
 

          https://doi.org/10.30598/ barekengvol18iss1pp0579-0588 
 

P-ISSN: 1978-7227   E-ISSN: 2615-3017 
 

BAREKENG: Journal of Mathematics and Its Applications 
March 2024     Volume 18 Issue 1 Page 0579–0588 

   

 

579 
      

 

 ARIMA MODEL VERIFICATION WITH OUTLIER  

FACTORS USING CONTROL CHART  
 
 Tarisa Umairah1, Nurfitri Imro’ah2*, Nur’ainul Miftahul Huda3   

 
1,2Statistics Department, FMIPA, Universitas Tanjungpura 

Prof. Dr. H. Hadari Nawawi St., Pontianak City, 78124, Indonesia 
3Mathematics Department, FMIPA, Universitas Tanjungpura 

Prof. Dr. H. Hadari Nawawi St., Pontianak City, 78124, Indonesia 

Corresponding author’s e-mail: 2* nurfitriimroah@math.untan.ac.id  

 

ABSTRACT 

Article History: 
Control charts are often used in quality control processes, especially in the industrial sector 

because of their significant benefits in increasing industrial production. However, control charts 

can also be used in time series modeling to evaluate measures of accuracy represented by a 

particular time series model. The application of control charts in this research meets the criteria 

for evaluating accuracy. However, it is not certain that the time series model will have a high 

level of accuracy. There are various factors that can influence this phenomenon, one of which 

is the potential for outliers. Therefore, it is very important to perform time series modeling by 

adding an outlier factor. The residuals of the time series model obtained are used to create a 

control chart for model verification. The aim of this research is to evaluate the validity of time 

series models by looking at the influence of outlier characteristics to improve their accuracy. 

This research studies the accuracy of a time series model built using Gross Domestic Product 

(GDP) data in Indonesia from 1975 to 2021. There are two different models, namely the ARIMA 

model without outlier factors and the ARIMA model with outlier factors which are used for 

research purposes. Both models were performed using the same data set. The results of this 

study indicate that the ARIMA model with outlier factors has better accuracy than the ARIMA 

model without outlier factors. This conclusion can be drawn based on the observation that the 

residual value is within the predetermined control limits, thus indicating that the process is in a 

state of statistical control. 
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1. INTRODUCTION 

Control charts are frequently used in Statistical Process Control (SPC) in the industrial sector for tasks 

such as determining process quality, determining process capability, determining when the process is 

executed, and determining why product quality criteria are not met [1]. Control charts are also incredibly 

useful for managing the primary materials that will eventually become finished goods, specifically for 

improving product quality, reducing waste, increasing manufacturing capacity, minimizing damage, and 

enhancing consumer values [2]. However, control charts can also be used in time series modelling to assess 

the model's accuracy. 

The Box-Jenkins method, also known as the Autoregressive Integrated Moving Average (ARIMA) 

technique, is one of the time series modelling techniques [3]. In the 1960s, George Box and Gwilym Jenkins 

introduced and developed this technique [4]. The ARIMA approach takes into account time series concepts 

including the stationary test, parameter estimation, and diagnostic tests. Comparatively to other forecasting 

techniques, the ARIMA method's computation procedure may be viewed as quite complex, and there is no 

guarantee that the resulting time series model will be highly accurate. There are a variety of factors that can 

affect it, including the existence of outliers. Consequently, it is necessary to conduct time series modelling 

and incorporate outlier components [5]. Unexpected or unusual events, such as sudden political or economic 

crises, strikes, war outbreaks, and even typographical and speculative recording errors, frequently have an 

impact on time series observations that are outliers [6]. In a time series, there are two categories of outliers: 

Additive Outliers (AO) and Innovative Outliers (IO) [7]. Verification of the ARIMA model using a control 

chart was carried out to determine the presence of outliers [8]. It turned out that there were residual values 

that were out of control because they had extreme values. It can be assumed that the ARIMA (1,0,0) model 

contains outlier [9]. 

