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 ABSTRACT  

Article History: 
The National Exam, known as the UN score, is the final evaluation to determine the achievement 

of national graduate competency standards in the school. The determinants of the achievement 
of the standards cannot be separated from the role of schools and local governments in which 

this regard is known as nested. In the field of statistics, this phenomenon can be described with 

a multilevel model, where level-1 is the school while level-2 is the district where the school is 

located. Several multilevel models are used to describe the phenomenon. The result shows that 
the two-level regression model without interaction is selected as the best model and the variables 

that affect the UN average scores significantly at level-1 are school status (𝑋1), the ratio 

between laboratories and students (𝑋9), while the variable at level-2 is expenditure per capita 

of district/city (𝑍2). From this study, that educational institutions' steps in achieving a 
graduation standard can be right on the target. 
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1. INTRODUCTION 

Regression analysis is a method to examine the relationship between one dependent variable, 

symbolized by 𝑌, and one or more independent variables of 𝑋, both often shown in a linear nexus [1]. In the 

General Linear Regression model (GLR), each observation is assumed independently. However, this 

assumption is often violated if the observations are subjects from the same or nested group. For example, in 

the field of education [2], that the students are nested in the schools, and schools are nested, sometimes at the 

level above, such as area. Those data are violating the independent assumption. To solve the violation of the 

assumption, a multilevel regression is proposed. This multilevel regression is actually a development of a 

Linear Mixed Model (LMM) with two components composed of contextual analysis and mixed effects model 

[3]. The contextual analysis focuses on the influence of the social context on individual behaviors, whereas 

the mixed effects model emphasizes more on the variety of contributions given by the social context. 

Mathematically, the multilevel regression model can be written in Equation (1): 

𝑌𝑖𝑗 = 𝛾00 + ∑ 𝛾0𝑞𝑍𝑞𝑗
𝑄
𝑞=1 + ∑ 𝛾𝑝0𝑋𝑝𝑖𝑗

𝑃
𝑝=1 + ∑ ∑ 𝛾𝑝𝑞𝑋𝑝𝑖𝑗𝑍𝑞𝑗

𝑃
𝑝=1

𝑄
𝑞=1 + ∑ 𝑢𝑝𝑗𝑋𝑝𝑖𝑗

𝑃
𝑝=1 + +𝑢0𝑗 + 𝜀𝑖𝑗     (1) 

The multilevel regression model is a method for analyzing a data set with a hierarchical or clustered 

structure. Through multilevel regression, the complexity of estimation with GLR can be described by 

estimating 𝛾00, variance 𝑢0𝑗, 𝑝𝑞-slope, variance 𝜀𝑖𝑗 , and using the distribution assumptions of each error. 

The multilevel model can also capture the variability of each level through 𝑢0𝑗, 𝜀𝑖𝑗 , variance 𝑢𝑝, and the 

interaction of variables between levels via 𝛾𝑝𝑞. Ignoring the variability at each level will result in invalid 

traditional statistical analysis [4]; therefore, some researchers suggest employing the multilevel model [5]. 

The application of the multilevel regression model is mostly developed in education, such as the value 

of the National Examination (hereinafter referred to as UN) of students in schools. The UN is the final 

evaluation of students’ achievement within national graduate competency standards, carried out periodically 

by the government on specific subjects. This value becomes the basis for educational institutions to graduate 

students who meet the required competency standards. The factors that affect the achievement of graduate 

competency of students in a school are undoubtedly inseparable from the role of the school and local 

government.  This regard is known as nested. In the context of statistics, this phenomenon can be described 

with a multilevel model, where level-1 is the school, while level-2 is the district/city where the school is 

located. Using a multilevel model, the magnitude of the influence of schools, districts/cities, and the variety 

of components of each level can be obtained, so that educational institutions' steps in achieving a graduation 

standard can be right on the target. 

