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ABSTRACT 

Article History: 
Rainfall is an important parameter in understanding the climate and environment in the Malang 

Regency area. This research aims to model the distribution of rainfall in this region using the 

Geographically Weighted Poisson Regression (GWPR) method. GWPR is a spatial statistical 

approach that allows us to understand changes in inhomogeneous rainfall patterns throughout 

the Malang Regency area. Rainfall data collected from weather stations over several years was 

used in this study. We use GWR to study the relationship between various environmental factors, 

such as topography, vegetation, and land use, and rainfall distribution in Malang Regency. The 

results of the GWR analysis provide a deeper understanding of the spatial differences in the 

influence of these factors on rainfall. By applying GWR, we can find out how certain factors 

contribute to different rainfall patterns in certain regions. Rainfall modeling using the 

Geographically Weighted Poisson Regression (GWPR) method combines the power of Poisson 

regression in analyzing calculated data with the advantages of GWR in modeling spatial 

variability. GWPR allows us to identify and map rainfall distribution patterns that vary in 

geographic space. The main advantage of GWPR is its ability to provide local adjustments and 

capture the spatial variability associated with rainfall distribution. The results of the modeling 

analysis show that the GWPR is better, marked by the smallest AIC value, namely 336.84, 

compared to the generalized Poisson regression model, namely 337.76. 
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1. INTRODUCTION 

Rainfall is an important hydrological phenomenon in the water cycle on Earth [1]. The variability and 

spatial distribution of rainfall have a major impact on various aspects of human life, including agriculture, 

water resources management, and flood risk mitigation. Therefore, rainfall modeling is essential in efforts to 

understand and anticipate changes in rainfall patterns in the future. 

One main factor that influences water availability in an area. Rainfall distribution patterns vary greatly, 

depending on factors such as regional climate, topography, and land use [2]. Changing rainfall patterns can 

cause serious impacts, such as droughts that cause water crises or floods that damage infrastructure and the 

environment. With good rainfall modeling, we can understand the distribution patterns and variability of 

rainfall in a region, helping sustainable land use planning, water resource management, and developing 

disaster risk mitigation strategies [3]. 

In recent decades, advances in technology and data analysis have enabled the development of more 

sophisticated rainfall modeling methods. One interesting approach is the use of Geographically Weighted 

Poisson Regression (GWPR), a method that combines Poisson regression with spatial elements [4]. 

Poisson regression is a statistical method that is commonly used to analyze calculated data, such as the 

number of events or the frequency of events that occur in a certain time interval [5]. In the context of rainfall 

modeling, Poisson regression can be used to relate the dependent variable in the form of rainfall frequency 

with independent variables that influence rainfall, such as temperature, wind, and other factors. However, the 

Poisson regression model has limitations when applied to spatial data because it ignores spatial variations 

that can influence rainfall in various locations [6]. 

Geographically Weighted Regression (GWR) is a development of traditional regression models that 

takes into account spatial elements. GWR treats each location as a unique entity and allows regression 

coefficients to vary in geographic space [7]. In other words, GWR allows more detailed and in-depth analysis 

at the local level. In rainfall modeling, GWR can be used to overcome spatial variability problems related to 

rainfall distribution. By applying GWR, we can find out how certain factors contribute to different rainfall 

patterns in certain regions [8]. 

Rainfall modeling using the Geographically Weighted Poisson Regression (GWPR) method combines 

the power of Poisson regression in analyzing calculated data with the advantages of GWR in modeling spatial 

variability. GWPR allows us to identify and map rainfall distribution patterns that vary in geographic space 

[9]. The main advantage of GWPR is its ability to provide local adjustments and capture the spatial variability 

associated with rainfall distribution. The results of the GWPR analysis can provide more in-depth information 

about the factors that influence rainfall in various locations. 

 Rainfall modeling using the Geographically Weighted Poisson Regression (GWPR) method can make 

a significant contribution to our understanding of spatial rainfall distribution patterns. By applying this 

approach, it is hoped that we can make more informed decisions in water resource management and 

sustainable policy development. 

However, it should be remembered that to produce an accurate and reliable model, high-quality rainfall 

data and appropriate variable selection are required. Rainfall modeling using the Geographically Weighted 

Poisson Regression (GWPR) method is a promising approach in hydrological and environmental analysis. 

