic competence. The learning 

model is a pattern of interaction between students and teachers. It consists of learning strategies, approaches, 

methods, and techniques applied in implementing in-class learning activities. The decision to use a learning 

model was taken based on the data obtained from the learning outcomes. 

Generally, if the resulting data does not change the distribution, the learning model tends not to change  

[8] [9]. In general, if the data obtained does not change the distribution, then the learning model tends not to 

change. For example, lecturers will continue to use the direct instruction model if the data distribution does 

not change. However, if distribution changes, e.g., project-based learning becomes an alternative model used. 

For this reason, the role of predictive distribution as a method in statistics to deal with dynamic data. This 

case is illustrated in Figure 3.  
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Figure 3. Predictive Distribution to Determine Learning Model 

2.2 Multinomial Distribution 

In general, multinomial data is the number of frequencies in several data categories. Characteristics of 

a multinomial distribution include that each experiment has more than two possible events (outcomes) that 

will occur; the number of experiments was carried out 𝑛 times, and each experiment was statistically 

independent so that the events resulting from one experiment did not affect the next experiment; and the 

probability of each event on each trial does not change. 

If an experiment has 𝑚 possible outcomes, say 𝜅1, 𝜅2, ⋯ , 𝜅𝑚 with each probability 𝜃1, 𝜃2, ⋯ , 𝜃𝑚, then 

the probability distribution of the random variables 𝑋1, 𝑋2, ⋯ , 𝑋𝑚 which describes the number of occurrences 

of 𝜅1, 𝜅2, ⋯ , 𝜅𝑚 in 𝑛 independent trials will follow a multinomial distribution. The multinomial distribution 

is denoted Mult(𝜃1, 𝜃2, ⋯ , 𝜃𝑚, 𝑛), with a probability mass function (PMF) as follows. 

𝑝(𝑥1, 𝑥2, ⋯ , 𝑥𝑚; 𝜃1, 𝜃2, ⋯ , 𝜃𝑚) = ( 𝑛
𝑥1 𝑥2⋯𝑥𝑚

) 𝜃1
𝑥1𝜃2

𝑥2 ⋯ 𝜃𝑚
𝑥𝑚     (2) 

or 

𝑝(𝐱; 𝛉) =
𝑛!

∏ 𝑥𝑖!𝑚
𝑖=1

∏ 𝜃𝑖
𝑥𝑖𝑚

𝑖=1      (3) 

where 𝐱 =  [𝑥1 𝑥2 ⋯ 𝑥𝑚]𝑇 , ∑ 𝑥𝑖 = 𝑛, 𝑛 ∈ ℕ,𝑚
𝑖=1  𝛉 =  [𝜃1 𝜃2  ⋯ 𝜃𝑚]𝑇 ,  ∑ 𝜃𝑖 = 1,𝑚

𝑖=1  𝜃𝑖 > 0, and 𝜃1, 𝜃2, ⋯ , 𝜃𝑚 

are parameters of probability. 

 

2.3 Predictive Distribution for Multinomial Case 

The prior distribution is an initial distribution that provides information about parameters and must be 

determined first before formulating the posterior distribution. Prior distributions have an important role in 

estimating unknown parameters. In general, a prior distribution is a probability distribution of parameter 

values [10][11].  

Suppose the random variable 𝑋 has a probability distribution with unknown parameter 𝜃 ∈ Ω. These 

parameters are assumed to be random variables, denoted Θ, with a probability distribution called the prior 

distribution. Next, 𝑥 is the observed value of 𝑋, and 𝜃 is the observed value of Θ. The distribution of 𝑋 

depends on Θ. The probability density function (pdf) of Θ is denoted ℎ(𝜃), with ℎ(𝜃) = 0 if 𝜃 ∉ Ω. The 

function ℎ(𝜃) is called the prior pdf of Θ so that 𝑋|𝜃~𝑓(𝑥|𝜃),  and Θ~ℎ(𝜃). The prior distribution for the 

parameters of a multinomial distribution is the Dirichlet distribution. 