This study assesses the accuracy of the time series model developed using Indonesian Gross Domestic 

Product (GDP) data. GDP measures all goods and services produced by a region's production facilities over 

a given time period [10]. The GDP has always impacted Indonesia's economy [10]. Indonesia's economic 

growth is influenced by an increase in GDP, and economic growth is closely related to GDP. Rapid GDP 

growth indicates economic expansion which increases people's purchasing power. GDP can experience 

drastic changes if there is an extraordinary economic event such as a financial crisis or significant natural 

disaster [11]. So this study uses two different models: an ARIMA model without outliers and an ARIMA 

model that includes outliers.  

 

2. RESEARCH METHODS 

2.1     Autoregressive Integrated Moving Average (ARIMA) 

A Time series model known as ARIMA can also be applied to non-stationary data [12]. The stationary 
test, a key assumption in analyzing time series models in order to develop a successful model, stipulates that 

the time series data utilized in the ARIMA model must be stationary [13]. The time series data are stationary 
when the mean and variance for each latency are constant or fixed over time [14]. The time series data must 
fulfill these conditions in order to be considered stationary. The stationarity of the time series is determined 
visually in this study. The plots visually determine whether or not a data set is stationary. If the data is 
stationary, the plot has a constant trend around a relatively fixed average value, or there is no discernible 
upward or downward trend [14]. The applied ARIMA model is defined by three orders: 𝑝, 𝑑, and 𝑞, where 𝑝 
is the order of the AR model, 𝑞 is the order of the MA model, and d is the order of the differentiating process 
[15]. Therefore, the ARIMA model can be written with ARIMA (𝑝, 𝑑, 𝑞) with the general form as follows. 

 𝜙𝑝(𝐵)(1 − 𝐵)
𝑑𝑋𝑡 = 𝜃𝑞(𝐵) 𝑒𝑡 (1) 

 

where, 
𝜙𝑝  : 𝑝 – parameter coefficient for autoregressive 

𝜃𝑞  : 𝑞 – parameter coefficient for moving average 

𝑋𝑡   : observations at 𝑡-time with 𝑡 =  1, 2,⋯ , 𝑛 
𝑒𝑡   : residual at 𝑡-time with 𝑡 = 1,2,⋯ , 𝑛 
(1 − 𝐵)𝑑  : 𝑑-order differentiation 
𝐵   : backshift operator  
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2.2     Time Series Control Chart  

A control chart is a tool used to determine whether a process is statistically under control to address 

problems and improve quality [16]. On the control chart, there are three lines: the Centre Line (CL), the 

Upper Control Limit (UCL), and the Lower Control Limit (LCL) [17]. CL represents the mean value of 

quality attributes, while UCL and LCL are control limits [18].  
The control chart's underlying assumptions are independence and the absence of correlation between 

observations [16]. The observations utilized by the time series control chart are residuals because the residual 

assumption in the time series model is white noise, which is autocorrelated and independent of time. The 

residual model only takes into account a single variable [19]. Control charts for time series models can be 

applied to any model, assuming that residuals are white noise. If these conditions are satisfied, the calculations 

can be represented on an IMR control chart [16]. As a control chart, this study employs the IMR control 

chart. IMR control charts are used for continuous data with a single group size, and the calculations are as 

follows [16]: 
 

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑝𝑙𝑜𝑡 ∶  

{
 
 

 
 𝑈𝐶𝐿 =  �̅� + 3

𝑀𝑅̅̅̅̅̅

𝑑2
𝐶𝐿 = 0

𝐿𝐶𝐿 =  �̅� − 3
𝑀𝑅̅̅̅̅̅

𝑑2 

 

 

(2) 

and 
 

 𝑀𝑜𝑣𝑖𝑛𝑔𝑟𝑎𝑛𝑔𝑒 𝑝𝑙𝑜𝑡 ∶  {

𝑈𝐶𝐿 = 𝐷4 ×𝑀𝑅̅̅̅̅̅

𝐶𝐿 = 𝑀𝑅̅̅̅̅̅

𝐿𝐶𝐿 = 0
 

 (3) 

where 𝑀𝑅̅̅̅̅̅ is the average of 𝑀𝑅𝑡 with 𝑀𝑅𝑡 = |𝑥𝑡 − 𝑥𝑡−1|, 𝑥𝑡 is 𝑡-th observation, 𝑑2 and 𝐷4are constants.  
 