GWPR combines Poisson regression techniques with more in-depth spatial analysis, allowing us to 

understand rainfall distribution patterns that vary in geographic space. With more accurate and spatially 

relevant rainfall modeling, it is hoped that we can take more effective steps in water resource management, 

flood risk mitigation, and environmental protection [10]. 

GWPR offers several important advantages in rainfall modeling: Improved Spatial Adjustment GWPR 

takes into account spatial variability in the relationship between independent variables and rainfall. This 

produces a model that is more accurate and appropriate to local conditions at each location. Identification of 

Spatial Patterns: GWPR allows the identification of rainfall distribution patterns that vary within a particular 

area. This helps in understanding hydrological dynamics and can provide new insights into water resource 

management. 

Benefits for Planning and Decision Making: The results of GWPR can provide more relevant 

information for policymakers and water resource managers. More precise rainfall modeling can be used to 

optimize flood risk mitigation strategies, water resource management, and spatial planning. 
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2. RESEARCH METHODS 

2.1 Data 

The data collection technique for this research is to use secondary data taken from the digital 

publication of the East Java Meteorology, Climatology, and Geophysics Agency in May 2023. This research 

also uses astronomical location data, which includes the latitude and longitude of each sub-district in Malang 

Regency. The Malang Regency area consists of 33 sub-districts, with the variables used in this research being 

one dependent variable (Y), namely rainfall, and independent variables (X), namely altitude (X1), temperature 

(X2), and humidity (X3). 

 

2.2 Generalized Poisson Regression (GPR) 

The Generalized Poisson Regression (GPR) model is a model that is suitable for counting data if there 

is over- or under-dispersion, namely, if the variance is greater or smaller than the mean [11]. So apart from 

the parameter µ, in GPR there is 𝜃 as a dispersion parameter. The GPR model is similar to the Poisson 

Regression model, but the GPR model assumes that the random component has a generalized Poisson (GP) 

distribution [12]. 

The generalized Poisson distribution can be seen in Equation (1) below [13]: 
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The mean and variance of the GPR model are as follows: 

2( ) , var( ) (1 )E y y  = = +        (2) 

If θ is equal to 0, then the GPR model will be an ordinary Poisson regression model. If θ is greater than 

0, then the GPR model represents dispersion count data, and if θ represents count data, then it is under 

dispersion. The form of the GPR model is the same as the Poisson Regression model, namely as follows: 

*

1 exp( )T

ix =
         (3) 

Where 𝑖 is the unit of observation, namely 𝑖 = 1, 2, ..., 𝑛 

 

2.3 Geographically Weighted Poisson Regression (GWPR) 

This GWPR model is a local linear regression model that produces local model parameter estimates 

for each point or location where the data is collected [14]. The GWPR model was developed from the GWR 

method, which is a technique that brings the framework from a simple regression model to a weighted 

regression model. In the GWPR model, the response variable 𝑦 is predicted by predictor variables whose 

respective regression coefficients depend on the location where the data is observed. By notating the latitude 

and longitude coordinate vectors ( , )i iu v , the GWPR model can be written as follows [14]. 
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The GWPR model parameter estimation was carried out using the Maximum Likelihood Estimation 

(MLE) method, namely by maximizing the likelihood function [15]. The MLE method is usually used if the 

distribution of the data being modeled is known. The likelihood function of GWPR is: 
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Model parameter testing is carried out by testing the parameters partially. This test is to find out 

which parameters have a significant effect on the response variable for each location. 
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2.4 Testing Overdispersion 

Overdispersion is a condition that occurs in Poisson regression analysis when the variance value of the 

response variable is greater than the average value [16]. The presence of cases of overdispersion will result 

in the deviation value of the regression model being large. Apart from that, cases of overdispersion can also 

result in the standard error of the resulting regression parameter estimates tending to be lower than it should 

be, so if the Poisson regression model is still used in overdispersion conditions, then the estimated parameters, 

which should not necessarily be significant, will be considered significant [17]. 

Overdispersion analysis of Poisson regression data can be seen from the Devian value divided by the 

degrees of freedom. If the quotient of both is greater than 1, then the data is said to have overdispersion. 

Statistical value for overdispersion testing in Equation (6) [18] 
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Where 𝑛 is the number of observations and 𝑘 is the number of parameters. 