The posterior distribution is the conditional probability distribution of parameters given observational 

data [10][11]. Suppose the random variables 𝑋1, 𝑋2, … , 𝑋𝑙 are mutually independent of the conditional 

distribution 𝑋 with Θ = 𝜃 and pdf 𝑓(𝑥|𝜃). For random vectors 𝐗 = [𝑋1 𝑋2 ⋯ 𝑋𝑙]𝑇 and 𝐱 = [𝑥1 𝑥2, ⋯ 𝑥𝑙]𝑇 ,  
so conditional pdf 𝐗 if we have Θ = 𝜃 is 

𝑓(𝐱|𝜃) = 𝑓(𝑥1|𝜃)𝑓(𝑥2|𝜃) ⋯ 𝑓(𝑥𝑙|𝜃).     (4) 

The conditional pdf 𝐗 and Θ is 

𝑓(𝐱, 𝜃) = 𝑓(𝐱|𝜃)ℎ(𝜃),     (5) 

and pdf of marginal 𝐗 is 
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ℎ(𝐱) = ∫ 𝑓(𝐱, 𝜃)𝑑𝜃
∞

−∞
.     (6) 

For conditional pdf Θ, if we have 𝐗 is 

𝑓(𝜃|𝐱) =
𝑓(𝐱,𝜃)

ℎ(𝐱)
=

𝑓(𝐱|𝜃)ℎ(𝜃)

∫ 𝑓(𝐱|𝜃)ℎ(𝜃)𝑑𝜃
∞

−∞

,     (7) 

hereinafter called the posterior distribution function.  

Let 𝐗𝑡 = [𝑋1,𝑡 𝑋2,𝑡 ⋯ 𝑋𝑚,𝑡]
𝑇
be a random vector representing the number of occurrences in each time 

t, where 𝑋𝑖,𝑡 is a random variable that represents the number of independent events at the i-th time. The 

random vector 𝐗𝑡 is assumed to have a multinomial distribution with the parameter 𝛉. In this study, the vector 

𝛉 is the observed value of the random vector 𝚯. The random vector 𝚯 has a distribution that acts as the prior 

of the multinomial, with 𝚯 coming from the Dirichlet distribution [8]. Then look for the conditional 

probability distribution for the observation 𝐱𝑡+𝑘 if given the observation 𝐃𝑡+(𝑘−1) = [𝐱1 𝐱2 ⋯ 𝐱𝑡+(𝑘−1)]
𝑇

. 

The predictive distribution function is 

𝑝(𝐱𝑡+𝑘|𝐃𝑡+(𝑘−1)) = ∫ 𝑝(𝐱𝑡+𝑘|𝛉)𝑓(𝛉|𝐃𝑡+(𝑘−1)) 𝑑𝜃.     (8) 

For multinomial case, we have Equation (9) [8][9], 

𝑝(𝐱𝑡+𝑘|𝐃𝑡+(𝑘−1)) =
𝑛!Γ(∑ 𝛼𝑖

′𝑚
𝑖=1 )

Γ(𝑛+∑ 𝛼𝑖
′𝑚

𝑖=1 )
∏

Γ(𝑥𝑖+𝛼𝑖
′)

𝑥𝑖!Γ(𝛼𝑖
′)

𝑚
𝑖=1 .                         (9) 

The equation is a predictive distribution probability function which is a probability mass function of 

the Dirichlet-multinomial. In the Dirichlet-multinomial case, we can take the value 𝛼0 = ∑ 𝛼𝑖
𝑚
𝑖=1  dan 𝜃𝑖 =

𝛼𝑖

∑ 𝛼𝑖
𝑚
𝑖=1

=
𝛼𝑖

𝛼0
 [12], so that the following relationship can be seen: 

𝐸[𝑋𝑖,𝑡+𝑘] = 𝑛 𝜃𝑖 =  𝑛 
𝛼𝑖

𝛼0
.                                               (10) 

Thus, we can find 𝜃𝑖 from the multinomial estimated parameter, namely:   

