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ABSTRACT 

Article History: 
Intervention analysis measures the impact of various external events or interventions capable 

of changing data patterns. This research aims to determine the outliers handling on the seasonal 

ARIMA intervention model using the Box-Jenkins method. The pre-intervention model formed 

contains seasonal and step functions, which does not fulfill the white noise of the final 

intervention model. Therefore, outliers need to be detected so that the model meets the white 

noise assumption. The intervention model and outlier detection in this study are conducted to 

capture the impact of a tariff-setting policy of 5 and 15 percent, called the first and second 

intervention, on the volume of Hot Rolled Coil/Plate (HRC/P) imports. When the outlier is 

detected, the next step is to examine and adjust its effect on the model by adding the effect of 

the outlier in the model. Using the seasonal ARIMA intervention model, the results showed that 

the first and second interventions significantly reduced the volume of HRC/P imports. A 

limitation of this research is that this model cannot include other independent variables in the 

modeling.  
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1. INTRODUCTION 

Time-series data is often influenced by various activities referred to as interventions. According to [1], 

this consists of external events such as holidays, sales promotions, and policy changes. Its analysis is used to 

detect the initial impact of intervention when it occurs and the response form. This is divided into step and 

pulse functions. A step function is an intervention form that occurs at time 𝑇, or over a long period. 

Conversely, a pulse function occurs only at one time, 𝑇, or in a short period. 

Modeling interventions is often inseparable from the interference caused by other external events, and 

its observation is called outliers [1]. The difference between an intervention and an outlier lies in the timing 

and cause of an event. Interestingly, assuming these are known, intervention analysis is used to measure the 

impact of an event, supposing the reverse is the case, then the detection of outliers is executed. Moreover, 

outlier detection also plays an essential role in forming intervention models because it causes assumption 

violations, such as nonstationary data, non-white noise model, and non-normality error. These also cause 

unreliable or even invalid inferences.  

After the outlier is detected, the next step is to examine and adjust its effect on the model. In addition, 

[1] stated that it is useful for parameter estimation. Chen [3] further explained that the existence of outlier 

adjustments, by adding the effect of the outlier in the model, tend to cause previously insignificant 

intervention parameters to be significant. It also reduces the standard deviation value or residual variance, 

thereby increasing the t-values for parameter estimation and ensuring they become significant. This is because 

the reduction in residual variance with outliers is useful in checking models and obtaining better forecasting 

results. 

Subsequently, [1] reported that some outliers are converted into relevant intervention variables due to 

some unknown policy changes, therefore, they are ignored during the early stages of data analysis. Instead of 

discarding the outlier effect, there is a need to incorporate certain information into the model by introducing 

appropriate response functions and intervention variables. This explicit form is useful in forecasting and 

controlling the univariate model based on outlier adjustment data. Chen and Liu [4] also reported that this 

adjustment is important for intervention analysis. 

This research applies Hot Rolled Coil/Plate (HRC/P) as a steel product that is very popular in Indonesia 

because it can be applied for various things, for example general and welding construction, ship construction, 

pipes and tubes, automotive frame components, etc. This high need is not balanced by domestic production, 

resulting in a very high surge in imports. To overcome this problem, the government issued an intervention 

in the form of a policy of setting the Most Favored Nation (MFN) general import duty rate at 5 percent and 

followed by a policy of increasing the MFN general import duty rate by 15 percent. In this study, the existence 

of outliers was adopted in the modeling because it was indicated that in several periods there was an extreme 

decline, one of which was caused by the Covid-19 pandemic.  

Based on the problem, this study aims to analyze the intervention model based on outlier adjustment 

using Indonesian hot-rolled coil or plate import volume from January 2009 to February 2021. The 

interventions include establishing or implementing the MFN general duty tariff policy of 5 percent and its 

increase by 15 percent. This is aimed to reduce the volume of HRC/P imports, which has increased since 

2009.  

 

2. RESEARCH METHODS 

2.1 Data Source and Study Design 

The data used is the Indonesian HRC/P import volume with the 7208 HS code, sourced from the Trade 

Ministry of the Republic of Indonesia. It was collected monthly data from January 2009 to February 2021. 