 

2.5 Moran’s I Dependency Test 

Moran's I coefficient is a development of Pearson correlation on univariate series data [19]. Moran's I 

coefficient is used to test spatial dependency or autocorrelation between observations or locations [20]. With 

the test statistics used in Equation (7) [21]. 
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The value of the I index is between -1 and 1. If I > Io, the data has positive autocorrelation. If I < Io, 

the data has negative autocorrelation. 

 

2.6 Bandwidth and Weighting 

Observations that are located close to location 𝑖 will have more influence in forming model parameters 

at location 𝑖. Points that are within the radius's locations influence the model, which is weighted according to 

the function used. Selecting the optimum bandwidth will affect the accuracy of the model for the data by 

adjusting the variance and bias of the model [22]. The method used to select the optimum bandwidth is cross-

validation (CV). 
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The weighting used in this research is the fixed bisquare kernel function. The fixed kernel method 

allows the optimal bandwidth value for each location to be the same or constant. If the data points are 

distributed regularly in the research area, then using the fixed method will be suitable for modeling. 

Weighting is used to give different emphasis to different observations in generating parameters. Before 

the weighting is determined, 𝒅𝒊𝒋 must first be calculated, which is the distance between location (𝒖𝒊, 𝒗𝒊) and 

location (𝒖𝒋, 𝒗𝒋) using Euclidean distance, namely [23]. 

2 2( ) (v )ij i j i jd u u v= − + −
         (9) 
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The Bisquare weighting function is used because it involves the element of distance between observed 

locations whose value is continuous in building the weighting matrix so that each location will receive a 

weight according to the distance between that location and the observed location. With the fixed kernel 

Bisquare weighting formula in the equation below [24], 
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Information: 

𝒅𝒊𝒋 = Euclidean distance from location - 𝑖 to location - 𝑗 

𝑏    = Optimum bandwidth. 

 

2.7 Selection of the Best Model 

To get the best model between the Poisson Regression, Generalized Poisson Regression, and GWPR 

models, the best model was selected. The selection of the best model uses the AIC (Akaike's Information 

Criterion) criteria [25]. The AIC value is in line with the deviation value of the model. The smaller the 

deviation value, the smaller the error rate produced by the model, so that the model obtained becomes more 

precise. Therefore, the best model is the one with the smallest AIC and the smallest deviation [26]. The AIC 

value is formulated as follows: 

ˆ( ) 2AIC D K= +
         (11) 

Where 𝐷(𝛽̂) is the deviance of each model calculated, including the deviance of the Poisson 

Regression and GWPR models while 𝐾 is the number of parameters in the model. 

 

3. RESULTS AND DISCUSSION 

3.1 Overdispersion Check 

The presence of cases of overdispersion or underdispersion can be detected by checking the deviance 

value, or Chi-Square value, divided by the degrees of freedom in the goodness of the fit table. If the value is 

more than one, then there is overdispersion, and conversely, if it is less than one, then there is underdispersion. 

Overdispersion tests are presented in Table 1. 

Table 1. Examination of Overdispersion 

 Value Df Value/df 

Deviance 13959.99 33 423.03 

 

It can be seen in Table 1 that the deviation value from the Poisson regression model is 13959.99, If 

this value is divided by the degree of freedom value, namely 33, we get 423.03. The result is that the deviance 

value is greater than 1. So, it can be concluded that there is overdispersion in the data. To overcome this, the 

generalized Poisson regression model is used. 

  

3.2 Poisson Regression Model 

After checking the overdispersion between the predictor variables, the results showed that the data was 

overdispersed, so the parameters of the Poisson Regression model were estimated for these three variables. 

By using the Maximum Likelihood Estimation method, parameter estimators for each variable and their 

constants are obtained, as shown in Table 2 below. 
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Table 2. Poisson Regression Parameter Values 

Variable Estimate Standard error (SE) P-value 

intercept 4.763978 0.502201 2e-16 

X1 4.763978 0.000041 2.41e-13 

X2 0.003571 0.008646 0.68 

X3 0.018194 0.003933 3.73e-06 

 

From Table 2 above, significant variables are obtained, namely altitude and humidity, which 

influence rainfall in Malang district. The results above do not include spatial elements, so it needs to be 

investigated further by adding spatial elements. 

 

3.3 Spatial Effect Testing 

In the overdispersion test, it was found that there were cases of overdispersion, so it was continued 

with analysis using the Geographically Weighted Poisson Regression method. The spatial dependency test 

via Moran's I test aims to see the spatial effect on each variable by looking at the p-value and comparing the 

value with α; if the p-value < α, then there is a spatial effect on that variable. The Moran’s I test value can be 

seen in Table 3. 