In the two-level multilevel model for UN scores, school-related attributes are defined at level-1, 

symbolized 𝑋𝑝𝑖𝑗  in Equation (1), while 𝑋𝑝𝑖𝑗  denotes factors that influence the UN scores, consisting of 

facilities and infrastructures. [6]  A correlation value between school facilities and infrastructure on learning 

motivation is 43.20%. [7] Then, the UN’s correlation value with learning motivation is obtained at 56.25%, 

which affects the UN score. Meanwhile, [8] prior study found that facilities and infrastructures significantly 

affect student learning outcomes. In addition, another factor used in modeling the average score of the UN is 

the quality of teachers. [9] It is obtained that the results of the study that teacher quality has a significant 

effect on UN scores. The number of study groups has become the determinant, and total graduates and 

laboratories [10], [11], as well as other factors, are also considered relevant to UN scores. 

From level-1 to level-2, it is symbolized 𝑍𝑞𝑗 as written in Equation (1). At this level, attributes related 

to districts/cities are defined, namely the value of the district/city's Gross Domestic Regional Product (GDRP) 

[12], components of the HDI include expenditure per capita and the average length of schooling. This study 

uses various multilevel modeling alternatives to see data trends. The selection of the best model uses the 

MSE, AIC values, and the smallest residual variance.  

The multilevel regression model also uses a statistical measure of the intraclass correlation coefficient 

(ICC). It was first introduced by Fisher in 1921 and utilized to measure sibling resemblance between siblings 

[13]. Afterward, ICC is widely applied in various fields, such as reliability measurement areas. In the same 

way, they classify the ICC values into four levels, namely poor, moderate, good, and excellent reliability 

[14], [15]. The ICC is also utilized in other fields. For instance, in the health field, it is used to conduct DNA 

microarray similarity experiments [16]. Up to now, ICC values have been widely used in multilevel models 

to measure the proportion of total variance between groups [17].  

 



BAREKENG: J. Math. & App., vol. 18(1), pp. 0323- 0332, March, 2024.     325 

 

2. RESEARCH METHODS 

2.1 Data 

One of the objectives of the multilevel model is to explore the influence of variables between levels so 

that explanatory variables are used at the school level and the district/city level. The data used in this study 

was secondary data obtained from the Ministry of Education and Culture for the school level, and the Central 

Bureau of Statistics for the district/city level. A total of 1597 observations were used in the study after 

cleaning the missing data. They were then divided into 
2

3
 data training and 

1

3
 data testing, so that in the model, 

1064 observations were used for training. They are observations at level-1 or, in this case, it is at the school 

level. The level-1 variables used in this study were related to the mean scores of the UN for Junior High 

Schools in terms of school status, infrastructure, teacher quality, and other variables considered relevant to 

the UN mean scores. 

Variables at level-2, there were 24 observations collected from BPS in the form of variables with 

respect to attributes in 24 districts/cities in South Sulawesi Province, namely Gross Regional Domestic 

Product, expenditure per capita, and average length of schooling. In a nutshell, the variables at level-1 and 

level-2, respectively, are presented in Table 1 as follows. 

Table. 1 Research Variables 

Symbol Variable Variable Operational Definition 

Level-1 Variable  

𝑌 Mean scores of national exams The average scores of the UN for all subjects 

in English, Indonesian, Mathematics, Science 

𝑋1 School Status School status is either State or Private 

𝑋2 Number of graduates the number of graduating students in the 

school 

𝑋3 The ratio of the number of students 

dropping out to the number of students 

the number of dropout students in the school 

𝑋4 Number of Study Groups The number of study groups in the school 

𝑋5 Percentage of certified teachers Percentage of the number of certified 

teachers to the total number of teachers 

𝑋6 Percentage of teachers with the 

educational background of Diploma 

(D4) and bachelor’s degree (S1)  