The pre-intervention period starts from the beginning of the study to the period before the first intervention 

(MFN tariffs of 5 percent), from January 2009 to December 2011. The first intervention period starts from 

when it first takes effect until the second intervention, from January 2012 to April 2015. The second 

intervention period starts from when it first takes effect (MFN tariff by 15 percent) until the end of the study 

period, covering May 2015 to February 2021, using the step function. This research generates the following 

hypothesis: 
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1. The policy of setting the Most Favored Nation (MFN) general import duty rate at 5 percent affects 

the volume of HRC/P imports 

2. The policy of increasing the Most Favored Nation (MFN) general import duty rate by 15 percent 

affects the volume of HRC/P imports 

 

2.2 Modeling process 

Before an intervention model is developed, its initial form is called a pre-intervention. Furthermore, 

the model is an Autoregressive Integrated Moving Average (ARIMA), formed using the Box-Jenkins method, 

and this is divided into four stages, namely (i) model identification, (ii) estimation of parameters, and the 

selection of the best model based on the smallest AIC (Akaike’s Information Criterion), SBC (Schwarz 

Information Criterion), and RMSE (Root Mean Square Error) criteria, (iii) model diagnostic test that includes 

error independence and normality error tests, and (iv) forecasting. The forecasting results are used to 

determine the intervention orders b, s, and r during the formation of the models, where b is the delay in 

starting the intervention, which is identified by the residual value that first goes out of bounds, s is the length 

of intervention affecting the data, and r is a pattern of interventional effects that occurs after (b+s) periods 

since the intervention at time T, r = 1 assuming the residual forms a pattern after (b+s) period and r = 0 when 

there is no pattern [1]. 

Occasionally, a time-series data indicates a seasonal pattern, therefore, a Seasonal Autoregressive 

Integrated Moving Average (SARIMA) model is formed. The stages of formation are identical to that of the 

ARIMA, developed using the Box-Jenkins method. However, the model identification stage is carried out 

using ACF and PACF examination in seasonal lag. For example, checks are carried out in patterns 

𝑟4, 𝑟8, 𝑟12,𝑟16, etc for quarterly data, while for that of monthly, it is rare to perform many autocorrelation 

checks for the lag in multiples of 12, therefore, they are carried out based on the available patterns, namely 

𝑟12, 𝑟24, 𝑟36 [2]. 

Wei [1] stated that developing an intervention model starts with carrying out the variance stationarity 

test using box-cox and is defined as follows: 

 

𝑌𝑡
𝜆 = {

𝑌𝑡
𝜆

𝜆
,           if 𝜆 ≠ 0

log(𝑌𝑖),    if  𝜆 = 0
 (1) 

 

𝑌𝑡 is a response variable or observed series, while 𝜆 (lambda) is a transformation parameter. Data is 

presumed to be stationary when the value of 𝜆 is equal to 1. Meanwhile, the data variance is not stationary 

when the value of 𝜆 ≠ 1, then the box-cox transformation is stated as follows [1]. 

 

𝑇(𝑌𝑡) = 𝑌𝑡
(𝜆) = 

𝑌𝑡
(𝜆)−1

𝜆
 (2) 

 

The average stationary analysis was performed using the Augmented Dickey-Fuller test (ADF test). 

Interestingly, when the data is not stationary, the differencing process is carried out until it becomes 

stationary. This indicates that the data is stationary at the first level or 𝑑-differencing. Mathematically, the 

equation is stated as follows 

 

(1 − 𝐵)𝑑−1(1 − 𝐵)𝑌𝑡 =  ∆𝑑𝑌𝑡 (3) 

 

𝐵 is the back-shift operator. During the average stationarity examination, assuming the data indicates 

seasonal patterns, it becomes necessary to carry out differencing, which is further re-checked using the ADF-

test. However, when the data is stationary against variance and average, the formation of a pre-intervention 

model using the Box-Jenkins procedure starts with (i) identification of the model through ACF and PACF 

patterns on the correlogram, (ii) perform the best parameter estimation and model selection while considering 

the smallest AIC, SBC, and RMSE values, (iii) perform model diagnostic analyses that include error 

independence and normality tests, and (iv) forecasting. The pre-intervention model formed is the ARIMA (p, 
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d, q), where p is an order of autoregressive (AR), d is the degree of differentiation, and q is the order of the 

moving average (MA) [2], these are stated as follows.  

