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ABSTRACT 

Article History: 
The research conducted is a part of a literature review on mathematical models that apply 

analytical mathematics. The research focuses on the COVID-19 model, which incorporates 

optimum control variables previously investigated and interpreted by Hakim. Depending 

on the current model, we will further develop the analysis and demonstrate the non-

negativity condition as well as the boundedness criteria for the solutions. Additionally, we 

conduct several supplementary analyses by applying the Lipschitz function to examine the 

uniqueness of the solutions and the existence of the solution are hold on the autonomous 

system. The purpose of this research is to support the previous findings that incorporated 

an optimal control into the model to reduce public COVID-19 treatment. Finally, the 

research verifies that the control variables used satisfy all of the existence criteria, as 

outlined in Theorem 5 of this research. 
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1. INTRODUCTION 

Mathematical analysis is one of a discipline part of mathematics that is especially beneficial in 

describing biological or social behaviors currently happening in the world [1]. One of the ideas is the 

mathematical analysis provides a significant role in preventing the outbreak of diseases or pandemics by 

understanding and predicting how the disease will spread in population, and how we can develop the effective 

ways to reduce the impact [2], [3]. The pandemic is remains one of humanity's greatest challenges. The 

infectious spread of disease, like the viruses that requires significant planning, controlling, and knowledge in 

arranging and organizing, which including the mathematical analysis. The COVID-19 disease became a 

pandemic that shook the earth towards the end of 2019[4]. 

The SARS-CoV-2 Coronavirus causes COVID-19, which typically appears as a pulmonary 

dysfunction disease. This virus is frequently transmitted by respiratory droplets, that occur when an individual 

or object relates within one to two meters of an infected individual. Coughing and sneezing might also 

contribute to the outbreak [5]. The World Health Organization identified the first case of the COVID-19 

pandemic on December 2019, in China. Additionally, in March 2020, the World Health Organization 

announced that the virus had affected approximately 118,000 people globally, and rapidly spreading across 

nearly 110 countries. Consequently, the WHO classified COVID-19 as a worldwide concern, and although 

this disease is a one-time event, it gives suffered protection against the next infections [6]. 

Mathematical epidemiology holds a significant role to improve our comprehension of how infectious 

diseases spread, their impact, and the potential forecasting strategies for mitigating their treat. Mathematical 

models have been used to compare, plan, implement, and evaluate many initiatives targeting at identifying, 

preventing, and regulating the spread of illnesses such as Coronavirus [7]. Mathematical and non-

mathematical researchers have made significant contributions to this topic. Their collaborative efforts have 

significantly assisted public health professionals in understanding infectious disease behavior and developing 

effective intervention methods to prevent disease transmission in populations worldwide. 

We know that some noteworthy contributors to mathematical modeling include McKendrick (1927), 

and Kermack (1932). The SIR diagram compartment of mathematical model was introduced by Kermack and 

McKendrick, which indicated the beginning of epidemic modeling. [2]. It subsequently became a 

fundamental model in COVID-19 research, involving mathematical principles used in studies by Rangasamy 

et al. [8], Khajanchi et al. [4], Malinzi et al. [7], Huy et al. [9], Peter et al. [5], and DarAssi et al. [10]. 

Afterwards, the implementation of quarantine regulations and isolation methods have inspired to construct 

mathematical models by Trisilowati et al. [11], Hakim [12], Rois et al. [13], and all of these models were the 

foundation for analyzing the spread of COVID-19 disease. An extension on the research presented a 

compartments diagram of COVID-19 incorporating the vaccination into mathematical model [7], [14]. 

Furthermore, the mathematical model was further developed through adding the use of masks as a control for 

decreasing the COVID-19 outbreak [10]. 

As illustrated by the above facts, numerous disease, such as Measles [15], [16], HIV [17], Monkeypox 

[18], and Tuberculosis [19] need an optimal control strategy to manage their transmission. Optimal control 

was also used in managing Zika disease [20], Type 2 Diabetes [21], Hepatitis B [22], Cholera [23], and 

COVID-19 [6], [24]. Earlier investigations have effectively used the optimum control methodology as a tool 

for controlling disease. Furthermore, analytical mathematics is used to figure out the boundedness and 

existence of solution for depicting the model. Some studies investigate the existence and boundedness of the 

transmission of the measles model. In addition, the research conducted by Nainggolan et al. [25] and Hakim 

[6] discusses about the existence and boundedness theorem of an optimal control into mathematical COVID-

19 compartment. 