Table 3. Spatial dependency test 

Variable Moran’s I P-value 

Y 1.425 0.0045 

X1 0.985 0.00072 

X2 1.4562 0.0011 

X3 1.1142 0.003211 

 

From Table 3 above, it can be seen that all variables have a p-value < α, namely the variables rainfall, 

altitude, temperature, and humidity. So, the four variables above have a spastic effect. And it can be continued 

with the GWPR model. 

 

3.4 Geographically Weighted Poisson Regression Model 

To create a GWPR model, the steps are to select the optimum bandwidth (b) for all locations in the 

Malang district. Where the selection of optimum bandwidth uses CV criteria. Furthermore, the resulting 

optimum bandwidth can be used to find the weighting matrix in each sub-district in Malang Regency, where 

this research uses fixed bisquare kernel weighting. From calculations in GWR4 software, the optimum 

bandwidth using a fixed bisquare kernel is 2,669. The weight used for each observation location is a fixed 

bisquare kernel function. The fixed kernel method allows the optimal bandwidth value for each location to 

be the same or constant. If the data points are distributed regularly in the research area, then using the fixed 

method will be suitable for modeling. 

The parameter estimation results for each sub-district are presented in the table below. For example, 

the model form for the Ampelgading sub-district is: 

 𝜇𝐴𝑚𝑝𝑒𝑙𝑔𝑎𝑑𝑖𝑛𝑔 = exp⁡(4.77473 + 0.00004𝑋1 + 0.003504𝑋2 + 0.018067𝑋3) 

Of the three variables examined, the rainfall variable in Ampelgading sub-district shows a positive 

relationship; this shows that if the three variables increase, the rainfall increases by one unit. The same applies 

to other locations in Malang district. Parameters for each location can be presented in Table 4 below: 

Table 4. Parameters for Each GWPR Model Location 

Subdistrict 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜷𝟑 

Ampelgading 4.77473 0.000303 0.003504 0.018067 

Kasembon 4.787973 0.0003 0.003052 0.018064 
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The results of the GWPR parameter estimates for each location show that they are different. The results 

of the model above obtained the predicted values which are presented in Figure 1 below. 

 

Subdistrict 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜷𝟑 

Tirtoyudo 4.766714 0.000299 0.003522 0.018191 

Kepanjen 4.754225 0.0003 0.003577 0.018329 

Dampit 4.76853 0.000303 0.003639 0.018106 

Lawang 4.744524 0.000305 0.004063 0.018257 

Wonosari 4.787618 0.000302 0.003252 0.017991 

Kalipare 4.730048 0.000306 0.00431 0.018357 

Pakis 4.785186 0.000297 0.002982 0.018139 

Pagelaran 4.737717 0.000306 0.004198 0.018297 

Wajak 4.782007 0.000296 0.003112 0.018144 

Tajinan 4.759631 0.000304 0.003741 0.01818 

Karangploso 4.761787 0.000298 0.003549 0.018252 

Turen 4.777085 0.000298 0.003275 0.018147 

Pakisaji 4.723737 0.000307 0.004432 0.018395 

Wagir 4.78465 0.000299 0.002998 0.018131 

Pagak 4.776633 0.000303 0.003485 0.01805 

Bululawang 4.788322 0.0003 0.003056 0.018058 

Ngantang 4.77803 0.000302 0.003439 0.018048 

Pujon 4.762566 0.000304 0.003729 0.018144 

Sumberpucung 4.767058 0.0003 0.003379 0.018225 

Dau 4.783326 0.000302 0.003324 0.018022 

Sumbermanjing 4.763087 0.000297 0.003507 0.018253 

Tumpang 4.751623 0.000305 0.003915 0.01822 

Bantur 4.784941 0.000298 0.003073 0.018111 

Gondanglegi 4.724322 0.000306 0.004367 0.018414 

Singosari 4.77925 0.000302 0.003419 0.01804 

Gedangan 4.774757 0.000303 0.003505 0.018067 

Donomulyo 4.770105 0.000303 0.003617 0.018086 

Jabung 4.78697 0.000301 0.003255 0.017999 

Kromengan 4.746572 0.000304 0.004019 0.018254 

Poncokusumo 4.737279 0.000305 0.004186 0.018312 
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Figure 1. Rainfall Prediction Map in Malang Regency 

Based on Figure 1 above shows the results of rainfall predictions in Malang district, with rainfall 

between 553 and 600 mm/month in 8 locations, 602 and 614 mm/month in 8 locations, 617 and 648 

mm/month in 9 locations, and 654 and 776 mm/month in 8 locations. 