 

𝑌𝑡 = 𝑐 +  ∅1𝑌𝑡−1  + ⋯ +  ∅𝑝𝑌𝑡−𝑝 + 𝑒𝑡 −  𝜃1𝑒𝑡−1 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞  (4) 

 

∅𝑖 are autoregressive parameters, and 𝜃𝑖 are moving average parameters. However, assuming the data 

pattern is seasonal, the pre-intervention model formed is referred to as SARIMA reflected as 

ARIMA(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠, where P is an AR order for seasonal, 𝐷 is differencing against seasonal, and 𝑄 is 

an MA ordering for seasonal. In general, the SARIMA model in the operator's backshift is stated as follows. 

 

Φ𝑃(𝐵𝑠)∅𝑝(𝐵)(1 − 𝐵)𝑑(1 − 𝐵𝑆)𝐷𝑌𝑡 = c + 𝜃𝑞(𝐵)Θ𝑄(𝐵𝑠)𝑒𝑡 (5) 

 

∅𝑝(𝐵) is nonseasonal order of autoregressive, Φ𝑃(𝐵𝑠) is seasonal order of autoregressive, 𝜃𝑞(𝐵) is 

nonseasonal order of moving average, Θ𝑄(𝐵𝑠) is seasonal order of moving average. The pre-intervention 

model represents the noise aspect and is assumed to be invariant after estimating the intervention effect [5]. 

Once this phase is formed, an intervention model is established by determining its orders. The order of the 

first intervention is the difference between the original data realized from the first period and the results 

obtained from the forecasting of the pre-intervention model. Meanwhile, the second-order is determined from 

the difference between the original data of the second period and the forecasting results of the first 

intervention model. Wei [1] stated that the general form of the multi-input intervention model is stated as 

follows.  

𝑌𝑡 =  𝜃0 +  ∑
𝜔𝑠𝑗(𝐵)𝐵𝑏𝑗

𝛿𝑟𝑗(𝐵)
𝐼𝑗𝑡 +

𝜃(𝐵)

∅(𝐵)
𝑒𝑡

𝑘
𝑗=1   (6) 

𝜔𝑠(𝐵) is parameter of order b and s, 𝛿𝑟(𝐵) is parameter of order r. The formation of the intervention 

model is reported in detail by [1], [6]. According to [6], ARIMA Multivariate model (MARIMA) is an 

extension of the SARIMA Intervention model [7]. It consists of a pre-intervention SARIMA and intervention 

functions, thereby forming a multivariate model [8]. The SARIMA intervention model is stated as follows: 

 

𝑌𝑡 = ∑
𝜔𝑠𝑗(𝐵)𝐵𝑏𝑗

𝛿𝑟𝑗(𝐵)
𝐼𝑗𝑡 +

Θ𝑄(𝐵𝑠)𝜃(𝐵)

Φ𝑃(𝐵𝑠)∅(𝐵)
𝑒𝑡

𝑘
𝑗=1   (7) 

 

The impact is determined after the intervention model has been formed [9]. In addition, outliers are 

additional special cases perceived as part of the analysis. They consist of 4 types, and each has a different 

impact, which is stated as follows  

1. Additive Outlier (AO) exhibits a single impact, and it does not affect other observations both before and 

after the outlier is located. The AO model is stated as follows 

 𝑌𝑡 =  
𝜃(𝐵)

∅(𝐵)
𝑒𝑡 + 𝜔𝐼𝑡

(𝑇), where 𝐼𝑡
(𝑇) = {

1                   𝑡 ≠ 𝑇
0                   𝑡 = 𝑇

 (8) 

2. Where 
𝜃(𝐵)

∅(𝐵)
𝑒𝑡 is similar to the general ARMA (p,q), 𝜔 is the magnitude of the outlier effect,  𝐼𝑡

(𝑇) is the 

indicator variable representing the presence ( 𝐼𝑡
(𝑇) = 1) or absence ( 𝐼𝑡

(𝑇) = 0) of an outlier at time 𝑇. 