The benefit and highlight of the current research is to strengthen the previously performed research by 

Hakim [12] regarding an optimal control of the spreading COVID-19 disease, which is only discussed 

numerically without demonstrating an analysis of the positivity and boundedness of the solution. As a result, 

it is important to conduct this research to give fundamental evidence that the following numerical results are 

suitable and feasible. This work is organized into several sections. The outline of section 2 develops several 

methods. Section 3 has three subsections that address in depth into the results and discussions. Section 3.1 

concentrates on the fundamental concepts of solution non-negativity, whereas Section 3.2 describes the 

solution's boundedness. Sections 3.3 and 3.4 clarify the terms uniqueness and existence of solution systems, 

respectively. Finally, Section 3.5 discusses the existence of control theorem and its relevance to disease 

control. In conclusion, Section 4 provides some final remarks. 
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2. RESEARCH METHODS 

In the current research, we establish an optimal control COVID-19 transmission epidemic system by 

Hakim [12]. The model is divided into several classes with different criteria, namely people who are 

susceptible without masks (𝑆1), people who are susceptible and using masks (𝑆2), people who are infected 

without masks (𝐼1), people who are infected and using masks (𝐼2), people in quarantine (𝑄), and the total 

population denoted by 𝑁 = 𝑆1 + 𝑆2 + 𝐼1 + 𝐼2 + 𝑄. These categories also can be expressed mathematically 

through a nonlinear differential equation, by following term bellow 

 
𝑑𝑆1(𝑡)

𝑑𝑡
= 𝜇 + 𝜂2𝑆2(𝑡) − (𝜇 + 𝜂1)𝑆1(𝑡) − (1 − 𝑧1(𝑡))𝛽𝑆1(𝑡)𝐼1(𝑡) − 𝑧2(𝑡)𝑆1(𝑡) 

𝑑𝑆2(𝑡)

𝑑𝑡
= 𝜂1𝑆1(𝑡) + 𝑧2𝑆1(𝑡) − (𝜇 + 𝜂2)𝑆2(𝑡) 

𝑑𝐼1(𝑡)

𝑑𝑡
= (1 − 𝑧1(𝑡))𝛽𝑆1(𝑡)𝐼1(𝑡) + 𝜂2𝐼2(𝑡) − (𝜂1 + 𝜇 + 𝛾 + 𝛼)𝐼1(𝑡) − 𝑧3(𝑡)𝐼1(𝑡) 

𝑑𝐼2(𝑡)

𝑑𝑡
= 𝜂1𝐼1(𝑡) − (𝜂2 + 𝜇 + 𝛾 + 𝛼)𝐼2(𝑡) + 𝑧3(𝑡)𝐼1(𝑡) 

𝑑𝑄(𝑡)

𝑑𝑡
= 𝛼(𝐼1(𝑡) + 𝐼2(𝑡)) − (𝜇 + 𝛾 + 𝜃)𝑄(𝑡), 

(1) 

Based on the Equation (1) above, we adapt to the model that was carried out by three control variables. 

As an illustration, 𝑧1 (𝑡) was used to manage the direct interactions between susceptible and infected 

individuals who are not wearing masks. As a preventive step to against COVID-19, 𝑧2(𝑡) was introduced to 

encourage the use masks among infected individuals. Lastly, the control variable 𝑧3(𝑡) was implemented to 

set up a requirement for susceptible individuals to consistently wear masks. Additionally, the following 

approaches can be employed to examine several conditions of an optimal control problem in mathematical 

modelling of COVID-19: 

1. Evaluate the positivity and boundedness of solution through the application of standard methods for 

solving ordinary differential equations. 

2. Assess the uniqueness of the solution to the control system by utilizing the Lipschitz condition 

approach. 

3. Investigate the existence of solutions to the control system by employing a method in the theory of 

partial derivatives. 

4. Examine the persistence of control variables within the system, demonstrating that the utilization of 

these control can effectively mitigate to COVID-19 disease. 

 

3. RESULTS AND DISCUSSION 

In this passage, we investigate some analysis of an optimal control properties, namely the uniqueness 

of solution, the non-negativity or positivity of solution, the boundedness, and the existence of control variable 

on the autonomous system of the COVID-19 model. 

3.1 The Uniqueness of Solution 

In this subsection, we determine that the autonomous Equation (1) has one solution (uniqueness) if 

the Lipschitz condition is hold, and this condition is figured in theorem below. 