 

3.5 Selection of the Best Model 

A comparison of the generalized linear Poisson model, the generalized Poisson regression model, and 

the GWPR model was carried out to find out which model is better to use in modeling rainfall in Malang 

Regency. The criteria for selecting the best model used are the AIC (Akaike's Information Criterion) values 

of the three models. The AIC values are compared, and the best model is selected, namely the model with the 

smallest AIC value. The AIC values are presented in Table 5 below:  

Table 5. Best Model Testing 

Model AIC Value 

Generalized Poisson Regression 337.760 

GWPR 336.845 

Based on the AIC value in Table 5 above, it can be shown that the smallest AIC value is in the GWPR 

model. This means that the GWPR model is more suitable for analyzing rainfall data in Malang Regency. 

 

4. CONCLUSIONS 

The results of Geographically Weighted Poisson Regression Modeling with Fixed Kernel Bisquare 

Weighting show that the AIC value is smaller than the Gen model. These results show that the GWPR model 

is better than generalized Poisson regression. 

  

ACKNOWLEDGMENT  

We would like to thank Brawijaya University for its support for this research. This research is a 

doctoral grant at the faculty level at Brawijaya University. 

 



BAREKENG: J. Math. & App., vol. 18(1), pp. 0627- 0636, March, 2024.     635 

 

 

REFERENCES 

[1] S. Laimeheriwa, E. L. Madubun, and E. D. Rarsina, “Analisis Tren Perubahan Curah Hujan dan Pemetaan Klasifikasi Iklim 

Schmidt-Ferguson untuk Penentuan Kesesuaian Iklim Tanaman Pala (Myristica fragrans) di Pulau Seram,” Agrologia, vol. 8, 

no. 2, pp. 71–81, 2020. 

[2] E. Sofia and M. Amalia, “Analisis Karakteristik Curah Hujan di Kota Banjarbaru Berdasarkan Data Stasiun Klimatologi 

Banjarbaru,” J. Teknol. Berkelanjutan, vol. 10, no. 01, pp. 36–41, 2021. 

[3] F. Dwirani, “Menentukan stasiun hujan dan curah hujan dengan metode polygon thiessen daerah kabupaten lebak,” J. Lingkung. 

Dan Sumberd. Alam, vol. 2, no. 2, pp. 139–146, 2019. 

[4] C. Xu, Y. Wang, W. Ding, and P. Liu, “Modeling the spatial effects of land-use patterns on traffic safety using geographically 

weighted Poisson regression,” Networks Spat. Econ., vol. 20, pp. 1015–1028, 2020. 

[5] S. Ji, Y. Wang, and Y. Wang, “Geographically weighted poisson regression under linear model of coregionalization assistance: 

Application to a bicycle crash study,” Accid. Anal. Prev., vol. 159, p. 106230, 2021. 

[6] R. L. Wilby, R. J. Abrahart, and C. W. Dawson, “Detection of conceptual model rainfall—runoff processes inside an artificial 

neural network,” Hydrol. Sci. J., vol. 48, no. 2, pp. 163–181, 2003. 

[7] M. Kumari, C. K. Singh, O. Bakimchandra, and A. Basistha, “Geographically weighted regression based quantification of 

rainfall–topography relationship and rainfall gradient in Central Himalayas,” Int. J. Climatol., vol. 37, no. 3, pp. 1299–1309, 

2017. 

[8] M. A. Gebremedhin, M. W. Lubczynski, B. H. P. Maathuis, and D. Teka, “Novel approach to integrate daily satellite rainfall 

with in-situ rainfall, Upper Tekeze Basin, Ethiopia,” Atmos. Res., vol. 248, p. 105135, 2021. 

[9] M. Sachdeva, A. S. Fotheringham, Z. Li, and H. Yu, “On the local modeling of count data: multiscale geographically weighted 

Poisson regression,” Int. J. Geogr. Inf. Sci., pp. 1–24, 2023. 