2.3     Innovative Outlier (IO)  

Outliers are random and unexpected observations unrelated to specific occurrences, such as political 

policies and natural disasters [20]. Time series data has the ability to detect outliers [5]. The presence of 

outliers can lead to biassed parameters and invalid results [21]. Detecting outliers becomes an essential stage 

that must also be performed on time series data to mitigate this effect. Outlier detection was first introduced 

by Fox (1972) and Wei (2006) [22]. Fox (1972) introduced AO (Additive Outlier) and IO (Innovative 

Outlier), while Tsay (1988) introduced LS (Level Shift) and TC (Temporary Change) [23]. Type AO impacts 

only the T observation. While the IO, LS, and TC types are outliers that influence the T, T+1, T+2, ... 

observations [24]. In this paper, the outlier discussed is IO. The following is the general form of the outlier 

factors 

 

𝑌𝑡 =∑𝜔𝑗𝜈𝑗(𝐵)𝐼𝑡
(𝑇𝑗) +

𝜃(𝐵)

𝜙(𝐵)
𝑒𝑡

𝑘

𝑗=1

 (4) 

where 𝜈𝑗(𝐵) =   
𝜃(𝐵)

𝜙(𝐵)
 for an IO at time 𝑇𝑗 [25]. And IO detection on time series as follows: 

 
𝑌𝑡 =

𝜃(𝐵)

𝜙(𝐵)
𝑒𝑡 +

𝜃(𝐵) 

𝜙(𝐵)
𝜔𝐼𝑡

(𝑇) =
𝜃(𝐵) 

𝜙(𝐵)
 (𝑒𝑡 + 𝜔𝐼𝑡

(𝑇)) (5) 

On modelling data suspected of containing IO, a procedure for iterative outlier detection will be applied. 

Following is the iterative procedure [26], [27] : 

1. Assume the data 𝑿𝒕 has no outlier. Then calculate the residual from the estimated model as follows:  

 �̂�𝒕 = 𝑿𝒕 − �̂�𝒕 (6) 

and calculate the variance of residuals �̂�𝒆
𝟐 such that:  

 
�̂�𝒆
𝟐 =

𝟏

𝒏
∑�̂�𝒕

𝟐

𝒏

𝒕=𝟏

 (7) 

2. Calculate �̂�𝟏,𝑻 as outlier detection parameter, such that �̂�𝟏,𝑻 = (�̂�𝒆)
−𝟏�̂�𝑻 where T show the maximum 

occurrence time. If 𝜼𝒕 = |�̂�𝟏,𝑻| > 𝑪, then there is an IO at time 𝑻. Then modifying the residual 

according to the type of detected outlier (IO)  
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 �̃�𝒕 = �̂�𝒕 − �̂�𝑰𝑻 (8) 

where, �̂�𝑰𝑻 = �̂�𝒕 for IO [28]. 

For �̃�𝒆
𝟐 calculated through the modified residual 

3. Recalculate �̂�𝟏,𝑻 based on the new residual value and �̃�𝒆
𝟐, then repeat the second step  and stop the 

iteration until no outliers can be identified. 

 

2.4     Modeling Procedure  

In this study, data analysis is performed by constructing an ARIMA model from time series data. Then, 

the optimal model is determined using ARIMA, and the model's residuals are used to determine the presence 

of outliers. A control chart is used to detect outliers; if it is out of control, then there are outliers. Figure 1 

provides additional information about this study's methodology. Figure 1 also describes the outlier procedure. 

For more details, the procedures for this research can be seen in Figure 1. 