Percentage of teachers with the educational 

background of Diploma (D4) and bachelor’s 

degree (S1) to the total number of teachers 

𝑋7 Number of administrative staffs Quantity of administrative staff 

𝑋8 The ratio of the number of classrooms 

to the number of students 

The ratio of the number of classrooms to the 

total number of students 

𝑋9 The ratio of the number of laboratories 

to the number of students 

The ratio of the number of laboratories to the 

total number of students 

𝑋10 The ratio of the number of computers 

to the number of students 

The ratio of the number of computers to the 

total number of students 

𝑋11 Library availability Availability of libraries in the school 

𝑋12 Student council room availability Availability of student council room at the 

school 

𝑋13 The ratio of the number of toilets to the 

number of students 

The ratio of the number of toilets to total 

number of students 

Level-2 Variable 

𝑍1 District/City GRDP  

𝑍2 Expenditure per Capita   

𝑍3 The average years of the school  

 

2.2 Research Methods 

The modeling of the average score of the UN in Junior High School used stages adapted from [18] by 

employing a multilevel approach and is run from the simplest model to a more complex model recursively. 

M1 is the intercept only model. This is identified as the simplest model. Move up to the next model, that is 

M2, a two-level multilevel model with no independent variables at level-2. The next is M3, a two-level 

multilevel model with independent variables at level-1 and level-2, respectively, with random components at 
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the intercept. M4, a two-level multilevel model with independent variables at level-1 and level-2 without 

considering the interaction between independent variables at both levels with random components at the 

intercept and slope, and the final model is M5, a two-level multilevel model with independent variables at 

level-1 and level-2, considering the interaction between independent variables at both levels. These stages 

are as follows: 

a. Exploring the description of each variable to see the characteristic of every variable. 

b. Identifying the multilevel regression model. The modeling was undertaken in 1.064 schools in 24 

different districts/cities, so 𝑖 = 1,2, ⋯ ,1064; 𝑗 = 1,2, ⋯ ,24. 

1) Model-1 (M1): intercept-only model. This is a model without involving independent variable 

elements both at the level-1 and at the level-2, with a mathematical model as follows: 

𝑌𝑖𝑗 = 𝛾00 + 𝑢0𝑗 + 𝜀𝑖𝑗          (2) 

with, 𝑖 = 1,2, ⋯ ,1064; 𝑗 = 1,2, ⋯ ,24; 𝑢0𝑗~𝐼𝐼𝐷𝑁(0, 𝜎𝑢0𝑗
2 ); and 𝜀𝑖𝑗~𝐼𝐼𝐷𝑁(0, 𝜎𝜀𝑖𝑗

2 ). 

After obtaining the estimated model from M1, the next step is to calculate the ICC from the equation 

model as follows: 

𝐼𝐶𝐶 =
𝜏2

𝜏2+𝜎2         (3) 

 where, 𝜏2= variance 𝑢0𝑗and 𝜎2= variance 𝜀𝑖𝑗  

2) Model-2 (M2): a two-level multilevel model with no independent variables at level-2. This model is 

analogous to the mixed linear model (MLC) with random components at level-2 called as Variance 

Component Model (VCM). 

𝑌𝑖𝑗 = 𝛾00 + ∑ 𝛾𝑝0𝑋𝑝𝑖𝑗
13
𝑝=1 + 𝑢0𝑗 + 𝜀𝑖𝑗       (4) 

with, 𝑖 = 1,2, ⋯ ,1064; 𝑗 = 1,2, ⋯ ,24; 𝑢0𝑗~𝐼𝐼𝐷𝑁(0, 𝜎𝑢0𝑗
2 ); and 𝜀𝑖𝑗~𝐼𝐼𝐷𝑁(0, 𝜎𝜀𝑖𝑗

2 ). 

3) Model-3 (M3): a two-level multilevel model with independent variables at level-1 and level-2, 

respectively, with random components at the intercept. This model is similar to M2, but it adds 

variables at level-2. It is also referred to as the VCM. 

