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ABSTRACT 
Article History: In the field of modern encryption algorithms, the creation of S-Box is an essential element that 

plays an important role in maintaining data security in various industries. This article provides 

a comprehensive review of various S-Box designs, with particular emphasis on essential 

parameters such as “Average 𝑑”, “Average 𝐻𝐶” and “Non-linearity value”. The main goal is 

to determine the most optimal S-Box structure to minimize correlation, thereby improving the 

security and unpredictability of the cryptographic system. Research results indicate that the S-

Box characterized by the 1BD hexadecimal code is superior to its counterparts. It has an average 

𝑑 value of 4.1953 and an average 𝐻𝐶 value of 0.4756. In contrast, the S-Box represented by 

hexadecimal code 169 displays a relatively lower level of security, with an average d value of 

3.8750 and an average 𝐻𝐶 value of 0.5156. These results enable security experts and 

cryptographers to make the correct choice when selecting the S-Box with the minimum 

correlation value, thereby strengthening cryptographic systems against emerging cyber threats. 
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1. INTRODUCTION 

In an increasingly advanced digital age, sensitive data protection has become a significant concern in 

various sectors, including banking, health, communications, and more. Strong and reliable data security 

protects personal information, industrial secrecy, and national interests. Encryption algorithms play a crucial 

role in modern data security systems. One of the most commonly used encryption algorithms is the Advanced 

Encryption Standard Algorithm (AES). AES uses a symmetrical cryptographic approach to protect sensitive 

data with high encryption strength [1]. The Substitution Box (S-Box) is essential for encrypting and 

decrypting data in the AES structure. S-Box converts input bytes into output bytes through non-linear 

substitution. A good design of the S-Box is critical to generating an optimal level of security in the data 

security system. However, in the face of new challenges in data security and increasingly sophisticated 

crypto-analysis attacks, it is crucial to continue to develop and enhance the construction of S-Boxes used in 

security systems. A more substantial and efficient S-box design can increase the security level of the data 

system and reduce the risk of attacks [2]. Previous research [3]–[12] has proposed various methods and 

approaches to S-Box construction for data security systems. 

Moreover, a substantial selection of S-boxes can provide additional strength against crypto-analysis 

attacks such as differential and linear attacks. Various S-box constructions have been proposed by researchers 

using mathematical, heuristic, and algebraic approaches. An effective S-box design is a critical component 

of a cryptographic system and must stick to strict security standards such as proliferation, nonlinearity, and 

resilience to potential attacks. In this context, an irreducible polynomial (IP) in 𝐺𝐹(28) is a nonconstant 

polynomial that resists decomposition into a product of two nonconstant polynomials with binary coefficients. 

These polynomials play an important role in constructing finite field operations and designing algorithms for 

cryptographic primitives such as error-correcting codes and the Advanced Encryption Standard (AES). Their 

importance extends to the creation of finite field extension fields, thereby increasing the efficiency and safety 

of algorithms operating on these fields. Despite these advances, continued research is needed to explore and 

improve the design, evaluation, and improvement of S-Boxes to meet the ever-increasing demands for 

security and efficiency in cryptographic applications. 

This article introduces a new perspective to the S-box design of cryptographic systems by emphasizing 

the distinctive role of irreducible polynomials in 𝐺𝐹(28). While prior studies have explored essential criteria 

like diffusion, nonlinearity, and resistance to attacks in S-box design, this work contributes originality by 

underscoring the importance of these polynomials in constructing finite field arithmetic and designing 

algorithms for cryptographic primitives such as error-correcting codes and the Advanced Encryption Standard 

(AES). Additionally, we highlight the pervasive effects of irreducible polynomials in creating finite field 

extension fields, enhancing the efficiency and security of algorithms within these domains. Despite the 

progress in S-box design discussed in previous literature [4], [9], [10], and [13], our article identifies areas 

for further investigation and improvement, taking into account the evolving landscape of security and 

efficiency requirements in cryptographic systems. Consequently, this work not only builds on existing 

knowledge but also identifies potential avenues for future research, bringing a forward-looking perspective 

to the current state of S-box design in cryptographic applications.  

The goal of the research is to determine the optimal S-Box design for data security systems, considering 

factors such as security, computational efficiency, and resistance to crypto-analysis attacks based on some 

criteria like Hamming distance, Hamming correlation and non-linearity function. By digging deeper into S-

Box's design, data security systems are expected to become more robust, reliable, and effective in protecting 

sensitive information from the growing threat of external attacks. 

 

2. RESEARCH METHODS 

In this study, the research methods used include identifying the purpose of the research, understanding 

S-box construction on cryptographic algorithms, searching for literature, literature analysis, development of 

new construction methods, simulation, and analysis, as well as conclusions and discussions. In the phase of 

literary search, a comprehensive literature search is carried out through various sources of information such 

as academic databases, scientific journals, and related conferences. Relevant keywords are used to obtain 

literature related to S-box construction. Existing methods are evaluated based on observed strengths, 

weaknesses, and safety criteria. Furthermore, a new S-box construction will be developed using an irreducible 
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polynomial in Field. This new approach is based on cryptographic theory, mathematics, optimization, or other 

techniques. The proposed method is then tested through simulation or implementation to evaluate security 

strength, efficiency, and resistance to attack. 

 

 
Figure 1. Step by step to Construct Substitution box (S-Box) 

 

The Substitution Box (S-Box) is essential in cryptographic algorithms for data encryption and 

decryption. The construction process involves the following steps as shown in Figure 1. That is: 

1. Finds the inverse multiplication of each element on 𝐺𝐹(2𝑚) of an irreducible polynomial in 

𝐺𝐹 (2𝑚). 

2. Taps the affine matrix and affine key vector of the operation to find the S-Box. Several conditions 

define affine matrices that are non-linear, unique, and non-singular. 

3. Conduct affine transformation by multiplying the vectors of each inverse element on the 𝐺𝐹(2𝑚) 
with the affine matrix and then adding them to a given affine key vector. In the calculation process, 

the XOR operation is used to determine the result.  

4. After performing affine transformations on each element, the entire S-box is obtained.  
 

2.1 Galois Field (GF) 

Galois Field is also known as a finite field, containing a limited number of elements. Évariste Galois, 
a French mathematician, introduced the field and significantly contributed to polynomial and field theories. 
Galois Field has essential roles in various mathematics and computer science fields, including cryptography, 
code theory, communication system design, and polynomial theories. 