𝜃𝑖 =
∑ 𝑥𝑖,𝑡

𝑙
𝑡=1

𝑙 𝑛
, 𝑖 = 1,2, . . , 𝑚,                          (11) 

where ∑ 𝑥𝑖 = 𝑛, 𝑛 ∈ ℕ.𝑚
𝑖=1  

In this case, the number of events indicates successive strategic competence. The indicators of strategic 

competence, i.e. 

a. To understand the problem, seen as the first occurrence; 

b. To choose the relevant formulation, seen as a second occurrence; 

c. To present a problem in various forms of mathematical representation, seen as a third occurrence; 

d. To choose a strategy to solve the problem, seen as the fourth event; 

e. To use or develop problem-solving strategies, seen as the fifth occurrence; 

f. To solve the problem, seen as the sixth occurrence; 

g. To interpret answers, seen as the seventh occurrence. 

For example, in the basic statistics course, the number of students who only reached indicator 4 was 

30, while the total number of students was 170. The 40 students certainly succeeded in achieving indicators 

1, 2, 3, and 4. In this case, the 40 students were defined as the number of occurrences in indicator 4. 
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2.4 Statistical Test 

Usually, to test the suitability of a model for data with a multinomial distribution, chi-squared is used. 

This statistical form is derived from the multinomial likelihood ratio. The derivation process is carried out 

using an approximation process to obtain the statistical form [13][14]. This approximation results in the level 

of accuracy of a statistical test being reduced. The statistical form presented in this research was analytically 

obtained without approximation. Based on these reasons, research does not use existing statistical forms to 

make decisions. The strategy used is to find other forms of statistics.  

The new method in this research is built from the logarithmic distribution of the likelihood function. 

Through this method, it is possible to determine statistical inferences using a normal statistical test approach 

iteratively. 

Theorem 1 [9] provides information that the transformation of multinomial case data produces a 

normal distribution for random variables 𝐿𝑙(𝜽) = ∏ (
𝑛!

∏ 𝑥𝑖,𝑡!𝑚
𝑖=1

∏ 𝜃𝑖

𝑥𝑖,𝑡𝑚
𝑖=1 )𝑙

𝑡=1 . 

Theorem 1. Let 𝐿𝑙(𝜽) = ∏ (
𝑛!

∏ 𝑥𝑖,𝑡!𝑚
𝑖=1

∏ 𝜃𝑖

𝑥𝑖,𝑡𝑚
𝑖=1 )𝑙

𝑡=1  be a multinomial likelihood function, for 𝑛, 𝑚, 𝑙 ≫ 1, 

then the random variable 𝑙𝑜𝑔 𝐿𝑙(𝜽) has a normal distribution with mean: 

�̈� = ∑ ∑ 𝑥𝑖,𝑡 log 𝜃𝑖
𝑚
𝑖=1 − ∑ ∑ log 𝑥𝑖,𝑡!𝑚

𝑖=1
𝑙
𝑡=1 + ∑ log 𝑛!𝑙

𝑡=1
𝑙
𝑡=1      (12) 

and variance: 

�̈�2 =
𝑚

(𝑚−1)
∑ ∑ (𝑥𝑖,𝑡 log 𝜃𝑖 −

∑ 𝑥𝑖,𝑡 log 𝜃𝑖
𝑚
𝑖=1

𝑚
)

2
𝑚
𝑖=1 − ∑ ∑ (log 𝑥𝑖,𝑡! −

∑ log 𝑥𝑖,𝑡!𝑚
𝑖=1

𝑚
)

2
𝑚
𝑖=1

𝑙
𝑡=1 .𝑙

𝑡=1  (13) 

 

After Theorem 1, we have Corollary 1 [9] 

 

Corollary 1. Let 𝐿𝑙(𝜽) = ∏ (
𝑛!

∏ 𝑥𝑖,𝑡!𝑚
𝑖=1

∏ 𝜃𝑖

𝑥𝑖,𝑡𝑚
𝑖=1 )𝑙

𝑡=1  be a multinomial likelihood function, for 𝑛, 𝑚, 𝑙 ≫ 1, 

then random variable (𝑙𝑜𝑔 𝐿𝑙(𝜽) − ∑ 𝑙𝑜𝑔 𝑛!𝑙
𝑡=1 ) has a normal distribution with mean: 

𝜇 = ∑ ∑ 𝑥𝑖,𝑡 log 𝜃𝑖
𝑚
𝑖=1 − ∑ ∑ log 𝑥𝑖,𝑡!𝑚

𝑖=1
𝑙
𝑡=1

𝑙
𝑡=1                    (14) 

and variance 𝜎2 = �̈�2 based on Equation (13). 