 

       
  Figure 1. Flowchart Verification ARIMA Model with Outlier Factor Using Control Chart 

 

3. RESULTS AND DISCUSSION 

In this research, secondary data on the growth of Indonesia's Gross Domestic Product (GDP) in the 

form of percentages obtained from the World Bank website is employed. The size of the data used in this 

study is 47 from 1975 until 2021. These data are used to develop a time series model, from which two models 

are derived: the ARIMA model with outlier factors and the ARIMA model without outlier factors. Figure 2 

below presents a plot of the data used.  
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 Figure 2. Plot Data GDP in Indonesia 

 
In 1980, the GDP in Indonesia had the highest growth value when compared to other years, namely 

10% (Observations are marked in green in Figure 2) which indicated the maximum value in the data because 

exports and imports in Indonesia increased in 1980 and caused GDP in Indonesia increased in that year. 

Otherwise, the value of GDP growth in Indonesia was lowest in 1998, namely -13.13% (Observations are 

marked in red in Figure 2) which indicated the minimum value in the data due to the monetary crisis in 1998, 

which made the country’s economy very weak and harmed GDP growth in Indonesia. It can be seen from the 

orange line on the plot that the mean value of the data is quite far when compared to the maximum and 

minimum values in the data, namely 5.16 (Observations are marked in the orange line in Figure 2). It, raises 

suspicions of outliers in the data. In this study, the stationarity test was carried out visually. This can be seen 

from the time series data plot because if you look at the plot, the data tends to be constant around the average 

value. 

 

3.1. Autoregressive Integrated Moving Average (ARIMA) Model  

In this study, the GDP data were visually stationary in variance and mean, so plot of stationary test was 

sufficient for this investigation. The stationary data are used to determine the 𝑝 and 𝑞 orders. Order 

identification is accomplished by examining the cut-off latency or tail-off lag in the ACF and PACF plots.  

 

      
           (a) (b) 

Figure 3. (a) ACF Plot from Data Used, (b) PACF Plot from Data Used 

 
The ACF and PACF plots cut-off after the first lag. Because it is stationary, the appropriate model 

assumptions in this case study are ARIMA (1,0,0), ARIMA (0,0,1), and ARIMA (1,0,1). The estimated 

parameters are shown in Table 1. 
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Table 1. Parameter Estimation for Each Model 

Model Parameter Residual Plot for Diagnostic Test 
Model Accuration 

AIC MAPE MASE 

ARIMA 

(1,0,0) 
𝜙 0.30 

 
Pass Diagnostic Tests 

 
Pass Diagnostic Tests 

248.46 33.01 0.76 

ARIMA 

(0,0,1) 
𝜃 0.36 

 
Pass Diagnostic Tests 

 
Pass Diagnostic Tests 

247.67 35.51 0.77 

ARIMA 

(1,0,1) 

𝜃 -0.13 

 
Pass Diagnostic Tests 

 
Pass Diagnostic Tests 

249.59 34.80 0.78 

𝜙 0.48 

 

A diagnostic test has been carried out on the residuals in each model, which consists of an independence 

test by looking at the ACF plot of the residual model and the normality test. The purpose of the diagnostic 

test is to ensure that the results of the study are unbiased, consistent, and accurate in estimation. From Table 

1 it is known that the three ARIMA models are within the significance line, meaning that the residuals of the 

three models are independent of each other between time lags and visually the residuals of the three models 

can be said to be normal. This can be seen from most of scatter points of the residuals of the three models 

following the reference line. In Table 1 there are red numbers which mean the smallest values of AIC, MAPE, 

and MPE for each model. Because the time lag is within the significance line and the residuals are normally 

distributed, the three models pass the residual diagnostic test. The last step in forming the ARIMA model is 

selecting the best model which is also presented in Table 1. Seen from the AIC, MAPE, and MPE values of 

the three models, the best model was obtained, namely the ARIMA model (1,0,0) because it has the smallest 

MAPE and MPE values compared to the other two models.  