Definition 1. A Galois field in order 𝑞, denoted as 𝐺𝐹(𝑞), is a field containing 𝑞 elements. In this case, 𝑞 is 
a prime rank (𝑞 = 𝑝𝑚) with 𝑝, a prime number and 𝑚, a positive integer. The elements of Galois Field 
𝐺𝐹(𝑝𝑚) is defined as 

𝐺𝐹(𝑝𝑚) = (0, 1, 2, … , 𝑝 − 1) ∪ 

(𝑝, 𝑝 + 1, 𝑝 + 2,… , 𝑝 + 𝑝 − 1) ∪ 

(𝑝2, 𝑝2 + 1, 𝑝2 + 2,… , 𝑝2 + 𝑝 − 1) ∪ …∪ 

(𝑝𝑚−1, 𝑝𝑚−1 + 1, 𝑝𝑚−1 + 2,… , 𝑝𝑚−1 + 𝑝 − 1) 

The integers of modulo 𝑞 represent elements from the Galois Field, so the mathematical operations 
used in this field also use modulo 𝑞 [14]. Various studies related to the Galois Field or finite and current fields 
can be seen. Aidoo & Gyamfi [15], suggested how to construct an irreducible polynomial in 𝐺𝐹(2𝑚) using 
Normal Bases. Similarly, Nithya & Ramadoss [16], review how an expansion field is formed from smaller 
fields, as is discussed about finite fields in the Galois Theory. In addition, Dey & Ghosh [17], suggests how 
to find monic and irreducible polynomial over Gallois Field 𝐺𝐹(𝑝𝑞). 

 

2.2 Substitution Box (S-Box) 

The S-box (Substitution Box) is crucial in various symmetrical cryptographic algorithms. The primary 

function is to replace or change input values with different output values. S-Box aims to provide diffusion or 
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confusion in cryptographic algorithms by creating a complex relationship between input and output. Usually, 

the S-Box operates on data blocks of a certain length, such as 8bit or 32bit, and can be applied repeatedly in 

cryptographic algorithms. Each input value in the data block will be replaced with a corresponding output 

value following the substitution function specified by the s-Box. 

Using the S-Box primarily creates complicated non-linear relationships between input and output, 

making it difficult for crypto-analysis attacks to find patterns or weaknesses in cryptographic algorithms. In 

some algorithms, such as AES, the S-Box is used in conjunction with other linear functions, such as 

substitution and bit shift, to provide a higher level of security. A well-designed S-Box must have the following 

characteristics [7]:  

1. Non-linearity: The S-box must produce outputs that are difficult to predict or show a linear 

relationship pattern between input and output.  

2. Diffusion: A one-bit change in the input of the S-Box must cause multiple-bit changes in the output 

so that the effect of the shift spreads evenly in the cryptographic algorithm.  

3. Resistance to attack: The S-Box should be designed to withstand various crypto-analysis attacks that 

attempt to disclose classified information or reduce the complexity of the crypto algorithm. 

 

3. RESULTS AND DISCUSSION 

3.1 S-box construction on 𝑮𝑭(𝟐𝟖) 

The first step in constructing the S-box is to find the inverse multiplication of each element in the 

𝐺𝐹 (28). Mathematically, an inverse calculation of an element of an irreducible polynomial can be done using 

the Extended Euclid Algorithm [18]. 

The extended Euclidean algorithm is used to find a Bézout coefficient that meets the Bézout identity, 

namely: 

𝑎𝑥 +  𝑏𝑦 = gcd(𝑎, 𝑏)                                                               (1) 

where 𝑎 and b are the given integer numbers. 𝑥 and 𝑦 are the Bézout coefficients to be solved, and gcd(𝑎, 𝑏) 

is the greatest common divisor (GCD) of 𝑎 and 𝑏.  

Here are the stages in the Extended Euclidean Algorithm:  

1. Initialization: Start with two nonnegative integers 𝑎 and 𝑏, where 𝑎 ≥ 𝑏. If 𝑏 = 0. then GCD is a, 

and the corresponding Bézout coefficient is (1, 0). 

2. Division: Give 𝑎 by 𝑏 and note the remaining result. Thus, we can write 𝑎 = 𝑏𝑞 + 𝑟, where 𝑞 is the 

result and 𝑟 is the remainder.  

3. Update: Replace 𝑎 with 𝑏 and 𝑏 with 𝑟 obtained from the previous step. In other words, do 𝑎 ←  𝑏 

and 𝑏 ←  𝑟.  

4. Repeat: Repeat steps 2 and 3 until the rest of 𝑟 is 0.  

5. Bézout identity: After the rest is 0. The last step produces the linear equation 𝑎𝑥 +  𝑏𝑦 = gcd(𝑎, 𝑏), 

where 𝑥 and 𝑦 are the desired Bézout coefficients, and gcd(𝑎, 𝑏) is the GCD of 𝑎 and 𝑏. 

Example 1. Suppose you want to find the inverse of 83 on module 283. Then just count 

83𝑥 + 283𝑦 = gcd(83, 283) 

With the calculation of Euclid's algorithm 

283 = 83 (3) +  34 
83 = 34 (2) + 15 
34 = 15 (2) + 4 
15 = 4 (3) + 3 
4 = 3 (1) + 1 
3 = 1 (3) + 0 
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obtained the value gcd(83,283) = 1.  

Then calculate the value that meets the Bézout identity 

83𝑥 + 283𝑦 = 1 

Using the reverse calculation 

1 = 4 − 3 

= 4 − (15 − 4(3))  

= 4(4) − 15 
= (34 − 15(2))(4) − 15 

= 34(4) − 15(9) 
= 34(4) − (83 − 34(2))(9) 

= 34(22) − 83(9) 

= (283 − 83(3))(22) − 83(9) 

= 283(22) − 83(75) 

So, we get 1 = 83(−75) + 283(22). Based on Bézout's identity, the inverse of 83 on module 283 is 

-75 or 208 in class 283. 