𝑌𝑖𝑗 = 𝛾00 + ∑ 𝛾0𝑞𝑍𝑞𝑗
3
𝑞=1 + ∑ 𝛾𝑝0𝑋𝑝𝑖𝑗

13
𝑝=1 + 𝑢0𝑗 + 𝜀𝑖𝑗      (5) 

with, 𝑖 = 1,2, ⋯ ,1064; 𝑗 = 1,2, ⋯ ,24; 𝑢0𝑗~𝐼𝐼𝐷𝑁(0, 𝜎𝑢0𝑗
2 );𝜀𝑖𝑗~𝐼𝐼𝐷𝑁(0, 𝜎𝜀𝑖𝑗

2 ). 

4) Model-4 (M4): A two-level multilevel model with independent variables at level-1 and level-2 

without considering the interaction between independent variables at both levels with random 

components at the intercept and slope. This model is known as the Random Coefficient Model (RCM). 

𝑌𝑖𝑗 = 𝛾00 + ∑ 𝛾0𝑞𝑍𝑞𝑗
3
𝑞=1 + ∑ 𝛾𝑝0𝑋𝑝𝑖𝑗

13
𝑝=1 + ∑ 𝑢𝑝𝑗𝑋𝑝𝑖𝑗

13
𝑝=1 + 𝑢0𝑗 + 𝜀𝑖𝑗    (6) 

with 𝑖 = 1,2, ⋯ ,1064; 𝑗 = 1,2, ⋯ ,24; 𝑢0𝑗~𝐼𝐼𝐷𝑁(0, 𝜎𝑢0𝑗
2 ); and 𝜀𝑖𝑗~𝐼𝐼𝐷𝑁(0, 𝜎𝜀𝑖𝑗

2 ) 

5) Model-5 (M5): A two-level multilevel model with independent variables at level-1 and level-2, 

considering the interaction between independent variables at both levels. This model is known as the 

Full Multilevel Model. 

𝑌𝑖𝑗 = 𝛾00 + ∑ 𝛾0𝑞𝑍𝑞𝑗
3
𝑞=1 + ∑ 𝛾𝑝0𝑋𝑝𝑖𝑗

13
𝑝=1 + ∑ ∑ 𝛾𝑝𝑞𝑋𝑝𝑖𝑗𝑍𝑞𝑗

13
𝑝=1

3
𝑞=1 + ∑ 𝑢𝑝𝑗𝑋𝑝𝑖𝑗

13
𝑝=1 + +𝑢0𝑗 + 𝜀𝑖𝑗 (7) 

with 𝑖 = 1,2, ⋯ ,1064; 𝑗 = 1,2, ⋯ ,24; 𝑢0𝑗~𝐼𝐼𝐷𝑁(0, 𝜎𝑢0𝑗
2 ); and 𝜀𝑖𝑗~𝐼𝐼𝐷𝑁(0, 𝜎𝜀𝑖𝑗

2 ). 

c.  Evaluating the goodness of fit model 

After analyzing several approaches used in the modeling, the next step was the evaluation of the 

goodness of fit model from valued of MSE [19], AIC [20], and the smallest residual variance. Residual 

variance is the statistical indicator to know that the multilevel model works for the data. The smallest residual 

variance, the better the model [21]. The MSE value was generated from the testing data, which is  
1

3
 from a 

total of observations so that as many as 532 observations were used to calculate the MSE from the five models 

used, 𝑞 = 1, 2, ⋯ , 532; 𝑚 = 1, 2, ⋯ , 5. Mathematically, the MSE and AIC models can be written as follows: 
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𝑀𝑆𝐸𝑀𝑚
=

1

𝑄
∑ (𝑌𝑞 − �̂�𝑞)

2𝑄
𝑞=1 ; 𝑞 = 1, 2, ⋯ , 532; 𝑚 = 1, 2, ⋯ , 5;      (8) 

with, 

𝑌𝑞 = actual data; 

�̂�𝑞 = predictive data; 

𝐴𝐼𝐶𝑀𝑚
= 𝑑 + 2𝑝;          (9) 

𝑑 = deviance; 

𝑝 = the number of estimated variables. 