The statistical form for multinomial goodness-of-fit test, it applies the following hypothesis test: 

H0: (log 𝐿𝑙+1(𝛉) − ∑ log 𝑛!𝑙+1
𝑡=1 ) follows a normal distribution with the mean 𝜇 and variance 𝜎2, 

H1: (log 𝐿𝑙+1(𝛉) − ∑ log 𝑛!𝑙+1
𝑡=1 ) does not follow a normal distribution with the mean 𝜇 and variance 𝜎2. 

The steps for testing new data based on historical data are described in Algorithm 1. 

 

Algorithm 1   
1) input (𝜇, 𝜎2); 

2) find the estimated parameter (𝛉) of the predictive distribution (based on historical data); 

3) enter the new observed value under the assumption H0; 

4) perform the Z statistical test at the significance level α. H0 is not rejected, it means that 

(𝑙 + 1 )~𝑁(𝜇, 𝜎2); 

5) update the parameters (𝛉) and (𝜇, 𝜎2) if H0 is rejected; 

6) return to step 3. 

Furthermore, the flow of the problem-solving approach is presented in Figure 4. Starting from the data 

from the evaluation of the statistical group lectures, they are faced with two static and dynamic conditions. 
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Figure 4. Predictive Distribution to Determine Learning Model 

Based on Figure 4, it can be seen that the problem in deciding the learning model to be taken at a 

higher level in group course statistics is when dynamic data occurs.  

Therefore, an approach is needed to overcome these dynamic conditions, namely predictive 

distribution. If the condition is static, the last learning model (e.g., direct instruction) can still be used for 

learning models in the statistics group course at a higher level. If the condition is dynamic, we use a 

distribution approach to detect changes in new data distribution with historical data (based on predictive 

distribution). If the changes are insignificant, direct instruction can still be used for the next learning model. 

However, if the changes are significant, it is recommended to use a new learning model (e.g., project-based 

learning) in the statistics group course at a higher level. 

 

2.5 Prediction Accuracy 

According to Lewis [15], MAPE scores can be interpreted into four categories, see Table 1. 

Table 1. Criteria of MAPE 

Percentage  Interpretation 

MAPE score < 10% excellent prediction 

10% ≤ MAPE score < 20% good prediction 

20% ≤ MAPE score < 50% fair prediction 

MAPE score ≥ 50% not accurate prediction 

The smaller the MAPE score, the smaller the prediction error; on the contrary, the larger the MAPE 

score, the greater the prediction error. The results of a predictive model have the excellent predictive ability 

if the MAPE score is less than 10% and good predictive ability if the MAPE score is between 10% and 20%.  

The Table 1 shows the error percentage score on MAPE; namely, the MAPE score can still be used if 

it does not exceed 50%, and if the MAPE score is above 50%, then the prediction model can no longer be 

used. The MAPE formula is as follows, 

MAPE =
1

𝑚
∑ |(

𝑥𝑖,𝑡−�̂�𝑖

𝑥𝑖,𝑡
)|𝑚

𝑖=1 × 100%,                   (15) 

where 𝑥𝑖 = 𝑛
𝛼𝑖

𝛼0
, 𝛼0 = ∑ 𝛼𝑖

𝑚
𝑖=1 ,

𝛼𝑖

∑ 𝛼𝑖
𝑚
𝑖=1

= 𝜃𝑖 ,  and ∑ 𝜃𝑖 = 1𝑚
𝑖=1 , 𝜃𝑖 > 0. 
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3. RESULTS AND DISCUSSION 

Let 𝐗𝑡 = [𝑋1,𝑡𝑋2,𝑡 ⋯ 𝑋𝑚,𝑡]
𝑇

 be a random vector that states the number of students who achieve 

strategic competence indicators in each semester t, where 𝑋𝑖,𝑡 is a random variable that states the number of 

students who achieve the i-th indicator in semester t. Furthermore, the data is generated 40 times under the 

assumption of a multinomial distribution with the pmf 𝐗𝑡~Mult (𝜃1, 𝜃2, ⋯ , 𝜃7, 140) namely 

𝑝(𝐱; 𝛉) =
140!