3. Innovational Outlier (IO), the effect is similar to the ARMA process. Therefore, it affects the entire 

data series or observation. The IO model is stated as follows 

          𝑌𝑡 = 𝑋𝑡 +  
𝜃(𝐵)

∅(𝐵)
𝜔𝐼𝑡

(𝑇)
, where 𝐼𝑡

(𝑇) = {
1                   𝑡 ≥ 𝑇
0                   𝑡 < 𝑇

 (9) 

Where 𝑋𝑡 is the outlier-free series, 
𝜃(𝐵)

∅(𝐵)
𝜔 denotes the magnitude of the outlier effect, similar to the 

ARMA process.  

4. Level Shift (LS) suddenly influences data series, thereby leading to a permanent change. The LS 

model is stated as follows  

 

            𝑌𝑡 = 𝑋𝑡 +  
1

(1−𝐵)
𝜔𝐿𝐼𝑡

(𝑇), where 𝐼𝑡
(𝑇) = {

1                   𝑡 ≥ 𝑇
0                   𝑡 < 𝑇

 (10) 

 

Where 
1

(1−𝐵)
𝜔𝐿denote the magnitude of the outlier effect. 
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5. Temporary Change (TC) produces an initial effect of 𝜔 at time 𝑡, which slowly reduces according to 

the magnitude of 𝛿. The TC model is stated as follows 

 

            𝑌𝑡 = 𝑋𝑡 +  
1

(1−𝛿𝐵)
𝜔𝑐𝐼𝑡

(𝑇), where 𝐼𝑡
(𝑇) = {

1                   𝑡 ≥ 𝑇
0                   𝑡 < 𝑇

 (11) 

 

Where 𝜔 indicates the magnitude of the outlier’s impact that decreases gradually by 𝛿, 𝛿 is a parameter 

designed to model the pace of the dynamic dampening effect. However, assuming 𝛿 =1, the outlier effect is 

the same as LS, and when 𝛿 = 0, it is the same as AO.  

Adding outliers to the analysis is useful in discovering its causes and nature. Some are converted into 

several important intervention variables that strengthen the analysis related to changes in data patterns. In 

addition, the addition of outliers is useful for parameter estimation and is also used to check and forecast the 

model. A combination of intervention analysis and outlier detection is explicitly useful in forecasting and 

control than univariate models based on adjusted data. Several studies have investigated the combination of 

intervention analysis and outlier detection, including [4], [10]–[13]. 

Specifically, the processes of ARIMA intervention for this study are: 

1. Divide the data into three groups, namely data from the pre-intervention period, data from the first 

intervention period, and data from the second intervention period. The first data period was from January 

2009 to December 2011 or 36 data series (𝑡 = 36). The second data period was from January 2012 to 

April 2015 or 40 data series (𝑡 = 40). The third data period is from May 2015 to February 2021 or 70 

series of data (𝑡 = 70). 

2. Test stationarity of variance and mean. The stationarity of variance test was carried out using Box-Cox. 

When the data is not stationary in terms of variance, a Box-Cox transformation is carried out. The 

average stationarity test was carried out using a unit root test, namely the ADF-test. When the data is not 

stationary relative to the average, it is necessary to differentiate seasonality if the data pattern indicates 

a seasonal pattern. 

3. Model formation before intervention. At this stage, model identification, parameter estimation, and error 

independence and error normality assumptions are tested. After obtaining several models from the 

correlogram, the best model is selected based on consideration of the smallest AIC, SBC and RMSE 

values. Then a model evaluation is carried out, namely a diagnostic test which includes testing the 

assumption of error independence (white noise) and error normality. After obtaining the best, forecasting 

is carried out to predict the value of the data for the first intervention period. 

4. Identify the first order of intervention. The first intervention model was obtained from identifying the 

residual plot, which was obtained from the difference between the data for the first intervention period 

and the forecasting value of the model before the intervention. Identification of the first intervention 

ARIMA model from the residual plot that has been formed against ± 2 times the RMSE of the model 

before the intervention is used to determine the order of b, s, and r. 

5. Parameter estimation, parameter significance, and evaluation of the first intervention model. After 

selecting the orders b, s, and r, model parameter estimation, parameter significance testing, and 

evaluation of the first intervention model were carried out through diagnostic tests of independence of 

error (white noise) and normality of error. Estimation of model parameters was carried out using the 

Least Square method. If the model meets these two assumptions tests, then the model is selected as the 

first intervention model and then forecasting is carried out to form the second intervention model. 