The Extended Euclid algorithm used to calculate the greatest divisor polynomial (GCD) of two 

polynomials can be done by searching for two Polynomials, 𝑈(𝑥) and 𝑊(𝑥), as Bézout identities, that meet 

the following equation [19]: 

gcd(𝐴(𝑥), 𝐵(𝑥)) = 𝑈(𝑥) × 𝐴(𝑥) + 𝑊(𝑥) × 𝐵(𝑥)                                (2) 

The Extended Euclid algorithm works as follows: the symbol "÷" indicates the operation that counts 

the result for a polynomial. The algorithm for calculating the inverse polynomial is as follows: 

1. Initializing 𝑅−1(𝑥) ≔ 𝐵(𝑥); 𝑈−1(𝑥) ≔ 0; 𝑊−1(𝑥) ≔ 1; 𝑅0(𝑥) ≔ 𝐴(𝑥); 𝑈0(𝑥) ≔ 1; 

𝑊0(𝑥) ≔ 0; and 𝑗 ≔ 0; 

2. Calculate the following values: 

a. 𝑄𝑗(𝑥) ≔ 𝑅𝑗−2(𝑥) ÷ 𝑅𝑗−1(𝑥); 

b. 𝑅𝑗(𝑥) ∶= 𝑅𝑗−2(𝑥) − 𝑄𝑗(𝑥) × 𝑅𝑗−1(𝑥); 

c. 𝑈𝑗(𝑥) ≔ 𝑈𝑗−2(𝑥) − 𝑄𝑗(𝑥) × 𝑈𝑗−1(𝑥); 

d. 𝑊𝑗(𝑥) ∶= 𝑊𝑗−2(𝑥) − 𝑄𝑗(𝑥) × 𝑊𝑗−1(𝑥); 

3. Repeats the calculation at step (2) for the value 𝑗 ≔ 𝑗 + 1, until the value 𝑅𝑗 ≔ 0; 

4. When the value 𝑅𝑗 ≔ 0. The algorithm stops, and the value 𝑈𝑗−1 is the inverse of the 

polynomial 𝐴(𝑥) on an irreducible polynomial.         

Example 2. Suppose the irreducible polynomial 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1 of 𝐺𝐹(28). Find the inverse of 𝑥6 +
𝑥4 + 𝑥 + 1. 

Using the calculation of Extended Euclid's algorithm for polynomials obtained the inverse multiplication of 
the polynomial 𝑥6 + 𝑥4 + 𝑥 + 1 with the module of an irreducible polynomial 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1 of 
𝐺𝐹(28) is 𝑥7 + 𝑥6 + 𝑥3 + 𝑥 as follows in Table 1. 
 

Table 1. Extended Euclid's Algorithm for Polynomials Example 2 

𝒋 𝑸𝒋(𝒙) 𝑹𝒋(𝒙)  𝑼𝒋(𝒙) 𝑾𝒋(𝒙) 

−1  −  𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1   0  1 

0  −  𝑥6 + 𝑥4 + 𝑥 + 1   1  0 

1  𝑥2 + 1  𝑥2   𝑥2 + 1  1 

2  𝑥4 + 𝑥2  𝑥 + 1   𝑥6 + 𝑥2 + 1  𝑥4 + 𝑥2 

3  𝑥  𝑥   𝑥7 + 𝑥3 + 𝑥2 + 𝑥 + 1  𝑥5 + 𝑥3 + 1 

4  1  1   𝑥7 + 𝑥6 + 𝑥3 + 𝑥  𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 1 

5  𝑥  0   𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1  𝑥6 + 𝑥4 + 𝑥 + 1 
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Furthermore, polynomials in 𝐺𝐹(28) are also represented as hexadecimal numbers to facilitate the 
formation of the Substitution Box. For the process of changing a polynomial into a hexadecimal number, the 
process is done by converting a polynomial into a binary with a length of 8 bits obtained from the coefficient 
of a variable in the polynomial, namely 

𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1𝑏0 

and then every four string bits of binary values are converted to hexadecimal or vice versa by using Table 2, 
as follows: 

Table 2. Conversion Table Binary to Hexadecimal 

Binary Hex  Binary Hex  Binary Hex  Binary Hex 

0000 0  0100 4  1000 8  1100 𝐶 

0001 1  0101 5  1001 9  1101 𝐷 

0010 2  0110 6  1010 𝐴  1110 𝐸 

0011 3  0111 7  1011 𝐵  1111 𝐹 

Example 3. Suppose the given polynomial is 𝑥6 + 𝑥4 + 𝑥 + 1, then the binary 8-bit string of the polynomial 
is 01010011, and the hexadecimal value is 53. The inverse is 𝑥7 + 𝑥6 + 𝑥3 + 𝑥 with the 8-bit binary string 
11001010. and the value is hexadecimal CA. So, the inverse of 53 is CA. Furthermore, for every polynomial 

in 𝐺𝐹(28) the inverse element as follows in Table 3. All of polynomials must be written in hexadecimal 
form. 

Table 3. Inverse polynomial in GF(𝟐𝟖) 

 𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝑨 𝑩 𝑪 𝑫 𝑬 𝑭 

𝟎 00 01 8𝐷 𝐹6 𝐶𝐵 52 7𝐵 𝐷1 𝐸8 4𝐹 29 𝐶0 𝐵0 𝐸1 𝐸5 𝐶7 

𝟏 74 𝐵4 𝐴𝐴 4𝐵 99 2𝐵 60 5𝐹 58 3𝐹 𝐹𝐷 𝐶𝐶 𝐹𝐹 40 𝐸𝐸 𝐵2 

𝟐 3𝐴 6𝐸 5𝐴 𝐹1 55 4𝐷 𝐴8 𝐶9 𝐶1 0𝐴 98 15 30 44 𝐴2 𝐶2 

𝟑 2𝐶 45 92 6𝐶 𝐹3 39 66 42 𝐹2 35 20 6𝐹 77 𝐵𝐵 59 19 

𝟒 1𝐷 𝐹𝐸 37 67 2𝐷 31 𝐹5 69 𝐴7 64 𝐴𝐵 13 54 25 𝐸9 09 

𝟓 𝐸𝐷 5𝐶 05 𝐶𝐴 4𝐶 24 87 𝐵𝐹 18 3𝐸 22 𝐹0 51 𝐸𝐶 61 17 

𝟔 16 5𝐸 𝐴𝐹 𝐷3 49 𝐴6 36 43 𝐹4 47 91 𝐷𝐹 33 93 21 3𝐵 

𝟕 79 𝐵7 97 85 10 𝐵5 𝐵𝐴 3𝐶 𝐵6 70 𝐷0 06 𝐴1 𝐹𝐴 81 82 

𝟖 83 7𝐸 7𝐹 80 96 73 𝐵𝐸 56 9𝐵 9𝐸 95 𝐷9 𝐹7 02 𝐵9 𝐴4 

𝟗 𝐷𝐸 6𝐴 32 6𝐷 𝐷8 8𝐴 84 72 2𝐴 14 9𝐹 88 𝐹9 𝐷𝐶 89 9𝐴 

𝑨 𝐹𝐵 7𝐶 2𝐸 𝐶3 8𝐹 𝐵8 65 48 26 𝐶8 12 4𝐴 𝐶𝐸 𝐸7 𝐷2 62 

𝑩 0𝐶 𝐸0 1𝐹 𝐸𝐹 11 75 78 71 𝐴5 8𝐸 76 3𝐷 𝐵𝐷 𝐵𝐶 86 57 

𝑪 0𝐵 28 2𝐹 𝐴3 𝐷𝐴 𝐷4 𝐸4 0𝐹 𝐴9 27 53 04 1𝐵 𝐹𝐶 𝐴𝐶 𝐸6 

𝑫 7𝐴 07 𝐴𝐸 63 𝐶5 𝐷𝐵 𝐸2 𝐸𝐴 94 8𝐵 𝐶4 𝐷5 9𝐷 𝐹8 90 6𝐵 

𝑬 𝐵1 0𝐷 𝐷6 𝐸𝐵 𝐶6 0𝐸 𝐶𝐹 𝐴𝐷 08 4𝐸 𝐷7 𝐸3 5𝐷 50 1𝐸 𝐵3 

𝑭 5𝐵 23 38 34 68 46 03 8𝐶 𝐷𝐷 9𝐶 7𝐷 𝐴0 𝐶𝐷 1𝐴 41 1𝐶 

Before performing an affine transformation, each polynomial on 𝐺𝐹(28) will be represented in the 
form of a column vector containing the 8-bit binary value of the string of the polynomial with the following 

rule, assuming given a polynomial in 𝐺𝐹(28) i.e. 

𝑏7𝑥
7 + 𝑏6𝑥

6 + 𝑏5𝑥
5 + 𝑏4𝑥

4 + 𝑏3𝑥
3 + 𝑏2𝑥

2 + 𝑏1𝑥
1 + 𝑏0𝑥

0 

Then the 8-bit binary string is 𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1𝑏0 and the vector representation is 

𝑏 =

[
 
 
 
 
 
 
 
 
𝑏0

𝑏1

𝑏2

𝑏3

𝑏4

𝑏5

𝑏6

𝑏7]
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Example 4. Based on Example 2 and Example 3, inverse multiplication for the given polynomial 𝑥6 + 𝑥4 +
𝑥 + 1 with the module of an irreducible polynomial 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1 of 𝐺𝐹(28) is 𝑥7 + 𝑥6 + 𝑥3 + 𝑥, 
which can be represented as 11001010 and the vector as follows: 

𝑏 =

[
 
 
 
 
 
 
 
0
1
0
1
0
0
1
1]
 
 
 
 
 
 
 

 

After obtaining the inverse for each value on 𝐺𝐹(28) and further determining the affine matrix and 
affine key vector used in affine transformation, this study used an affine matrix 𝑀 of size 8 × 8 and an affine 
vector 𝑣 of length 1 × 8 as follows: 

𝑀 =

[
 
 
 
 
 
 
 
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1]

 
 
 
 
 
 
 

; 𝑣 =

[
 
 
 
 
 
 
 
1
1
0
0
0
1
1
0]
 
 
 
 
 
 
 

 

Further, from the affine matrix and the defined affine vector, an affine transformation is carried out by 
performing the module 2 matrix multiplication and the operation XOR with the affine vector by the result of 
the multiplication of the affine matrix. These values are then entered in the Substitution Box (S-Box) in Table 
4. and the affine transformation can be written as follows:  

𝑠𝑖𝑗 = 𝑀 ⋅ 𝑏𝑖𝑗 ⊕ 𝑣                 (3) 

where 𝑠, 𝑏, and 𝑣 are column vectors 1 × 8 with 𝑠 being the result vector for the hexadecimal value 𝑖𝑗; 𝑏 is a 
vector of the inverse polynomial value 𝑖𝑗; and also 𝑣 is the affine vector, M is the affine matrix, and the "⊕" 
is the XOR operation, with 𝑖 being the hexadecimal value in the S-Box row and 𝑗 being the value hexadecimal 
in the S-box column. Constructing the S-box using an affine matrix in order to improve image encryption 
security. 

Example 5. Suppose we find the entry of S-Box of an irreducible polynomial 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1 of 

𝐺𝐹(28) in cell hexadecimal 53 (row of hexadecimal 5 and column of hexadecimal 3), then the formula of 

transformation affine (3) is used by 

𝑠53 = 𝑀 ⋅ 𝑏53 ⊕ 𝑣 

Table 4. Substitution Box Format 

 𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝑨 𝑩 𝑪 𝑫 𝑬 𝑭 
𝟎 𝑠00 𝑠01 𝑠02 𝑠03 𝑠04 𝑠05 𝑠06 𝑠07 𝑠08 𝑠09 𝑠0𝐴 𝑠0𝐵 𝑠0𝐶  𝑠0𝐷 𝑠0𝐸 𝑠0𝐹 