∏ 𝑥𝑖!7
𝑖=1

∏ 𝜃𝑖
𝑥𝑖 ,7

𝑖=1                    (16) 

 

where  ∑ 𝜃𝑖 = 17
𝑖=1  and ∑ 𝑥𝑖 = 1407

𝑖=1 .  

Simulations of 40 data were carried out to make prediction based on historical data. The 24 data are 

used as historical data or training, and 16 data are used as new data or testing. The statistic used to analyze 

the data is the Z statistic test, which has been formulated in Equation (17) [9], with the following hypothesis.  

𝐇𝟎: (log 𝐿𝑙+1(𝛉) − ∑ log 𝑛!𝑙+1
𝑡=1 ) follows a normal distribution with the mean 𝜇𝑙 and variance 𝜎𝑙

2, 

𝐇𝟏: (log 𝐿𝑙+1(𝛉) − ∑ log 𝑛!𝑙+1
𝑡=1 ) does not follow a normal distribution with the mean 𝜇𝑙 and variance 𝜎𝑙

2. 

The Z statistic test formula is 

𝑧𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 =
(log 𝐿𝑙+1(𝛉)− ∑ log 𝑛!𝑙+1

𝑡=1 )−�⃛�𝑙

�⃛�𝑙
,                   (17) 

where log 𝐿𝑙+1(𝛉) − ∑ log 𝑛!𝑙+1
𝑡=1  as a random variable under the assumption 𝐇0. The 𝐇𝟎 is not rejected when 

𝑧
(

α

2
)

≤ 𝑧𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 ≤ 𝑧
(1−

α

2
)
, and 𝐇0 is rejected when 𝑧𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 < 𝑧

(
α

2
)
 or 𝑧

(1−
α

2
)

< 𝑧𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙. With          

α = 0,05, and 𝑧𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 1,96 or 𝑧𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = −1,96, we have a summary of the hypothesis test described in 

Table 2. The Python program is used to process the data. 

Table 2. Summary of Hypothesis Testing 

Cases 

Parameter  

(𝛉)  and 

(�⃛�, �⃛�𝟐) 

Data 𝒛𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒄𝒂𝒍 Decision 

Learning 

model 

changes 

 
Parameter  

(�⃛�𝒍, �⃛�𝒍
𝟐) 

Error 

(𝜺) 

1 T1-24 T1-24 vs T25 −0,222 H0 is not rejected no  D1-24 0,0139 

2 T1-24 T1-24 vs T26 −0,224 H0 is not rejected no  D1-25 0,0122 

3 T1-24 T1-24 vs T27 −0,332 H0 is not rejected no  D1-26 0,0211 

4 T1-24 T1-24 vs T28 −0,475 H0 is not rejected no  D1-27 0,0133 

5 T1-24 T1-24 vs T29 −0,999 H0 is not rejected no  D1-28 0,0111 

6 T1-24 T1-24 vs T30 −0,923 H0 is not rejected no  D1-29 0,0241 

7 T1-24 T1-24 vs T31 −0,803 H0 is not rejected no  D1-30 0,0258 

8 T1-24 T1-24 vs T32 −1,253 H0 is not rejected no  D1-31 0,0148 

9 T1-24 T1-24 vs T33 −1,365 H0 is not rejected no  D1-32 0,0239 

10 T1-24 T1-24 vs T34 −1,671 H0 is not rejected no  D1-33 0,0133 

11 T1-24 T1-24 vs T35 −1,762 H0 is not rejected no  D1-34 0,0229 

12 T1-24 T1-24 vs T36 −2,113 H0 is rejected yes  D1-35 0,0317 

13 T1-36 T1-36 vs T37 −0,009 H0 is not rejected, 

with updating  

parameter (𝛉)  

and (𝜇, 𝜎2) 

no  D1-36 0,0194 

14 T1-36 T1-36 vs T38 −0,151 H0 is not rejected no  D1-37 0,0210 

15 T1-36 T1-36 vs T39 −0,339 H0 is not rejected no  D1-38 0,0240 

16 T1-36 T1-36 vs T40 −0,733 H0 is not rejected no  D1-39 0,0202 

T25 is the 25th observation data, and T1-24 is the 1st to 24th observation data. 