6. Identify the second order of intervention. The formation of the second intervention model or final 

intervention is the same as the formation of the first intervention model, namely it is obtained from 

identifying residual plots obtained from the difference between the data for the second intervention 

period and the forecasting results of the first intervention model. Identification of the second intervention 

model from the residual plot that has been formed against ±2 times the RMSE of the first intervention 

model is used to determine the order of b, s, and r. 

7. Parameter estimation, parameter significance, and evaluation of the first intervention model. After 

selecting the orders b, s, and r, model parameter estimation, parameter significance testing, and 

evaluation of the second intervention model were carried out through diagnostic tests of independence 
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of error (white noise) and normality of error. Estimation of model parameters was carried out using the 

Least Square method. If the model meets these two assumptions tests, then the model is selected as the 

final intervention model. 

8. Intervention model outlier detection. Outlier detection is carried out when no model meets the 

assumptions after a trial-and-error process. Outlier detection is carried out repeatedly and then one by 

one they are entered into the model with the first outlier added being the most significant outlier as 

indicated by the smallest Chi-Square probability value. The addition of outliers to the model is carried 

out until the model formed meets all assumptions. 

9. Measuring the impact of interventions. Before calculating the magnitude of the impact of the 

intervention, it is necessary to return the data to its pre-transformation form, also known as data 

inversion. The impact of the intervention is obtained from the difference between the forecasting results 

of the final intervention model and the model before the intervention. 

 

3. RESULTS AND DISCUSSION 

3.1 Stationary test 

The stationarity variance test carried out using box-cox showed that the HRC/P import volume data is 

not stationary because the value of 𝜆 (lambda) is not equal to 1 rather, it is 0.5. A transformation was carried 

out in the form of roots (√𝑌𝑡) and 𝜆 = 1. The subsequent step is the stationarity test on the average data 

realized from the pre-intervention period, which indicates a seasonal pattern. It is exhibited by a decrease in 

the volume of HRC/P imports that repeats itself in every 7th lag, thereby ensuring the execution of seasonal 

differencing. 

The pre-intervention data obtained from the original series is not stationary at the level indicated by 

the 𝑡-value (-1.40), which is less than that of the critical at alpha = 5% (-2.95). Therefore, 𝐻0 is accepted at 

all levels of significance. Meanwhile, the data obtained from seasonal differencing is stationary at the 5 

percent significance levels as indicated by the 𝑡-value (-3.30), which is greater than that of the critical (-2.97). 

Therefore, 𝐻0 is rejected at all levels of significance.  

 

3.2 Pre-intervention Model 

Based on previous stationarity tests, the pre-intervention model formed is the seasonal ARIMA 

(SARIMA), which was later converted to an intervention model. Several related studies have been carried 

out on this model, such as [7], [8], [14]. A model selection is used to obtain the best pre-intervention model 

based on the formed correlogram's smallest AIC, SBC, and RMSE values, as shown in Table 1.  

Table 1. Pre-Intervention Model Candidates 

ARIMA AIC SBC RMSE 

ARIMA (1,0,1)(0,1,1)7 304.35 308.45 43.80 

ARIMA (0,0,1)(0,1,1)7 315.21 317.94 53.65 

ARIMA (1,0,0)(0,1,1)7 303.58 306.31 43.90 

ARIMA (1,0,1)(0,1,0)7 303.50 306.23 43.84 

ARIMA (0,0,1)(0,1,0)7 313.33 314.69 52.79 

ARIMA (1,0,0)(0,1,0)7 302.00 303.37 43.43 

Source: processed by SAS software 

The ARIMA (1,0,0)(0,1,0)7 was selected because it has the smallest AIC, SBC, and RMSE values 

compared to the other pre-intervention model candidates, and it is stated as follows  

 

�̂�𝑡 =
36.5416

(1 − 0.5058𝐵1)(1 − 𝐵7)
 (12) 
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3.3 Intervention Model 

The formation of the first and second intervention models are determined by selecting the order in 

which they are formed on the residual plots obtained by the difference from the intervention period and the 

forecast result of the pre-intervention model, as stated in Figure 1.  

 
Source: processed by SAS software 

 

Figure 1. Residual plot of the first intervention 

 

Based on the diagram, after the trial-and-error process, the first intervention order selected is b = 7, s 

= (12, 13), and r = 1. The significance of the estimated parameters relating to the first intervention model is 

shown in Table 2.  