𝟏 𝑠10 𝑠11 𝑠12 𝑠13 𝑠14 𝑠15 𝑠16 𝑠17 𝑠18 𝑠19 𝑠1𝐴 𝑠1𝐵 𝑠1𝐶  𝑠1𝐷 𝑠1𝐸 𝑠1𝐹 

𝟐 𝑠20 𝑠21 𝑠22 𝑠23 𝑠24 𝑠25 𝑠26 𝑠27 𝑠28 𝑠29 𝑠2𝐴 𝑠2𝐵 𝑠2𝐶  𝑠2𝐷 𝑠2𝐸 𝑠2𝐹 

𝟑 𝑠30 𝑠31 𝑠32 𝑠33 𝑠34 𝑠35 𝑠36 𝑠37 𝑠38 𝑠39 𝑠3𝐴 𝑠3𝐵 𝑠3𝐶  𝑠3𝐷 𝑠3𝐸 𝑠3𝐹 

𝟒 𝑠40 𝑠41 𝑠42 𝑠43 𝑠44 𝑠45 𝑠46 𝑠47 𝑠48 𝑠49 𝑠4𝐴 𝑠4𝐵 𝑠4𝐶  𝑠4𝐷 𝑠4𝐸  𝑠4𝐹  

𝟓 𝑠50 𝑠51 𝑠52 𝑠53 𝑠54 𝑠55 𝑠56 𝑠57 𝑠58 𝑠59 𝑠5𝐴 𝑠5𝐵 𝑠5𝐶  𝑠5𝐷 𝑠5𝐸 𝑠5𝐹 

𝟔 𝑠60 𝑠61 𝑠62 𝑠63 𝑠64 𝑠65 𝑠66 𝑠67 𝑠68 𝑠69 𝑠6𝐴 𝑠6𝐵 𝑠6𝐶  𝑠6𝐷 𝑠6𝐸 𝑠6𝐹 

𝟕 𝑠70 𝑠71 𝑠72 𝑠73 𝑠74 𝑠75 𝑠76 𝑠77 𝑠78 𝑠79 𝑠7𝐴 𝑠7𝐵 𝑠7𝐶  𝑠7𝐷 𝑠7𝐸 𝑠7𝐹 

𝟖 𝑠80 𝑠81 𝑠82 𝑠83 𝑠84 𝑠85 𝑠86 𝑠87 𝑠88 𝑠89 𝑠8𝐴 𝑠8𝐵 𝑠8𝐶  𝑠8𝐷 𝑠8𝐸 𝑠8𝐹 

𝟗 𝑠90 𝑠91 𝑠92 𝑠93 𝑠94 𝑠95 𝑠96 𝑠97 𝑠98 𝑠99 𝑠9𝐴 𝑠9𝐵 𝑠9𝐶  𝑠9𝐷 𝑠9𝐸  𝑠9𝐹  

𝑨 𝑠𝐴0 𝑠𝐴1 𝑠𝐴2 𝑠𝐴3 𝑠𝐴4 𝑠𝐴5 𝑠𝐴6 𝑠𝐴7 𝑠𝐴8 𝑠𝐴9 𝑠𝐴𝐴 𝑠𝐴𝐵  𝑠𝐴𝐶  𝑠𝐴𝐷  𝑠𝐴𝐸  𝑠𝐴𝐹  

𝑩 𝑠𝐵0 𝑠𝐵1 𝑠𝐵2 𝑠𝐵3 𝑠𝐵4 𝑠𝐵5 𝑠𝐵6 𝑠𝐵7 𝑠𝐵8 𝑠𝐵9 𝑠𝐵𝐴 𝑠𝐵𝐵  𝑠𝐵𝐶  𝑠𝐵𝐷  𝑠𝐵𝐸  𝑠𝐵𝐹  

𝑪 𝑠𝐶0 𝑠𝐶1 𝑠𝐶2 𝑠𝐶3 𝑠𝐶4 𝑠𝐶5 𝑠𝐶6 𝑠𝐶7 𝑠𝐶8 𝑠𝐶9 𝑠𝐶𝐴 𝑠𝐶𝐵 𝑠𝐶𝐶  𝑠𝐶𝐷 𝑠𝐶𝐸  𝑠𝐶𝐹  

𝑫 𝑠𝐷0 𝑠𝐷1 𝑠𝐷2 𝑠𝐷3 𝑠𝐷4 𝑠𝐷5 𝑠𝐷6 𝑠𝐷7 𝑠𝐷8 𝑠𝐷9 𝑠𝐷𝐴 𝑠𝐷𝐵 𝑠𝐷𝐶  𝑠𝐷𝐷 𝑠𝐷𝐸 𝑠𝐷𝐹 

𝑬 𝑠𝐸0 𝑠𝐸1 𝑠𝐸2 𝑠𝐸3 𝑠𝐸4 𝑠𝐸5 𝑠𝐸6 𝑠𝐸7 𝑠𝐸8 𝑠𝐸9 𝑠𝐸𝐴 𝑠𝐸𝐵 𝑠𝐸𝐶  𝑠𝐸𝐷 𝑠𝐸𝐸  𝑠𝐸𝐹  

𝑭 𝑠𝐹0 𝑠𝐹1 𝑠𝐹2 𝑠𝐹3 𝑠𝐹4 𝑠𝐹5 𝑠𝐹6 𝑠𝐹7 𝑠𝐹8 𝑠𝐹9 𝑠𝐹𝐴 𝑠𝐹𝐵  𝑠𝐹𝐶  𝑠𝐹𝐷  𝑠𝐹𝐸  𝑠𝐹𝐹  
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Based on Table 2, hexadecimal 53 has an 8-bit binary string is 01010011, so the vector is 

𝑏53 = [0 1 0 1 0 0 1 1]𝑇 

Therefore, the calculation we have 

𝑠53 =

[
 
 
 
 
 
 
 
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1]

 
 
 
 
 
 
 

⋅

[
 
 
 
 
 
 
 
0
1
0
1
0
0
1
1]
 
 
 
 
 
 
 

⊕

[
 
 
 
 
 
 
 
1
1
0
0
0
1
1
0]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
0
1
1
1
0
0
0
1]
 
 
 
 
 
 
 

⊕

[
 
 
 
 
 
 
 
1
1
0
0
0
1
1
0]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
1
0
1
1
0
1
1
1]
 
 
 
 
 
 
 

 

The result in an 8-bit string is 11101101, and the hexadecimal is 𝐸𝐷. As the same step for every cell, we 

have the Substitution Box of an irreducible polynomial 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1, as follows in Table 5: 

Table 5. Substitution Box of 𝒙𝟖 + 𝒙𝟒 + 𝒙𝟑 + 𝒙 + 𝟏 

 𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝑨 𝑩 𝑪 𝑫 𝑬 𝑭 
𝟎 63 7𝐶 77 7𝐵 𝐹2 6𝐵 6𝐹 𝐶5 30 01 67 2𝐵 𝐹𝐸 𝐷7 𝐴𝐵 76 