 

3. RESULTS AND DISCUSSION 

3.1 Exploration of the Description of Each Variable 

Before conducting a multilevel analysis, an exploration of each variable related to the descriptive value 

was carried out so that the distribution of variables is generally seen. The description for continuous variables 

is as follows. 

Table 2. Descriptive Statistics 

 Min Q1 Average Q3 Max 

𝑌 32.83 42.61 48.68 52.77 83.33 

𝑋2 0 25 82.93 105 816 

𝑋3 0 0 0.088 0 9.4 

𝑋4 2 3 9.476 13 48 

𝑋5 0 21.43 42.34 63.64 100 

𝑋6 33.33 94.44 95.83 100 100 

𝑋7 0 2 4.681 7 31 

𝑋8 0.009 0.037 0.051 0.056 0.4 

𝑋9 0 0 0.007 0.009 0.19 

𝑋10 0 0 0.028 0.029 0.8 

𝑋13 0.001 0.01 0.028 0.035 0.4 

𝑍1 25.07 32.81 43.77 45.94 106.2 

𝑍2 7087 9291 10663 11834 16597 

𝑍3 6.21 9.29 7.797 7.97 11.1 

Source: Output of data processing 

Based on the results of data exploration, by looking at the minimum and maximum values of each 

variable, there is a large difference between variable values. Then, a transformation is carried out. As a 

consequence, the results of the transformation of these variables are then used in the subsequent analysis 

stage. Afterward, taking a closer look at the distribution of the mean score of the UN for every district/city. 

The figure is shown as follows. 

 
Figure 1. Mean Scores of the UN for Schools for Every Districts/Cities 
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Figure 1 is an illustration of the distribution of the average values of the UN for schools in every 

district/city. Based on Figure 1, every district/city has different mean values, so it indicates that there is an 

effect of the variable from each place resulting in the difference, and it is necessary to do further identification. 

3.2 Identifying Multilevel Models 

Random components: 

Table 4. Random Model Component Values 

 M1 M2 M3 M4 M5 

Var. St. 

Dev 

Var. St. 

Dev 

Var St. 

Dev 

Var. St. Dev Var. St. Dev 

Intercept 

(district) 
16.51 4,064 16.20 4,024 18.78 4,334 21.8 4,669 21,737 4,662 

Residual 57.24 7,566 54.91 7,410 54.26 7,366 52.81 7,267 53,389 7,307 

  

The estimation of random component parameters is shown in Table 4. It implies that the residual 

variance values of each model are 57.24 for M1, 54.91 for M2, 54.26 for M3, 52.81 for M4, and 53.389 for 

M5, respectively. Based on the result, it indicates that the smallest residual variance value is found in M4, 

which is a multilevel model without involving interactions between independent variables at each level. 

Afterward, the variance components of the variables in M4 are identified. They disclose how much diversity 

is given by each variable to the model.  

 

Table 5. Fixed Model Component Values 

 Coefficient of Model 

 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 𝑴𝟓 

Intercept  48.4* 47.37* 39.2* 42.109* 44.64* 

X1 - −2.949* 3,711* 3,592* 3,608* 

X2 - −0.092 -0.25 - - 

X3 - −0.58 -0.58 - - 

X4 - 0.11 0.13 - - 

X5 - −0.97* -0.93* -0.2 - 

X6 - 0.47* 0.52* - - 

X7 - −0.6 -0.52 - - 

X8 - 11.48 11.8 - - 

X9 - 105.78* 100.2* 66.8* -133.1 

X10 - 8.08* 7,71* 1.44 - 

X11  −0.67 -0.49 - - 

X12  0.71 0.68 - - 

X13  −20.571 -19.9   

Z1 - - 0.03 -0.101* -0.111* 

Z2 - - 5.98× 10−4* 0.001* 3.63× 10−4 

Z3 - - 2.5× 10−2 - - 

X1: Z2 - - - - 3.29× 10−4 

X9:Z2 - - - - 1.46× 10−2 

* statistically significant 

Source: Output of data processing 

a. M1 

Hypotheses: 