 
3.2. Time Series Control Chart  

The best model that has been tested for diagnostic testing is the ARIMA model (1,0,0), the model is 

then verified using a control chart to see whether the model is really good by plotting the residuals on the 

control chart. In this investigation, only individual plots from the control chart were utilized, while the moving 

range plot was disregarded. Based on Equation (2) the control chart is obtained as follows.  

 
Figure 4. Control Chart of ARIMA Model Residual (1,0,0) 

 

Figure 4 demonstrates the residuals of the ARIMA model (1,0,0), which are out of control due to multiple 

out-of-control points presence. A residual value outside the control limit indicates a substantial difference 

between the residual value and other residual values. Thus, the disparity between the observed data and the 

estimated data becomes substantial. It is because of the presence of outliers in the data. To assess the ARIMA 

(1,0,0) model, an outlier factor is added.  
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3.3. Autoregressive Integrated Moving Average (ARIMA) with Outlier Factors  

Verification of the ARIMA model using a control chart was carried out to determine the presence of 

outliers. It turned out that there are residual values that are out of control because they had extreme values. It 

can be assumed that the ARIMA (1,0,0) model contains outliers. In this study, outlier detection was carried 

out by an iterative procedure. Each addition of outliers is checked with a control chart until the iteration 

process will stop when no outliers are detected. The following is a model formed through the outlier detection 

process using an iterative procedure: 

1. ARIMA Model (1,0,0) without outlier factors  

 𝑋𝑡 = 0.30𝑋𝑡−1 + 𝑒𝑡 (9) 

2. ARIMA Model (1,0,0) with outlier factors in the first iteration :  

There are two outliers detected in the first iteration, namely at the 24th and 46th times. Then the outliers 

are added to the ARIMA model (1,0,0) marked in blue.  

 𝑌𝑡 = 2𝜙1𝑌𝑡−1 − (𝜙1)
2 𝑌𝑡−2 + 𝑒𝑡 − 𝜙1𝑒𝑡−1 +𝜔1𝐼𝑡

(24)
+𝜔2𝐼𝑡

(46)
 (10) 

After that, parameter estimation is carried out so that Equation (10) becomes Equation (11) 

 𝑌𝑡 = 0.58𝑌𝑡−1 − 0.08𝑌𝑡−2 + 𝑒𝑡 − 0.29𝑒𝑡−1 +𝜔1𝐼𝑡
(24)

+𝜔2𝐼𝑡
(46)

 (11) 

with the following control chart  

 
Figure 5. Addition of Outlier Factors in the First Iteration 

 

3. ARIMA Model (1,0,0) with outlier factors in the second iteration : 

In the second iteration there is one outlier detected, namely at the 8th time which is then added to 

Equation (12) 

 𝑌𝑡 = 2𝜙1𝑌𝑡−1 − (𝜙1)
2𝑌𝑡−2 + 𝑒𝑡 − 𝜙1𝑒𝑡−1 +𝜔1𝐼𝑡

(24) +𝜔2𝐼𝑡
(46)

+ 𝜔3𝐼𝑡
(8)

 (12) 

After that, parameter estimation is carried out so that Equation (12) becomes Equation (13) 

 𝑌𝑡 = 0.62𝑌𝑡−1 − 0.09𝑌𝑡−2 + 𝑒𝑡 − 0.31𝑒𝑡−1 +𝜔1𝐼𝑡
(24) +𝜔2𝐼𝑡

(46)
+ 𝜔3𝐼𝑡

(8)
 (13) 

with the following control chart  

 
Figure 6. Addition of Outlier Factors in the Second Iteration 

4. ARIMA Model (1,0,0) with outlier factors in the third iteration : 

In the third iteration there is two outlier detected, namely at the 6th and 11th times which is then added 

to Equation (14) 

 𝑌𝑡 = 2𝜙1𝑌𝑡−1 − (𝜙1)
2𝑌𝑡−2 + 𝑒𝑡 − 𝜙1𝑒𝑡−1 +𝜔1𝐼𝑡

(24) +𝜔2𝐼𝑡
(46) +𝜔3𝐼𝑡

(8) +𝜔4𝐼𝑡
(6)