Theorem 1. Let ℎ⃗ (𝑡, �⃗⃗� ) in Lipschitz condition 

|ℎ⃗ (𝑡, �⃗⃗� ∗) − ℎ⃗ (𝑡, �⃗⃗� ∗∗)| ≤ 𝑘|�⃗⃗� ∗ − �⃗⃗� ∗∗|, 

with the (𝑡, �⃗⃗� ∗) and (𝑡, �⃗⃗� ∗∗) into the feasible region Γ = {(𝑆1, 𝑆2, 𝐼1, 𝐼2, 𝑄)}, and 𝑘 is a non-negative number, 

such that the function ℎ⃗ (𝑡, �⃗⃗� ) has one solution (uniqueness). 

Proof. In this part, we start from the first equation on Equation (1) to determine that the pair state (𝑡, 𝑆1
∗) and 

(𝑡, 𝑆1
∗∗) holds on the Lipschitz condition. For detailing, we present 
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|ℎ(𝑡, 𝑆1
∗) − ℎ(𝑡, 𝑆1

∗∗)| = |(𝜇 + 𝜂1)(𝑆1
∗∗ − 𝑆1

∗) + (1 − 𝑧1)𝛽𝐼1(𝑆1
∗∗ − 𝑆1

∗) + 𝑧2(𝑆1
∗∗ − 𝑆1

∗)| 

 = |𝜇 + 𝜂1 + (1 − 𝑧1)𝛽𝐼1 + 𝑧2||𝑆1
∗∗ − 𝑆1

∗| 

 ≤ (|𝜇| + |𝜂1| + |(1 − 𝑧1)𝛽𝐼1| + |𝑧2|)|𝑆1
∗∗ − 𝑆1

∗| 

 
≤ (𝜇 + 𝜂1 + (1 − 𝑧1)𝛽 𝑠𝑢𝑝

𝑡∈𝐷𝐼1

|𝐼1| + 𝑧2) |𝑆1
∗∗ − 𝑆1

∗| 

 ≤ (𝜇 + 𝜂1 + (1 − 𝑧1)𝛽𝑀𝐼1 + 𝑧2)|𝑆1
∗ − 𝑆1

∗∗| 

 ≤ 𝑘𝑆1
|𝑆1

∗ − 𝑆1
∗∗|, 

if 𝑘𝑆1
= 𝜇 + 𝜂1 + (1 − 𝑧1)𝛽𝑀𝐼1 + 𝑧2, then it implies that the Lipschitz condition is satisfied by the term 

|ℎ(𝑡, 𝑆1
∗) − ℎ(𝑡, 𝑆1

∗∗)| ≤ 𝑘𝑆1
|𝑆1

∗ − 𝑆1
∗∗|. Secondly, to other subpopulations in Equation (1), it can be shown 

that the following equation satisfy the Lipschitz conditions, namely 

|ℎ(𝑡, 𝑆2
∗) − ℎ(𝑡, 𝑆2

∗∗)| = |(𝜇 + 𝜂2)(𝑆2
∗∗ − 𝑆2

∗)| 

 = |𝜇 + 𝜂2||𝑆2
∗∗ − 𝑆2

∗| 

 ≤ (|𝜇| + |𝜂2|)|𝑆2
∗∗ − 𝑆2

∗| 

 ≤ (𝜇 + 𝜂2)|𝑆2
∗ − 𝑆2

∗∗| 

 ≤ 𝑘𝑆2
|𝑆2

∗ − 𝑆2
∗∗|, 

with the value 𝑘𝑆2
= 𝜇 + 𝜂2, and the condition applies |ℎ(𝑡, 𝑆2

∗) − ℎ(𝑡, 𝑆2
∗∗)| ≤ 𝑘𝑆2

|𝑆2
∗ − 𝑆2

∗∗|. Infected 

subpopulation without medical masks can be demonstrated as 

|ℎ(𝑡, 𝐼1
∗) − ℎ(𝑡, 𝐼1

∗∗)| = |(1 − 𝑧1)𝛽𝑆1(𝐼1
∗ − 𝐼1

∗∗) + (𝜂1 + 𝜇 + 𝛾 + 𝛼 + 𝑧3)(𝐼1
∗∗ − 𝐼1

∗)| 

 ≤ |(1 − 𝑧1)𝛽𝑆1(𝐼1
∗ − 𝐼1

∗∗)| + |(𝜂1 + 𝜇 + 𝛾 + 𝛼 + 𝑧3)(𝐼1
∗∗ − 𝐼1

∗)| 

 ≤ |(1 − 𝑧1)𝛽𝑆1||𝐼1
∗ − 𝐼1

∗∗| + |(𝜂1 + 𝜇 + 𝛾 + 𝛼 + 𝑧3)||𝐼1
∗ − 𝐼1

∗∗| 

 ≤ (|(1 − 𝑧1)𝛽𝑆1| + |𝜂1| + |𝜇| + |𝛾| + |𝛼| + |𝑧3|)|𝐼1
∗ − 𝐼1

∗∗| 

 