𝟏 𝐶𝐴 82 𝐶9 7𝐷 𝐹𝐴 59 47 𝐹0 𝐴𝐷 𝐷4 𝐴2 𝐴𝐹 9𝐶 𝐴4 72 𝐶0 

𝟐 𝐵7 𝐹𝐷 93 26 36 3𝐹 𝐹7 𝐶𝐶 34 𝐴5 𝐸5 𝐹1 71 𝐷8 31 15 

𝟑 04 𝐶7 23 𝐶3 18 96 05 9𝐴 07 12 80 𝐸2 𝐸𝐵 27 𝐵2 75 

𝟒 09 83 2𝐶 1𝐴 1𝐵 6𝐸 5𝐴 𝐴0 52 3𝐵 𝐷6 𝐵3 29 𝐸3 2𝐹 84 

𝟓 53 𝐷1 00 𝐸𝐷 20 𝐹𝐶 𝐵1 5𝐵 6𝐴 𝐶𝐵 𝐵𝐸 39 4𝐴 4𝐶 58 𝐶𝐹 

𝟔 𝐷0 𝐸𝐹 𝐴𝐴 𝐹𝐵 43 4𝐷 33 85 45 𝐹9 02 7𝐹 50 3𝐶 9𝐹 𝐴8 

𝟕 51 𝐴3 40 8𝐹 92 9𝐷 38 𝐹5 𝐵𝐶 𝐵6 𝐷𝐴 21 10 𝐹𝐹 𝐹3 𝐷2 

𝟖 𝐶𝐷 0𝐶 13 𝐸𝐶 5𝐹 97 44 17 𝐶4 𝐴7 7𝐸 3𝐷 64 5𝐷 19 73 

𝟗 60 81 4𝐹 𝐷𝐶 22 2𝐴 90 88 46 𝐸𝐸 𝐵8 14 𝐷𝐸 5𝐸 0𝐵 𝐷𝐵 

𝑨 𝐸0 32 3𝐴 0𝐴 49 06 24 5𝐶 𝐶2 𝐷3 𝐴𝐶 62 91 95 𝐸4 79 

𝑩 𝐸7 𝐶8 37 6𝐷 8𝐷 𝐷5 4𝐸 𝐴9 6𝐶 56 𝐹4 𝐸𝐴 65 7𝐴 𝐴𝐸 08 

𝑪 𝐵𝐴 78 25 2𝐸 1𝐶 𝐴6 𝐵4 𝐶6 𝐸8 𝐷𝐷 74 1𝐹 4𝐵 𝐵𝐷 8𝐵 8𝐴 

𝑫 70 3𝐸 𝐵5 66 48 03 𝐹6 0𝐸 61 35 57 𝐵9 86 𝐶1 1𝐷 9𝐸 

𝑬 𝐸1 𝐹8 98 11 69 𝐷9 8𝐸 94 9𝐵 1𝐸 87 𝐸9 𝐶𝐸 55 28 𝐷𝐹 

𝑭 8𝐶 𝐴1 89 0𝐷 𝐵𝐹 𝐸6 42 68 41 99 2𝐷 0𝐹 𝐵0 54 𝐵𝐵 16 

Example 6. Construction of the Substitution Box of an irreducible polynomial 𝑥8 + 𝑥6 + 𝑥4 + 𝑥3 + 𝑥2 +
𝑥 + 1 of 𝐺𝐹(28). 

Using the same calculation as Example 5, for every cell, we obtain the substitution box as follows in Table 

6. 

Table 6. Substitution Box of 𝒙𝟖 + 𝒙𝟔 + 𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝒙 + 𝟏 

 𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝑨 𝑩 𝑪 𝑫 𝑬 𝑭 
𝟎 63 7𝐶 𝐴𝐴 𝐸𝐷 𝐶1 𝐸6 24 88 32 3𝐴 𝐴1 3𝐹 86 33 96 64 

𝟏 𝐶𝐵 𝐸5 𝐶𝐹 14 44 45 0𝐵 𝐴𝐶 𝐷7 3𝐶 4𝐵 54 𝐷𝐹 𝐴8 𝐴6 80 

𝟐 37 𝐵9 20 𝐴5 73 𝐵𝐶 𝐷8 5𝐸 𝐹0 1𝐷 70 𝐴9 11 0𝐴 84 2𝐷 

𝟑 7𝐹 𝐴2 8𝐴 65 31 4𝐸 𝐹8 99 7𝐵 𝐷9 𝐶0 09 81 29 92 𝐹𝐴 

𝟒 0𝐹 𝐸𝐵 48 69 𝐶2 41 00 𝐷𝐸 6𝐵 𝐵8 8𝐶 8𝐸 𝐵𝐸 𝐵𝐴 𝐹𝐷 4𝐷 

𝟓 𝐸𝐶 𝐵𝐹 5𝐶 𝐴7 𝐸𝐴 9𝐸 40 𝐶𝐶 1𝐶 𝐶𝐴 91 62 𝐷6 𝐶4 02 78 

𝟔 2𝐵 35 𝐶5 𝐴𝐸 97 21 26 82 4𝐴 𝐹3 𝐹5 36 𝐸8 𝐹𝐸 1𝐸 52 

𝟕 6𝐹 59 3𝐸 3𝐵 𝐵2 03 10 𝐵𝐵 12 2𝐸 46 𝐵6 9𝐵 25 𝐸9 27 

𝟖 55 𝐴0 61 30 𝐵0 98 66 𝐷𝐴 𝐵3 𝐷0 34 58 94 𝐴𝐵 𝐹𝐵 72 

𝟗 67 𝐸𝐹 𝐶8 75 𝐷2 2𝐹 𝐷3 17 8𝐷 𝐷4 𝐶9 𝐶𝐸 2𝐶 𝐸7 74 43 

𝑨 𝐴4 𝐹4 0𝐷 51 𝐹𝐶 𝐴3 01 𝐸2 𝐸1 𝐶3 𝐷𝐵 𝐷1 𝐵4 68 𝐹2 5𝐷 

𝑩 𝐷𝐶 𝐹7 𝐵7 16 1𝐴 39 𝐸3 6𝐶 𝐹𝐹 3𝐷 𝐹6 13 95 50 𝐸𝐸 5𝐴 

𝑪 47 2𝐴 0𝐸 1𝐵 76 9𝐴 85 57 5𝐹 08 42 𝐵5 87 90 93 7𝐷 

𝑫 𝐵1 79 6𝐷 56 28 9𝐹 8𝐹 𝐴𝐹 𝐸0 19 𝐴𝐷 𝐷5 𝐷𝐷 𝐶7 𝐵𝐷 71 

𝑬 23 6𝐴 38 0𝐶 8𝐵 77 4𝐹 7𝐴 𝐶𝐷 7𝐸 15 04 9𝐶 18 49 𝐸4 

𝑭 9𝐷 05 83 53 𝐹1 5𝐵 89 𝐶6 1𝐹 𝐹9 06 22 60 6𝐸 07 04 
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Example 7. Construction of the Substitution Box of an irreducible polynomial 𝑥8 + 𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 +
𝑥2 + 1 of 𝐺𝐹(28). 