𝐻0:𝛾00 = 0 

𝐻1:𝛾00 ≠ 0 

By using the CI values in Table 5, the interval values do not contain zero, so the model intercept is 

significant. Therefore, the equation of M1 can be written as follows: 

�̂� = 48,372        (10) 

After estimating the parameters from M1, the ICC value should be calculated as follows: 
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𝐼𝐶𝐶 =
𝜏2

𝜏2+𝜎2 =
16.51

16.51+57.24
= 0.224     (11) 

One of the statistical measures used in the multilevel model is ICC. The ICC value of M1 shows 

0.224 or 22.4%. This indicates that the proportion of variance from the average scores of the UN is 

22.4%, which can be explained by districts/cities. Similarly, ICC values are generated by prior studies 

[22], [23]. This value is considered relatively small to be an indicator of the similarity of schools for 

each district/city. However, [18] they obtained the ICC value of 36% for the intercept-only model 

concerning student popularity data and concluded that the value is relatively large in the area of social 

studies. So that the ICC values obtained in this model are relatively fit in multilevel modeling. 

b. M2 

After conducting the analysis, the following results were obtained: 

Hypothesis: 

𝐻0:𝛽1 = 𝛽2 = ⋯ = 𝛽10 = 0 

By paying attention to the CI values in Table 7, it shows that the intervals that do not contain zero are 

the intercept, 𝑋1, 𝑋5, 𝑋6, 𝑋9, 𝑎𝑛𝑑 𝑋10, respectively. So that the model can mathematically be written 

as follows. 

�̂� = 47.371 − 2.949𝑋1 − 0.973𝑋5 + 0.468𝑋6 + 105.776𝑋9 + 8.078𝑋10  (12) 

Based on the results of the estimation, it is found that the significant variable is 𝑋1, namely, 

school status, with a coefficient of -2.949, in this case, addressed to private or public schools. 

Frequently, the school status affects students' quality, so it also indirectly impacts the mean score of 

the UN. A private news portal published that private schools occupied the top 10 UN scores for Junior 

High School in Makassar. This result aligns with prior studies [24], [25]. Another significant variable 

relates to teacher quality generating 𝑋5 with a coefficient of -0.973. This negative value means that if 

certified teachers go up 1%, the average scores of the UN decline by 0.973. Then,  𝑋6 is the percentage 

of teachers with a minimum education of diploma and bachelor’s degree. The result shows 0.468. This 

indicates that every increase in terms of teachers with the educational background of diploma and 

bachelor’s degree is about 1%, and average scores of the UN tend to go up around 0.468. These results 

are in line with prior studies [9], [26]. In addition, other variables (𝑋9 and 𝑋10) in relation to 

infrastructure are significant, 𝑋9 and 𝑋10 variables respectively represent the ratio of the number of 

laboratories to the number of students [11] and the ratio of the number of computers to the number of 

students [27]. 

c. M3 

After conducting the analysis, the following results were obtained: 

Level-1 hypothesis: 

𝐻0:𝛽1 = 𝛽2 = ⋯ = 𝛽10 = 0 

Level-2 hypothesis: 

𝐻0:𝛾1 = 𝛾2 = 𝛾3 = 0 

The analysis results for M3 are similar to M2, where the significant variables in each model are not the 

same, namely 𝑋1, 𝑋5, 𝑋6, 𝑋9, 𝑋10, and 𝑍2. The significant variables are further used in the modeling, 

namely M4 and M5.  