 

Table 2. Estimation and Significance Of The Parameters Of The First Intervention Model 

Parameters Estimation 𝒕-values P-Value 

Μ 35.4795 3.89 0.0003* 

ϕ1 0.3421 2.19 0.0337* 

ω0 7 -110.2022 -4.40 <0.0001* 

ω12 7 66.9825 -2.76 0.0084* 

ω13 7 110.1766 4.41 <0.0001* 

δ1 7 -0.5997 -4.56 <0.0001* 

     Source: processed by SAS software 

 

It was further stipulated that all the first intervention model parameters are significant. The next step 

is the diagnostic test carried out on the first intervention, including the white noise assumption analysis and 

normality error. Using the Ljung-Box Statistics, it was discovered that the p-value > alpha = 5%, therefore, 

the model fulfills the white noise assumption. Using the Kolmogorov Smirnov test, it was discovered that the 

p-value is 0.15 (more than alpha = 5%), therefore, the model fulfills the normal distribution error assumption. 

The first intervention model is stated as follows.  

�̂�𝑡 = (
−110.2022 + 66.9825𝐵12 + 110.1766𝐵13

1 − 0.5997𝐵1 ) 𝐵7𝑆1𝑡 +
35.4795

(1 − 0.3421𝐵1)(1 − 𝐵7)
 (13) 

 

The formation of the second (final) intervention model is derived from the determination of the orders 

on the residual plot, as shown in Figure 2.  
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 Source: processed by SAS software 

 

Figure 2. Residual plot of the second intervention 

After repeated trial and error processes, it was discovered that none of the orders met the white noise 

and normality error assumptions. The selection of provisional models is based on the smallest AIC, SBC, and 

RMSE values, i.e., the orders that have the least values on the three criteria, while those selected for the 

second intervention are b = 2, s = (4,9,22,23), and r = 1.  

Upon further investigation, both assumption tests do not fulfill the second intervention model due to 

outliers on the model. Kaiser and Maravall [15] examined the impact caused, namely seasonal outliers of 

level shift-type also called seasonal level shift (SLS) outlier on models using airline passenger data. The study 

reported that when an outlier effect is ignored (outlier adjustment), it causes the model not to be able to meet 

both the error independence and normality error. In this study, one outlier was discovered in the second 

intervention model, namely the SLS type, on the 137th observation or precisely in May 2020. It indicates that 

an outlier was detected on the second intervention model, and its effect was included until the model met the 

assumption test.  

Afterward, seven outliers were identified in the second intervention model, as shown in Table 3.  

Table 3. Outliers identified in the second intervention model 

Time Observation Period Type Estimation Chi-Square P-Value 

(T2+ 37) 114 June 2018 AO -156.4550 26.22 <0.0001* 

(T2+ 60) 137 May 2020 LS -105.7020 15.34 <0.0001* 

(T2+ 40) 117 September 2018 AO -70.5209 6.45 0.0111* 

(T2+ 10) 87 March 2016 AO -68.8971 6.54 0.0105* 

(T2+ 61) 138 June 2020 AO -70.4823 7.56 0.0060* 

(T2+ 13) 90 June 2016 AO 68.0130 7.65 0.0057* 

(T2+ 51) 128 August 2019 AO -61.6659 6.43 0.0112* 

*) significant at 5% level 

Source: processed by SAS software 

 

The data relating to its period and the residual plot, i.e., the specific period in which the outliers are 

located, shows a fairly drastic value of HRC/P import volume compared to the others, as shown in Figure 3 

and 4. Based on these diagrams, the periods where there is an outlier show the value of the import volume of 

HRC/P, which is quite different from the others. In the 114th observation (June 2018), a high decrease in the 

volume of HRC/P imports was recorded in July 2015. The first response of the second intervention was set 

as order b in this model. The import volume of HRC/P in June 2018 was 47,481,745 tons, which in the 

previous month reached 120,352,449 tons. There was a decrease of 60.55 percent in the volume of HRC/P 

imports in June 2018.  
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Referring to [16], in June 2018, an increase of 1.046 million tons or approximately 24.44 percent, was 

recorded in the sales volume of PT Krakatau Steel Tbk. The product with the largest increase in sales volume 

was HRC, with total sales of 576,652 tons or increase of 47.10 percent. This indicates a decrease in the 

volume of HRC/P imports due to an increase in sales of products in the country. It depicts that domestic 

products are consumed rather than imported ones.  