≤ ((1 − 𝑧1)𝛽 𝑠𝑢𝑝
𝑡∈𝐷𝑆1

|𝑆1| + 𝜂1 + 𝜇 + 𝛾 + 𝛼 + 𝑧3) |𝐼1
∗ − 𝐼1

∗∗| 

 ≤ ((1 − 𝑧1)𝛽𝑀𝑆1
+ 𝜂1 + 𝜇 + 𝛾 + 𝛼 + 𝑧3) |𝐼1

∗ − 𝐼1
∗∗| 

 ≤ 𝑘𝐼1
|𝐼1

∗ − 𝐼1
∗∗|, 

such that we get the value 𝑘𝐼1 = (1 − 𝑧1)𝛽𝑀𝑆1
+ 𝜂1 + 𝜇 + 𝛾 + 𝛼 + 𝑧3. While, the infected subpopulation 

with masks shall be shown by following term 

|ℎ(𝑡, 𝐼2
∗) − ℎ(𝑡, 𝐼2

∗∗)| = |(𝜂2 + 𝜇 + 𝛾 + 𝛼)(𝐼2
∗∗ − 𝐼2

∗)| 

 = |𝜂2 + 𝜇 + 𝛾 + 𝛼||𝐼2
∗∗ − 𝐼2

∗| 

 ≤ (|𝜂2| + |𝜇| + |𝛾| + |𝛼|)|𝐼2
∗∗ − 𝐼2

∗| 

 ≤ (𝜂2 + 𝜇 + 𝛾 + 𝛼)|𝐼2
∗ − 𝐼2

∗∗| 

 ≤ 𝑘𝐼2
|𝐼2

∗ − 𝐼2
∗∗|, 

so that we obtain the value 𝑘𝐼2 = 𝜂2 + 𝜇 + 𝛾 + 𝛼. The final part of the equation also satisfies Lipschitz 

condition as well, 

|ℎ(𝑡, 𝑄∗) − ℎ(𝑡, 𝑄∗∗)| = |(𝜇 + 𝛾 + 𝜃)(𝑄∗∗ − 𝑄∗)| 

 = |𝜇 + 𝛾 + 𝜃||𝑄∗∗ − 𝑄∗| 

 ≤ (|𝜇| + |𝛾| + |𝜃|)|𝑄∗∗ − 𝑄∗| 



BAREKENG: J. Math. & App., vol. 18(2), pp. 0797- 0808, June, 2024.     801 

 

 ≤ (𝜇 + 𝛾 + 𝜃)|𝑄∗ − 𝑄∗∗| 

 ≤ 𝑘𝑄|𝑄∗ − 𝑄∗∗|, 

with a positive constant is related to the variable 𝑄, namely 𝑘𝑄 = 𝜇 + 𝛾 + 𝜃. Therefore, using the Lipschitz 

condition analysis, we could conclude that the autonomous Equation (1) has a unique solution. 

3.2 The Non-negativity of Solution 

In this section, to describe the Equation (1) has the positivity of solution on epidemiological 

importance. As a result, it is crucial for proving that all variables remain non-negative at all time 𝑡. To fix 

this concern, we investigated the theorem listed below. 

Theorem 2. The solution of Equation (1) remains non-negative for all 𝑡 > 0, provided that the initial 

conditions for 𝑆1(0), 𝑆2(0), 𝐼1(0), 𝐼2(0), 𝑎𝑛𝑑 𝑄(0) are all greater than or equal to zero and belong to the 

region of 𝛤. 