Table 2 shows the conditions for obtaining grades, namely data on the latest learning outcomes for 

each case in lower-level statistics courses. The latest results reference learning models used in higher-level 

statistics courses. In the 12th case, if no changes are made to the learning model (ignoring that H0 is rejected), 

the last learning model will no longer be effective. It happens because the data obtained in the form of 

statistical values used are no longer suitable if the last learning model is still applied. The result is that there 

is the same treatment in lectures, which may result in small grades in higher-level statistics courses. 
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Then, it is done using MAPE in Equation (15) to evaluate the prediction results from the predictive 

distribution model. The results of the MAPE calculations are described in Table 3. Based on the MAPE value 

criteria in Table 1, the MAPE value between the observations and the expected value compared to the new 

data in Table 3 indicates that the model used is accurate because the MAPE value is below 10%. 

Table 3. 𝐌𝐀𝐏𝐄 Score 

Observation 𝐌𝐀𝐏𝐄 score Interpretation 

P1-24 vs T25 0,75% Very accurate prediction 

P1-24 vs T26 0,95% Very accurate prediction 

P1-24 vs T27 1,23% Very accurate prediction 

P1-24 vs T28 1,54% Very accurate prediction 

P1-24 vs T29 2,92% Very accurate prediction 

P1-24 vs T30 2,48% Very accurate prediction 

P1-24 vs T31 3,53% Very accurate prediction 

P1-24 vs T32 2,77% Very accurate prediction 

P1-24 vs T33 8,72% Very accurate prediction 

P1-24 vs T34 8,18% Very accurate prediction 

P1-24 vs T35 6,18% Very accurate prediction 

P1-36 vs T37 5,13% Very accurate prediction 

P1-36 vs T38 5,67% Very accurate prediction 

P1-36 vs T39 3,25% Very accurate prediction 

P1-36 vs T40 4,85% Very accurate prediction 

   T25 is the 25th observation data, and P1-24 is expected value of the 1st to 24th observation data. 

The predictive distribution model for determining learning models has not been carried out by other 

researchers. The predictive distribution method for decision-making in determining learning models in 

statistics lectures is an implementation of previous research conducted by Indratno et al. [9]. The difference 

lies in the implementation of different case studies. They [9] discussed a case study about item delivery with 

a networking system and in the case of online decisions. The procedures Indratno et al. [9] recommended 

also apply to this study. The results can be seen in Table 3; the model used is accurate. 

For further research, we will use clustering techniques to determine the level of strategic competence 

of students in other courses as described in Yudhanegara and Lestari [12], Yudhanegara et al. [16], [17], [18]. 

In addition, we will also combine research using correspondence analysis for categorical data [19], a 

combination of correspondence analysis with clustering [17] [19] [20] [21], and a regression model [22] [23]. 

 

4. CONCLUSIONS 

Based on the simulation results and discussion, the use of a predictive distribution approach to predict 

dynamic data is very appropriate. It is measured through the MAPE score with the overall prediction results 

are very accurate. In addition, we can also analyze the errors generated from the testing algorithm, which are 

generally small error values when H0 is not rejected.  

The limitation of the research, i.e., predictive distribution, is built based on data under the assumption 

of a multinomial distribution with independent and identically distributed. From the research result, we can 

use a distribution approach to detect changes in new data distribution with historical data for the dynamic 

condition. If the changes are insignificant, direct instruction can still be used for the learning model. However, 

if the changes are significant, it is recommended to use a new learning model for the statistics group course 

at a higher level.  
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