Subsequently, the 137th observation made in May 2020 was identified as an outlier type, and LS also 

experienced a drastic decrease in the volume of HRC/P imports due to the covid-19 pandemic. Cumulatively 

in 2020, there was a decrease in HRC/P imports from 1,186,161 tons to 1,649,937 tons [17]. The second 

intervention residual plot in Figure 4 shows that the outlier on the 114th (𝑇2+ 37), 137th (𝑇2+ 60), and 138th 

observations (𝑇2+ 61) indicates a significant negative value.  

The outlier on the 128th observation (𝑇2+ 51) in Figure 3 does not show a drastic decrease in the 

volume of HRC/P imports. However, based on the residual plot (𝑇2+ 51) in Figure 4, the residual value is 

fairly negative and shows a considerable decrease in the volume of HRC/P imports.  

 
Source: processed by SAS software 

 

Figure 3. Data of the Second Intervention Period with Outliers Information 

 

Figure 4 shows that the residual plots (𝑇2 + 10) and (𝑇2 + 13) values are quite extreme because it is 

lower than the others. The outliers were then added to the model until the entire scheme met all assumption 

tests.  

 
 Source: processed by SAS software 

Figure 4. Residual plot of Second Intervention with Outliers Information 
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The significance of the estimated parameters associated with the second intervention model after an 

outlier was added is shown in Table 4. In addition, all parameters of the second intervention model are 

significant. The next step is to perform a diagnostic test, including the white noise assumption and normality 

error analyses. 

Table 4. Estimation and Significance of Parameters of the Second Intervention Model After Added Outlier 

Parameters Estimation 𝒕-values P-Value 

Μ 21.8108 3.20 0.0019* 

ϕ1 0.4256 4.26 <0.0001* 

ω0 7 -103.1024 -4.23 <0.0001* 

ω12 7 59.8671 2.57 0.0116* 

ω13 7 104.0937 4.40 <0.0001* 

δ1 7 -0.6180 -5.01 <0.0001* 

ω0 2 -171.7197 -6.82 <0.0001* 

ω4 2 -62.4502 -6.11 <0.0001* 

ω9 2 166.1063 5.81 <0.0001* 

ω22 2 -77.6822 -3.07 0.0028* 

ω23 2 100.2232 3.91 0.0002* 

δ1 2 -0.3736 -4.20 <0.0001* 

IAO114  -157.5999 -6.70 <0.0001* 

ILS137  -104.9939 -4.92 <0.0001* 

IAO117 -66.3362 2.82 0.0058* 

IAO87  -103.4835 -3.67 0.0004* 

IAO138  -69.7663 -2.91 0.0045* 

IAO90 81.4638 3.00 0.0034* 

IAO128  -70.0754 -2.97 0.0038* 

      Source: processed by SAS software 

 
Based on Ljung-Box Statistics, the p-value is greater than alpha = 5%. Therefore, the model fulfills the 

white noise assumption. Based on the Kolmogorov Smirnov test, the D statistics value is 0.0676, and the p-

value is greater than alpha = 5%. It was concluded that the model fulfills the normality errors assumption. 

Therefore, the second intervention model (final) selected is the one with an additional outlier which is stated 

as follows. 

�̂�𝑡 = 

(
−103.1024 + 59.8671𝐵12 + 104.0937𝐵13

1 − 0.6180𝐵1 ) 𝐵7𝑆1𝑡

− (
171.7197 + 162.4502𝐵4 − 166.1063𝐵8 + 77.6822𝐵22 − 100.2232𝐵23

1 − 0.3736𝐵1 ) 𝐵2𝑆2𝑡

−
21.8108

(1 − 0.4256𝐵1)(1 − 𝐵7)
− 157.5999𝐼𝑡

114 −
104.9939

1 − 𝐵
𝐼𝑡

137 − 66.3362𝐼𝑡
117 − 103.4835𝐼𝑡

87

− 69.7663𝐼𝑡
138 + 81.4638𝐼𝑡

90 − 70.0754𝐼𝑡
128  (14) 

 

The magnitude of the impact of the intervention is calculated after obtaining the model for each of 

them. 