Proof. By taking the equation that relate with susceptible people without mask in Equation (1), and arranging 

algebra we get 

𝑑𝑆1

𝑑𝑡
 = 𝜇 + 𝜂2𝑆2 − (𝜇 + 𝜂1)𝑆1 − (1 − 𝑧1)𝛽𝑆1𝐼1 − 𝑧2𝑆1 

 = 𝜇 + 𝜂2𝑆2 − (𝜇 + 𝜂1 + (1 − 𝑧1)𝛽𝐼1 + 𝑧2)𝑆1 

 ≥ −(𝜇 + 𝜂1 + (1 − 𝑧1)𝛽𝐼1 + 𝑧2)𝑆1 

Therefore, we have the new term that the derivation of 𝑆1 is  

𝑑𝑆1

𝑑𝑡
≥ −(𝜇 + 𝜂1 + (1 − 𝑧1)𝛽𝐼1 + 𝑧2)𝑆1. (2) 

Integrating Equation (2) on both sides and using separation method, we obtain the following expression 

∫
𝑑𝑆1

𝑆1
≥ ∫ −(𝜇 + 𝜂1 + (1 − 𝑧1)𝛽𝐼1 + 𝑧2)𝑑𝑡

𝑡

0

𝑆1(𝑡)

𝑆1(0)

, 

and the trivial solution of Equation (2) is 

𝑆1(𝑡) ≥ 𝑆1(0)𝑒−(𝜇+𝜂1+(1−𝑧1)𝛽𝐼1+𝑧2)𝑡 ≥ 0. (3) 

Similarly, the solution of the other equations in the Equation (1) are obtained as follows 

𝑑𝑆2

𝑑𝑡
= 𝜂1𝑆1 + 𝑧2𝑆1 − (𝜇 + 𝜂2)𝑆2 ≥ −(𝜇 + 𝜂2)𝑆2, 

and the representation of susceptible wear mask as below 

𝑑𝑆2

𝑑𝑡
≥ −(𝜇 + 𝜂2)𝑆2. (4) 

Integrating Equation (4), such that the trivial solution of Equation (4) is 

𝑆2(𝑡) ≥ 𝑆2(0)𝑒−(𝜇+𝜂2)𝑡 ≥ 0. (5) 

Whereas the infected population without masks is given below 

𝑑𝐼1
𝑑𝑡

 = (1 − 𝑧1)𝛽𝑆1𝐼1 + 𝜂2𝐼2 − (𝜂1 + 𝜇 + 𝛾 + 𝛼)𝐼1 − 𝑧3𝐼1 

 = 1 + 𝜂2𝐼2 − (𝜂1 + 𝜇 + 𝛾 + 𝛼 + 𝑧1𝛽𝑆1 + 𝑧3)𝐼1 

 ≥ −(𝜂1 + 𝜇 + 𝛾 + 𝛼 + 𝑧1𝛽𝑆1 + 𝑧3)𝐼1, 

and then the new form as adheres 
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𝑑𝐼1
𝑑𝑡

≥ −(𝜂1 + 𝜇 + 𝛾 + 𝛼 + 𝑧1𝛽𝑆1 + 𝑧3)𝐼1. (6) 

Using the separation method to Equation (6), the solution obtained is 

𝐼1(𝑡) ≥ 𝐼1(0)𝑒−(𝜂1+𝜇+𝛾+𝛼+𝑧1𝛽𝑆1+𝑧3)𝑡 ≥ 0. (7) 

The infected population use masks are expressed by 

𝑑𝐼2
𝑑𝑡

= 𝜂1𝐼1 − (𝜂2 + 𝜇 + 𝛾 + 𝛼)𝐼2 + 𝑧3𝐼1 ≥ −(𝜂2 + 𝜇 + 𝛾 + 𝛼)𝐼2, 

such that 

𝑑𝐼2
𝑑𝑡

≥ −(𝜂2 + 𝜇 + 𝛾 + 𝛼)𝐼2. (8) 

By integrating the Equation (8), we have the trivial solution of  

𝐼2(𝑡) ≥ 𝐼2(0)𝑒−(𝜂2+𝜇+𝛾+𝛼)𝑡 ≥ 0. (9) 

Finally, the last equation of the Equation (1) is 

𝑑𝑄

𝑑𝑡
= 𝛼(𝐼1 + 𝐼2) − (𝜇 + 𝛾 + 𝜃)𝑄 ≥ −(𝜇 + 𝛾 + 𝜃)𝑄, 

then we generate 

𝑑𝑄

𝑑𝑡
≥ −(𝜇 + 𝛾 + 𝜃)𝑄. (10) 

Integrating the Equation (10) by using separation technique, we get the trivial solution of  

𝑄(𝑡) ≥ 𝑄(0)𝑒−(𝜇+𝛾+𝜃)𝑡 ≥ 0. (11) 

Therefore, the consequence of Equations (3), (5), (7), (9), and (11) show that the all variables in Equation 

(1) are positive for all 𝑡 > 0, and hence the theorem of non-negativity is proven. 