Mathematically, M4 can be written as follows: 

�̂� = 39.14 + 5.984 × 10−4𝑍2 − 2.813𝑋1 − 0.931𝑋5 + 0.518𝑋6 + 100.2𝑋9 + 7.709𝑋10  (13) 

d. M4 

Level-1 hypothesis: 

𝐻0:𝛽1 = 𝛽5 = 𝛽6 = 𝛽9 = 𝛽10 = 0 

Level-2 hypothesis: 

𝐻0:𝛾2 = 0 
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As shown in Table 5, the estimated values of parameters of the variables that have been defined in the 

previous step are found that the intercept, variable coefficients 𝑋1, 𝑋9 and 𝑍2 are significant variable 

coefficients. Thus, the model can mathematically be written as follows. 

�̂� = 42.109 + 9.691 × 10−4𝑍2 − 2.913𝑋1 + 66.761𝑋9     (14) 

In terms of M4, it denotes the RCM model. Variables used in this model are significant, as 

described in the previous model. Based on analysis results, significant variables that change from M2 

to M4 are obtained. These variables include 𝑋1, 𝑋9 and 𝑍2, where 𝑍2 is expenditure per capita in the 

district/city over the period of 2018. The following model is M5. It is a full multilevel model with the 

same variables used in modeling as M4. After conducting analyses, the result is found that none of the 

variables have a significant effect on the UN average scores. 

e. M5 

After conducting the analysis, the following results were obtained. 

Level-1 hypothesis: 

𝐻0:𝛽1 = 𝛽5 = 𝛽6 = 𝛽9 = 𝛽10 = 0 

Level-2 hypothesis: 

𝐻0:𝛾2 = 0 

Interaction hypothesis: 

𝐻0:𝛾12 = 𝛾92 = 0 

Table 5 shows the estimated value for each parameter. It is found that only the intercept is significant, 

while other variables and interactions between variables also show insignificant. Mathematically, M5 

can be written as follows. 

�̂� = 44.64         (15) 

3.3 Best Model Selection 

After the modeling using five approaches, the next step is to select the best model with the criteria of 

the MSE, AIC, and the smallest residual variance. These values are presented in Table 6 below. 

Table 6. Criteria for the Goodness of the Model 

Model MSE AIC Residual Variance 

M1 62,19 7383.66 57.24 

M2 59,82 7303.87* 54.91 

M3 58,89 7312.10 54.26 

M4 57.96* 7308.32 52.81 * 

M5 59,14 7345.82 53,389 

Source: Output of data processing 

 

Based on Table 6, the best model is M4, which is the RCM model without involving interactions 

between variables at each level. In addition to the interpretation of the variance components of the variables 

in M4, the variance component explains how much diversity is given by each variable to the model. The 

results show 1.97 (𝑋1)9.25 × 10−4,  (𝑋5) 2.789 × 10−3( 𝑋6)  76.09 ( 𝑋9)  and 236.6( 𝑋10).  

 

4. CONCLUSIONS 

Based on the result of data analysis, this study concludes that M4 is the best model for modeling mean 

scores of the UN for junior high school students in 24 districts/cities in South Sulawesi Province, where 

significant variables at the level-1 are school status (𝑋1), and the ratio of the number of laboratories to 

students (𝑋9), while at the level-2, the variable is the expenditure per capita of district/city (𝑍2). The 



BAREKENG: J. Math. & App., vol. 18(1), pp. 0323- 0332, March, 2024.     331 

 

modeling method in this research for the mean score of the UN ignores the missing observations, in this case, 

it is eliminated. Meanwhile, the number of missing observations can reduce information on the actual data. 

So that, for further modeling, it is suggested to apply method by considering the values of the missing 

observations without eliminating initial observations. Furthermore, in the modeling, independent variables 

are mostly used, thereby providing opportunities for interactions or correlations between independent 

variables. As a suggestion for further additional modeling, the use of the method of reduction or selection of 

variables, such as multilevel factor analysis, multilevel analysis with LASSO, or other methods, should be 

taken into consideration. 
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