 

3.4 The impact of the intervention 

The impact of the intervention is obtained from the difference between the forecasting value of the 

final and the pre-intervention models [9]. However, before calculating the impact of interventions, the return 

of data is carried out into its initial form because the data used previously is the resulting data of 

transformation, also called inverting data. The first intervention data is obtained from the difference between 

the forecasting results of the first and pre-intervention models. Meanwhile, the impact of the second (final) 

intervention is obtained from the difference between the forecasting results of the second and the first 

intervention models. The impact of the first intervention is shown in Table 5.  
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Table 5. Impact of the First Intervention 

Time Period 
First 

Intervention 

Pre-

Intervention 
Magnitude effect Percentage 

T1+7 Aug-12 143,026.01 195,112.23 -52,086.22 -26.70 

T1+8 Sept-12 169,737.57 242,074.04 -72,336.46 -29.88 

T1+9 Oct-12 182,604.78 191,003.26 -8,398.49 -4.40 

…. …. …. …. …. …. 

T1 + 36 Jan-15 189,449.87 407,269.37 -217,819.50 -53.48 

T1 + 37 Feb-15 169,615.48 340,128.89 -170,513.41 -50.13 

T1 + 38 Mar-15 181,382.72 418,896.06 -237,513.34 -56.70 

T1 + 39 Apr-15 198,438.18 398,565.83 -200,127.65 -50.21 

 

The impact of the first intervention was felt in August 2012, which caused a decrease of 26.70 percent 

in the volume of imports of HRC/P. In the subsequent month, the impact of the first intervention was greater, 

which caused a decrease of 29.88 percent in the volume of imports. The impact of the first intervention was 

felt throughout the entire period. However, it tends to fluctuate, irrespective of the fact that it was felt for a 

more extended period, and tends to get bigger therefore, it was presumed to be permanent [1]. 

The impact of the second intervention is shown in Table 6. Initially, it lowered the volume of HRC/P 

imports in July 2015 by 71.74 percent, more significant than the first intervention period. In the subsequent 

month, the second intervention reduced the imports volume of HRC/P and the impact by 51.73 percent. 

Overall, this reduced the volume of HRC/P imports till the end of the intervention period. The magnitude of 

the impact fluctuated, although, it was getting bigger. Based on this condition, the impact of the second 

intervention is permanent [1], [18]. 

Table 6. Impact of the second intervention 

Time Period 
Second 

Intervention 

First 

Intervention 
Magnitude effect Percentage 

T2+2 Jul-15 59,211.34 209,541.56 150,330.22 -71.74 

T2+3 Aug-15 105,146.30 217,834.84 112,688.54 -51.73 

T2+4 Sept-15 103,827.47 213,620.80 109,793.33 -51.40 

T2+5 Oct-15 86,666.77 177,574.25 -90,907.48 -51.19 

..... ..... ..... ..... ..... ..... 

T2+66 Nov-20 84,052.97 617,862.18 533,809.21 -86.40 

T2+67 Dec-20 85,259.80 610,752.10 525,492.30 -86.04 

T2+68 Jan-21 96,780.72 548,652.19 451,871.47 -82.36 
T2+69 Feb-21 103,533.62 515,613.75 412,080.14 -79.92 

 

4. CONCLUSIONS 

The interventions used are the 5 percent and 15 percent of the MFN tariff-setting policies to reduce the 

volume of HRC/P imports that increased since 2009. The ARIMA (1,0,0)(0,1,0)7 was selected as pre-

intervention model. Both interventions had a considerable impact and were described as permanent. During 

the implementation of the second intervention period, a policy of increasing MFN rates by 15 percent, some 

outliers were found, namely AO and LS types. This indicated that the model used was unable to meet the 

white noise assumption test. In addressing this, the outliers are added to the model, and after further 

investigation, it was discovered that they coincided with several important interventions that had a fairly 

drastic change in data patterns. The impact of the first intervention in the form of setting the HRC/P import 

duty rate at 5 percent was first felt 7 months after the policy came into force, namely in August 2012. The 

impact of the second intervention in the form of an increase in the HRC/P import duty rate by 15 percent was 

first felt 2 months after the policy came into force, namely in July 2015. A limitation of this research is that 

this model cannot include other independent variables in the modeling. 
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