 

3.3 The Boundedness of Solution 

The boundedness of solution defines of specific region to the solutions of the Equation (1), and this 

idea is enhanced by the theorem following. 

Theorem 3. Assuming the Equation (1) remains valid, and considering every solution of the model with the 

initial condition in positive in 𝑁 = 𝑆1 + 𝑆2 + 𝐼1 + 𝐼2 + 𝑄 ∈ ℜ+
5 , and the set 𝛤 as 𝑡 → ∞, such that the region 

of the feasible solution is bounded by 

Γ = {(𝑆1, 𝑆2, 𝐼1, 𝐼2, 𝑄) ∈ ℜ+
5 :𝑁 ≤ 1}. 

Proof. From Equation (1), we know that notation 𝑁 leads to the total of population, such as 

𝑑𝑁

𝑑𝑡
=

𝑑𝑆1

𝑑𝑡
+

𝑑𝑆2

𝑑𝑡
+

𝑑𝐼1
𝑑𝑡

+
𝑑𝐼2
𝑑𝑡

+
𝑑𝑄

𝑑𝑡
= 𝜇 − 𝜇𝑁 − 𝛾(𝐼1 + 𝐼2 + 𝑄) − 𝜃𝑄 ≤ 𝜇(1 − 𝑁). (12) 

Based on Equation (12) we get the first order ordinary differential equation, and by separating variables we 

obtain 

𝑑𝑁

𝑑𝑡
≤ 𝜇(1 − 𝑁), 

then by integrating both sides of the inequality above from 0 to 𝑡, we generate the new form 

∫
𝑑𝑁

1 − 𝑁
≤ ∫ 𝜇𝑑𝑡

𝑡

0

𝑁(𝑡)

𝑁(0)

, 
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−ln(1 − 𝑁(𝑡)) + ln(1 − 𝑁(0)) ≤ 𝜇𝑡 , 

and by arranging the natural logarithm properties, we get the equation become 

ln (
1 − 𝑁(0)

1 − 𝑁(𝑡)
) ≤ 𝜇𝑡. (13) 

Manipulating Equation (13) with the natural logarithm properties, we have the changed form 

1 − 𝑁(0)

1 − 𝑁(𝑡)
≤ 𝑒𝜇𝑡. (14) 

Arranging and operating Equation (14) as an ordinary differential equation, we obtain the solution as follows 

𝑁(𝑡) ≤ 1 − (1 − 𝑁(0))𝑒−𝜇𝑡 . 

Hence at the time 𝑡 → ∞, then implies that 𝑁(𝑡) ≤ 1, and the solutions are bounded in the region Γ. 

 

3.4 The Existence of a Solution 

This section, we explain about the existence of Equation (1) that has been studied by Hakim [12] 

previously. Before delivering the theorem to establish the existence of a solution into Equation (1), we 

modify the right-hand side of Equation (1) to reconfigure into an alternative expression. 

ℎ𝑆1
(𝑡, 𝜔) = 𝜇 + 𝜂2𝑆2 − (𝜇 + 𝜂1)𝑆1 − (1 − 𝑧1)𝛽𝑆1𝐼1 − 𝑧2𝑆1 

ℎ𝑆2
(𝑡, 𝜔) = 𝜂1𝑆1 + 𝑧2𝑆1 − (𝜇 + 𝜂2)𝑆2 

ℎ𝐼1(𝑡, 𝜔) = (1 − 𝑧1)𝛽𝑆1𝐼1 + 𝜂2𝐼2 − (𝜂1 + 𝜇 + 𝛾 + 𝛼)𝐼1 − 𝑧3𝐼1 

ℎ𝐼2(𝑡, 𝜔) = 𝜂1𝐼1 − (𝜂2 + 𝜇 + 𝛾 + 𝛼)𝐼2 + 𝑧3(𝑡)𝐼1 

ℎ𝑄(𝑡, 𝜔) = 𝛼(𝐼1 + 𝐼2) − (𝜇 + 𝛾 + 𝜃)𝑄(𝑡), 

(15) 

with 𝜔 = (𝑆1, 𝑆2, 𝐼1, 𝐼2, 𝑄). 