[10] N. Peleg, F. Marra, S. Fatichi, A. Paschalis, P. Molnar, and P. Burlando, “Spatial variability of extreme rainfall at radar subpixel 

scale,” J. Hydrol., vol. 556, pp. 922–933, 2018. 

[11] A. Mahama, J. A. Awuni, F. N. Mabe, and S. B. Azumah, “Modelling adoption intensity of improved soybean production 

technologies in Ghana-a Generalized Poisson approach,” Heliyon, vol. 6, no. 3, 2020. 

[12] G. Gao, H. Wang, and M. V Wüthrich, “Boosting Poisson regression models with telematics car driving data,” Mach. Learn., 

pp. 1–30, 2022. 

[13] Y. Asar and A. Genç, “A new two-parameter estimator for the Poisson regression model,” Iran. J. Sci. Technol. Trans. A Sci., 

vol. 42, pp. 793–803, 2018. 

[14] D. Murakami, N. Tsutsumida, T. Yoshida, T. Nakaya, B. Lu, and P. Harris, “Stable geographically weighted poisson regression 

for count data,” 2021. 

[15] D. N. Sari and Q. Aini, “Geographically weighted bivariate zero inflated generalized Poisson regression model and its 

application,” Heliyon, vol. 7, no. 7, 2021. 

[16] D. R. S. Saputro, A. Susanti, and N. B. I. Pratiwi, “The handling of overdispersion on Poisson regression model with the 

generalized Poisson regression model,” in AIP Conference Proceedings, 2021, vol. 2326, no. 1. 

[17] P. G. Hartono, G. M. Tinungki, J. Jakaria, A. B. Hartono, P. G. Hartono, and R. Wijaya, “Overcoming overdispersion on direct 

mathematics learning model using the quasi poisson regression,” in 1st International Conference on Mathematics and 

Mathematics Education (ICMMEd 2020), 2021, pp. 442–449. 

[18] E. H. Payne, M. Gebregziabher, J. W. Hardin, V. Ramakrishnan, and L. E. Egede, “An empirical approach to determine a 

threshold for assessing overdispersion in Poisson and negative binomial models for count data,” Commun. Stat. Comput., vol. 

47, no. 6, pp. 1722–1738, 2018. 

[19] W. Ngabu, H. Pramoedyo, R. Fitriani, and A. B. Astuti, “Spatial Modeling of Fixed Effect and Random Effect with Fast Double 

Bootstrap Approach,” ComTech Comput. Math. Eng. Appl., vol. 14, no. 1, pp. 1–9, 2023. 

[20] W. Ngabu, R. Fitriani, H. Pramoedyo, and A. B. Astuti, “CLUSTER FAST DOUBLE BOOTSTRAP APPROACH WITH 

RANDOM EFFECT SPATIAL MODELING,” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 2, pp. 945–954, 2023. 

[21] D. R. S. Saputro, P. Widyaningsih, N. A. Kurdi, and A. Susanti, “Proporsionalitas Autokorelasi Spasial dengan Indeks Global 

(Indeks Moran) dan Indeks Lokal (Local Indicator of Spatial Association (LISA)),” 2018. 

[22] S. Chakraborty and X. Zhang, “A new framework for distance and kernel-based metrics in high dimensions,” Electron. J. Stat., 

vol. 15, no. 2, pp. 5455–5522, 2021. 

[23] M. Hoffmann and F. Noé, “Generating valid Euclidean distance matrices,” arXiv Prepr. arXiv1910.03131, 2019. 

[24] A. Iriany, W. Ngabu, D. Arianto, and A. Putra, “CLASSIFICATION OF STUNTING USING GEOGRAPHICALLY 

WEIGHTED REGRESSION-KRIGING CASE STUDY: STUNTING IN EAST JAVA,” BAREKENG J. Ilmu Mat. dan Terap., 

vol. 17, no. 1, pp. 495–504, 2023. 

[25] J. G. Liao, J. E. Cavanaugh, and T. L. McMurry, “Extending AIC to best subset regression,” Comput. Stat., vol. 33, pp. 787–

806, 2018. 

[26] H. Pham, “A new criterion for model selection,” Mathematics, vol. 7, no. 12, p. 1215, 2019. 

 
 

  



636 Iriany, et. al.     RAINFALL MODELING USING THE GEOGRAPHICALLY WEIGHTED POISSON…  

 

 