Using the same calculation as Example 5, for every cell, we obtain the substitution box as follows in Table 

7. 
Table 7. Substitution Box of 𝒙𝟖 + 𝒙𝟕 + 𝒙𝟔 + 𝒙𝟓 + 𝒙𝟒 + 𝒙𝟐 + 𝟏 

 𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝑨 𝑩 𝑪 𝑫 𝑬 𝑭 

𝟎 63 7𝐶 𝐹𝐹 8𝐵 2𝐷 3𝐵 17 7𝐸 57 97 4𝐹 𝐶8 59 𝐹4 𝐹𝐸 49 

𝟏 79 98 0𝐴 45 75 72 𝐵6 𝐹3 6𝐷 𝐸𝐸 𝐴8 𝐷2 𝐴𝐷 18 65 58 

𝟐 6𝐸 68 9𝐸 90 𝐶4 𝐸8 70 4𝐴 7𝐵 39 𝐸𝐵 𝐸7 89 0𝐶 38 𝐷5 

𝟑 77 80 𝐴5 𝐷7 95 9𝐶 𝐵𝐵 𝐸9 04 13 𝐶𝐷 54 73 20 𝐸𝐷 93 

𝟒 𝐹6 33 𝐸6 5𝐹 8𝐸 𝐴𝐹 9𝐴 40 𝐴3 𝐴7 𝐵5 𝐴𝐸 𝐸𝐴 6𝐶 𝐸4 23 

𝟓 6𝐹 𝐷𝐷 4𝐸 𝐷𝐹 34 𝐹0 21 61 16 07 𝐷4 𝐹2 𝐶𝐸 𝐷1 2𝐵 36 

𝟔 7𝐴 37 92 87 00 32 2𝐴 𝐸2 0𝐵 99 8𝐹 𝐵𝐸 1𝐶 22 35 1𝐴 

𝟕 𝐷0 𝐸𝐶 48 84 27 25 𝐹8 46 6𝐵 𝐶0 𝐶2 55 24 1𝐹 1𝐵 96 

𝟖 𝐴9 𝐶𝐹 4𝐵 𝐵7 𝐴1 81 7𝐷 𝐴𝐴 86 𝐵𝐹 05 𝐹𝐷 9𝐹 71 𝐸1 𝐶6 

𝟗 10 69 01 𝐹𝐵 08 3𝐸 85 𝐹9 𝐵4 9𝐷 𝐹7 𝐹𝐶 𝐴0 14 43 𝐵𝐶 

𝑨 76 1𝐷 2𝐹 4𝐷 𝐹5 3𝐹 2𝐸 30 𝐷𝐵 𝐸3 𝐵9 19 42 𝐸0 62 𝐵1 

𝑩 𝐷9 56 51 74 𝐴𝐵 𝐹𝐴 𝐵8 5𝐶 𝐴6 𝐷6 3𝐴 𝐶𝐴 47 28 𝐷𝐴 5𝐸 

𝑪 𝐸𝐹 29 5𝐴 𝐴𝐶 9𝐵 88 02 0𝐹 𝐶1 60 𝐶𝐵 8𝐶 𝐶7 91 𝐵0 𝐷8 

𝑫 44 41 1𝐸 3𝐶 06 𝐶9 8𝐷 66 𝐷𝐶 03 𝐶3 3𝐷 5𝐵 𝐶5 𝐶𝐶 𝐷𝐸 

𝑬 𝐵𝐴 50 𝐴4 2𝐶 𝐸5 82 83 0𝐷 52 31 53 𝐴2 𝐵𝐷 0𝐸 𝐹1 6𝐴 

𝑭 67 64 𝐵2 09 𝐵3 15 78 26 𝐷3 7𝐹 5𝐷 94 4𝐶 11 8𝐴 12 

 

3.2 Criteria 

3.2.1 Hamming Distance & Hamming Correlation 

Hamming distance is a metric used to measure the difference between two strings of equal length. It is 

defined as the number of positions at which the corresponding symbols are different. In other words, it 

measures the minimum number of substitutions required to change one string into another, or the minimum 

number of errors that could have transformed one string into another [20], [21]. Hamming distance is one of 

several string metrics for measuring the edit distance between two sequences. The Hamming distance 

between two 8-bit strings is a measure of the difference or dissimilarity between them. It's calculated by 

comparing each pair of corresponding bits in the two strings and counting the number of positions at which 

they differ. The XOR (exclusive OR) operation is commonly used to calculate the Hamming distance because 

it results in a 1 (true) when two bits are different and 0 (false) when they are the same. 

Here's how you can calculate the Hamming distance between two 8-bit strings using XOR: 

1. Make sure the two 8-bit strings have the same length. If they don't, you may need to pad the shorter 

string with leading zeros. 

2. Perform a bitwise XOR operation between the two 8-bit strings. This means comparing each pair of 

corresponding bits and applying the XOR operation to them. 

3. Count the number of 1s (true values) in the result of the XOR operation. This count represents the 

Hamming distance between the two 8-bit strings. 

In form of mathematics the formula of Hamming distance between two 𝑛-bit string 𝑥 = (𝑥𝑛−1 …𝑥2𝑥1𝑥0) 

and 𝑦 = (𝑦𝑛−1 …𝑦2𝑦1𝑦0) using operation XOR (⊕) is given by: 

𝑑(𝑥, 𝑦) = ∑𝑥𝑗 ⊕ 𝑦𝑗

𝑛

𝑗=0

                                                                                (4) 

Example 8. Hamming distance between strings 11001100 and 01110100 is 4. 

In this case, both bit strings have the same length. Perform the XOR operation: 

11001100 ⊕ 01110100 = 10111000 
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 So, the Hamming distance is: 

𝑑 = ∑(11001100 ⊕ 01110100) = 1 + 0 + 1 + 1 + 1 + 0 + 0 + 0 + 0 = 4 

In this study, we utilize the Hamming distance to measure how many bit positions differ between two 

binary values (the input and output values in an S-box) as shown in Table 8. This metric is valuable for 

evaluating the behavior and properties of an S-box. Additionally, we explore Hamming correlation, a concept 

closely related to the Hamming distance, but with a focus on measuring the similarity or correlation between 

two binary sequences rather than their dissimilarity. Hamming correlation is not a commonly used term, but 

it appears to refer to the correlation between two binary strings based on their Hamming distance [20], [21]. 

Maximizing the Hamming distance between two binary strings is not the same as minimizing their 

correlation. Hamming distance is frequently encountered in the analysis of block codes. It is also used in 

character recognition using template matching schemes. In addition, Hamming distance is used to compare 

two binary strings of the same length. Hamming correlation finds applications in various fields, such as 

information theory, error detection and correction, and signal processing. Mathematically, the Hamming 

correlation (𝐻𝑐) can be expressed as follows: 

𝐻𝑐(𝑥, 𝑦) =
𝑑(𝑥, 𝑦)

𝑛
                                                                                (5) 

The result is a value between 0 and 1, where a value of 0 indicates that the two strings are identical and 

value of 1 indicates that the two strings have no matching bits. 