Theorem 4. Suppose the function ℎ(𝑡, 𝜔) have a partial derivative 
𝜕ℎ

𝜕𝜔
 dan |

𝜕ℎ

𝜕𝜔
| < ∞, and satisfies the 

Lipschitz criteria, then the function ℎ(𝑡, 𝜔) has an existence and boundedness of solution. 

Proof. Attend to the right side of Equation (15), it is obvious to obtain the partial derivative and its absolute 

value. In detail, we can show in susceptible subpopulations without mask can be partially derivation, namely 

𝜕ℎ𝑆1
(𝑡, 𝜔)

𝜕𝑆1
= −(𝜇 + 𝜂1) − (1 − 𝑧1)𝛽𝐼1 − 𝑧2, 

then we obtain 

|
𝜕ℎ𝑆1

(𝑡, 𝜔)

𝜕𝑆1
| = |−(𝜇 + 𝜂1) − (1 − 𝑧1)𝛽𝐼1 − 𝑧2| < ∞. 

The next step is differentiating to the variable 𝑆2 , which yields 

𝜕ℎ𝑆1
(𝑡, 𝜔)

𝜕𝑆2
= 𝜂2, 𝑡ℎ𝑒𝑛 |

𝜕ℎ𝑆1
(𝑡, 𝜔)

𝜕𝑆2
| = |𝜂2| < ∞. 

If it is differentiating to the variable 𝐼1, we submit 

𝜕ℎ𝑆1
(𝑡, 𝜔)

𝜕𝐼1
= −(1 − 𝑧1)𝛽𝑆1, then |

𝜕ℎ𝑆1
(𝑡, 𝜔)

𝜕𝐼1(𝑡)
| = |−(1 − 𝑧1)𝛽𝑆1| < ∞. 

Then, the derivation into variable 𝐼2, we have 
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𝜕ℎ𝑆1
(𝑡, 𝜔)

𝜕𝐼2
= 0, then |

𝜕ℎ𝑆1
(𝑡, 𝜔)

𝜕𝐼2
| = 0 < ∞, 

 

and while differentiating into variable 𝑄, obviously 

𝜕ℎ𝑆1
(𝑡, 𝜔)

𝜕𝑄
= 0, then |

𝜕ℎ𝑆1
(𝑡, 𝜔)

𝜕𝑄(𝑡)
| = 0 < ∞. 

Analogous with the partially derivation process above, it is clear to find all the equations in Equation (15) 

are continuous and boundedness. 

3.5 The Existence of Control Variable for Controlling the Systems 

The existence analysis of control variable is conducted to depict and support the expressed of control 

variables provide a beneficial and deeper meaning. We determine the theorem 5 below based on the research 

previously by Hakim [12]. 

Theorem 5. Suppose the exists of a control variable 𝛧 = (𝑧1(𝑡), 𝑧2(𝑡), 𝑧3(𝑡)) within Equation (1), such that 

the following condition is satisfied 

min
𝑧∈𝛧

𝐽(𝑧1(𝑡), 𝑧2(𝑡), 𝑧3(𝑡), 𝑧4(𝑡)) = 𝐽(𝑧1
∗(𝑡), 𝑧2

∗(𝑡), 𝑧3
∗(𝑡)). 

Proof. Following the analysis conducted in [6], [26], It is established that the optimal control through the 

Equation (1) will exist when several of the conditions explained below are realized. 

1. The control 𝛧 is a non-empty set. 

It is evident that by using this control, the desired function is able to be performed. Using a demonstration 

by contradiction, suppose we define the objective function as follows: 

max 𝐽(𝑧 )  = ∫ (𝐴𝐼1(𝑡) + 𝐵𝐼2(𝑡) + 𝐶𝑧1
2(𝑡) + 𝐷𝑧2

2(𝑡) + 𝐸𝑧3
2(𝑡)) 𝑑𝑡

𝑡𝑓

𝑡0

. 

This implies that the crucial purpose of the functional objective is to maximize the infected subpopulations 

with and without masks. However, considering the time interval 𝑡 = [𝑡0, 𝑡𝑓] is bounded. To indicate the 

existence of disease prevention methods, the control variable should be minimized as feasible bellow 

min 𝐽(𝑧 )  = ∫ (𝐴𝐼1(𝑡) + 𝐵𝐼2(𝑡) + 𝐶𝑧1
2(𝑡) + 𝐷𝑧2

2(𝑡) + 𝐸𝑧3
2(𝑡)) 𝑑𝑡

𝑡𝑓

𝑡0

, 

and demonstrated that the control set is non-empty of elements. 