+𝜔5𝐼𝑡
(11)

 
(14) 

After that, parameter estimation is carried out so that Equation (14) becomes Equation (15) 
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 𝑌𝑡 = 0.62𝑌𝑡−1 − 0.09𝑌𝑡−2 + 𝑒𝑡 − 0.31𝑒𝑡−1 +𝜔1𝐼𝑡
(24) +𝜔2𝐼𝑡

(46) +𝜔3𝐼𝑡
(8) +𝜔4𝐼𝑡

(6)

+𝜔5𝐼𝑡
(11)

 
(15) 

 

with the following control chart  

 
Figure 7. Addition of Outlier Factors in the Second Iteration 

After adding the outlier factor to the ARIMA model (1,0,0), it was formed in the third iteration, then 

outlier detection was carried out in the fourth iteration. It turned out that in the fourth iteration no outliers 

were detected, thus using an iterative procedure three iterations were carried out to detect and add outlier 

factors. Meanwhile, the number of outliers detected was five outliers, namely at the 24th, 46th, 8th, 6th and 

11th time.  

 Checking the residuals from each iteration uses a control chart as shown in Figure 5, Figure 6, and 

Figure 7. Based on Figure 7, there are no points that are outside the control limits on each plot or the residuals 

are within the control limits. Therefore, the ARIMA model (1,0,0) with outlier factors at the 24th, 46th, 8th, 

6th and 11th times is an accurate model for predicting the future period. Alternatively, it can be stated that 

this model is an optimal model because the residuals are statistically controlled. The next step is to carry out 

a diagnostic test on the residuals from the ARIMA model (1,0,0) with outlier factors (24,46,8,6,11). The 

diagnostic tests carried out are the same as those in Table 2. 

 
Table 2. Diagnostic Test 

Model Residual Plot for Diagnostic Test 

ARIMA (1,0,0) + 

Outlier Factors 

(24, 46, 8, 6, 11) 

  

 

Based on Table 2 demonstrates that residuals are independent of time latency and have a normal 

distribution. This shows that adding an outlier factor to the ARIMA Model (1,0,0) can make up for outliers 

in the residuals. This means that the ARIMA Model (1,0,0) with outlier factors can be used. Figure 8 has 

plots that show comparisons between real data, ARIMA model estimation data (1,0,0) without outliers, and 

ARIMA model estimation data (1,0,0) with outlier factors. It can be seen that there are differences in the 

movement of ARIMA data patterns without outliers and ARIMA with outlier factors. A comparison between 

actual data, ARIMA model estimation data (1,0,0) without outlier factors, and ARIMA model estimation data 

(1,0,0) with outlier factors is shown in plot form in Figure 8. 
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Figure 8. Comparison Plot between Actual Data, ARIMA Model Estimation Data (1,0,0) without Outlier 

Factors, and ARIMA Model Estimation Data (1,0,0) with Outlier Factors 

 
 Figure 8 shows the difference in movement of ARIMA data patterns without outlier factors and 

ARIMA with outlier factors. Based on Figure 8, it can be seen that the ARIMA model which has not added 

an outlier factor does not yet have a pattern that matches the actual data pattern (observations are marked 

with a blue line). Therefore, an outlier factor was added because it was suspected that there was an outlier so 

that the ARIMA model pattern could match the actual data pattern. After adding the outlier factor, it was seen 

that the ARIMA model already had a pattern that matched the actual data (observations marked with an 

orange line) 

 

4. CONCLUSIONS 

The accuracy of the time series model derived from Indonesia's GDP data is evaluated using the 

ARIMA model without outliers and the ARIMA model with outliers. Both models are executed using the 

same set of data. The results of this study indicate that the ARIMA model with outlier components produces 

a high degree of accuracy. The residual values are within the control limits (in control), which demonstrates 

this conclusion quite plainly. 
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