In Table 8, the "S-Box Code" column labels each S-box constructed by its hexadecimal polynomial 

code. The "Average 𝑑" column represents the average Hamming distance value between all input and output 

bits in the S-Box. The last column, "Average 𝐻𝐶" indicates the Hamming correlation value of the S-Box. A 

higher value of "𝑑" corresponds to a smaller correlation value, signifying distinctions between the S-box's 

input and output. Consequently, a higher "𝑑" value implies that the S-box possesses superior scrambling 

capabilities. Using a correlation test between "Average 𝑑" and "Average 𝐻𝐶" we obtain a significant negative 

correlation, because this implies that since the S-boxes have a higher average Hamming distance (more 

dispersion and diffusion), they tend to have a lower Hamming correlation (less linear relationships between 

input and output). This is generally considered favorable for cryptographic S-boxes as it indicates a stronger 

level of security. 

 

3.2.2 Non-Linearity (NL) 

The non-linearity of a Boolean function can be defined as the smallest distance between the function 

and the set of affine functions. It is denoted by Ψ is mathematically represented as: 

Ψ = min(𝑁𝜇)       (6) 

with 

𝑁𝑗 = min[𝑑(𝑓, 𝑔)], where 𝑔 ∈ 𝐴𝑛     (7) 

where 𝐴𝑛 is the set of all the affine functions. And 

𝑑(𝑓, 𝑔) = 2𝑛−1 − 2−1(〈𝜂, 𝛽〉)     (8) 

where 𝜂, 𝛽 represent the binary sequence of 𝑓, 𝑔 respectively and 〈𝜂, 𝛽〉 define the scalar product of 

sequence, Hence, for a function 𝑓: 𝐵𝑛 → 𝐵  

𝑁𝑓 = 2𝑛−1 − 2−1[max(〈𝜂, 𝛽𝑗〉)]     (9) 

Where 𝛽𝑗 belongs to sequence of all linear function. 

 

3.3 Discussion and Future Research 

In comparison, the results from Table 8 in this study provide a comprehensive assessment of various 

S-boxes used in encryption algorithms. The focus here is on evaluating S-boxes based on "Average 𝑑" and 

"Average 𝐻𝐶" to enhance security and unpredictability. The S-box with the hexadecimal code 1BD stands 

out as the most favorable choice, boasting an average 𝑑 value of 4.1953 and an average 𝐻𝐶 value of 0.4756. 

This suggests a high level of security. Conversely, the S-box with hexadecimal code 169 is identified as the 

least desirable option, with an average 𝑑 value of 3.8750 and an average 𝐻𝐶 value of 0.5156, indicating a 

lower level of security. Interestingly, when comparing these results to those in [22], which focuses on image 

security, and in this article [9], which explores dynamic S-boxes in the AES algorithm, it becomes apparent 
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that the emphasis in this study is on cryptographic system security rather than image encryption or dynamic 

S-box flexibility. While all three studies aim to enhance security, the specific focus areas and evaluation 

criteria differ, highlighting the adaptability of S-boxes in various contexts. 

For future research, it will be valuable to explore additional metrics beyond Hamming distance and 

Hamming correlation. The research should aim to bridge the gap between theoretical analysis and practical 

security concerns, ultimately contributing to the development of more robust encryption algorithms across a 

range of domains. Several other algebraic structures can also be found to construct such S-boxes to improve 

their robustness and can also be implemented in any size of S-Boxes, like 4 × 4, 8 × 8, and 12 × 12 [23]–

[26]. Furthermore, different crypto-analysis techniques can be explored for such S-boxes. 

 

4. CONCLUSIONS 

In conclusion, Table 8 provides a comprehensive overview of various S-boxes, crucial components in 

encryption algorithms. These S-boxes undergo evaluation based on three key parameters: "Average 𝑑", 

"Average 𝐻𝐶" and “NL (Non-linearity value).” The overarching objective is to select S-boxes with minimal 

correlation, ideally approaching a value of 0. To maximize security and minimize predictability in 

cryptographic systems. Upon closer scrutiny, it becomes apparent that specific S-boxes consistently 

demonstrate lower correlations, nearing 0, signifying superior performance in security and unpredictability. 

Based on the result, the best S-Box is constructed by a polynomial with the hexadecimal 1BD, boasting 

an average 𝑑 value of 4.1953 and an average 𝐻𝐶 value of 0.4756. Conversely, the least desirable S-Box is 

constructed by hexadecimal 169, with an average 𝑑 value of 3.8750 and an average 𝐻𝐶 value of 0.5156. The 

original S-Box or Rijndael version possesses an average 𝑑 value of 3.9922 and an average 𝐻𝐶 value of 0.5010. 

And for the non-linearity of a Boolean function, quantified by the smallest distance between the 

functions, varies among S-boxes, with some reaching a maximum of 112 and a minimum of 85. In addition, 

the higher correlations observed in certain S-boxes highlight their increased susceptibility to cryptographic 

vulnerabilities. As a result, it is crucial for cryptographers and security professionals to conduct thorough 

analyses and potentially avoid using these S-boxes in security-sensitive applications. By prioritizing S-boxes 

with minimal correlations, cryptographic systems can be significantly strengthened, providing greater 

resilience against potential attacks and ensuring the protection of sensitive data in the ever-evolving digital 

landscape. 

Table 8. Average Hamming Distance and Hamming Correlation of S-Box 

S-Box Code Average 𝒅 Average 𝑯𝑪 NL  S-Box Code Average 𝒅 Average 𝑯𝑪 NL 

11B 3.9922 0.5010 112  18B 3.9141 0.5107 110 

11D 4.0156 0.4980 95  18D 3.9141 0.5107 108 

12B 3.9844 0.5020 103  19F 4.0312 0.4961 85 

12D 4.1172 0.4854 105  1A3 4.0469 0.4941 102 

139 3.8984 0.5127 111  1A9 3.9141 0.5107 109 

13F 4.0000 0.5000 96  1B1 4.0234 0.4971 101 

14D 4.1016 0.4873 105  1BD 4.1953 0.4756 111 

15F 4.0781 0.4902 100  1C3 4.0234 0.4971 92 

163 3.9062 0.5117 112  1CF 4.0000 0.5000 105 

165 4.1250 0.4844 106  1D7 3.9453 0.5068 106 

169 3.8750 0.5156 107  1DD 4.0938 0.4883 105 

171 4.0156 0.4980 110  1E7 4.0703 0.4912 89 

177 4.0781 0.4902 98  1F3 4.0547 0.4932 112 

17B 4.0156 0.4980 110  1F5 4.0547 0.4932 104 

187 3.9297 0.5088 98  1F9 3.9844 0.5020 108 
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