2. The control set in 𝑍 is convex and closed. 

a. For any 𝑧 ∈ Z, and 𝑧′ ∈ Z, we will demonstrate that 𝑟 = 𝜃𝑧 + (1 − 𝜃)𝑧′ ∈ Z, for all θ ∈ [0,1]. 
Clearly, if 𝜃𝑧 ≤ 𝜃 and (1 − 𝜃)𝑧′ ≤ (1 − 𝜃), then we can deduce that 𝜃𝑧 + (1 − 𝜃)𝑧′ ≤ 𝜃 +
(1 − 𝜃) = 1. Ultimately, we have 0 ≤ 𝜃𝑧 + (1 − 𝜃)𝑧′ ≤ 1, for all 𝑢 ∈ Z, and for all 𝜃 ∈ [0,1]. 
Therefore, the set of control 𝑍 is a convex. 

b. Consider any control variable 𝑧 ∉ [𝑎, 𝑏], it implies that 𝑧 < 𝑎 or 𝑧 > 𝑏. Now, if 𝑧 < 𝑎, it follows that 

there exists 𝜖𝑧 = |𝑧 − 𝑎| > 0, which the results in the intersection of the set and the neighborhood of 

the control being null set, denoted as [𝑎, 𝑏] ∩ 𝑉𝜖(𝑧) = ∅. Similarly, if 𝑧 > 𝑏, it means there exists 𝜖𝑧 =
|𝑧 − 𝑏| > 0, and the intersection of the set and the neighborhood of the control also becomes an null 

set, [𝑎, 𝑏] ∩ 𝑉𝜖  (𝑧) = ∅. Consequently, it can be concluded that the control variable 𝑧 is a closed, where 

𝑧 ∈ 𝑍. 

3. The equation on the right-hand side of the Equation (1) is bounded by control configuration and a linear 

function. 
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In the first phase, we use Equation (1) as a fundamental term to change it into a matrix, namely 

 

[
 
 
 
 
 
 
 
 
 
 
𝑑𝑆1

𝑑𝑡
𝑑𝑆2

𝑑𝑡
𝑑𝐼1
𝑑𝑡
𝑑𝐼2
𝑑𝑡
𝑑𝑄

𝑑𝑡 ]
 
 
 
 
 
 
 
 
 
 

 =

[
 
 
 
 

𝜂2𝑆2 − (𝜇 + 𝜂1)𝑆1 − 𝛽𝑆1𝐼1
𝜂1𝑆1 − (𝜇 + 𝜂2)𝑆2

𝛽𝑆1𝐼1 + 𝜂2𝐼2 − (𝜂1 + 𝜇 + 𝛾 + 𝛼)𝐼1
𝜂1𝐼1 − (𝜂2 + 𝜇 + 𝛾 + 𝛼)𝐼2
𝛼(𝐼1 + 𝐼2) − (𝜇 + 𝛾 + 𝜃)𝑄 ]

 
 
 
 

+

[
 
 
 
 
𝑧1𝛽𝑆1𝐼1 − 𝑧2𝑆1

𝑧2𝑆2

−𝑧1𝛽𝑆1𝐼1 − 𝑧3𝐼1
𝑧3𝐼1
0 ]

 
 
 
 

+

[
 
 
 
 
𝜇
0
0
0
0]
 
 
 
 

 

 

=

[
 
 
 
 

𝜂2𝑆2

𝜂1𝑆1

𝛽𝑆1𝐼1 + 𝜂2𝐼2
𝜂1𝐼1

𝛼(𝐼1 + 𝐼2) ]
 
 
 
 

−

[
 
 
 
 
(𝜇 + 𝜂1)𝑆1 + 𝛽𝑆1𝐼1

(𝜇 + 𝜂2)𝑆2

(𝜂1 + 𝜇 + 𝛾 + 𝛼)𝐼1
(𝜂2 + 𝜇 + 𝛾 + 𝛼)𝐼2

(𝜇 + 𝛾 + 𝜃)𝑄 ]
 
 
 
 

+

[
 
 
 
 
𝑧1𝛽𝑆1𝐼1
𝑧2𝑆2

0
𝑧3𝐼1
0 ]

 
 
 
 

−

[
 
 
 
 

𝑧2𝑆1

0
𝑧1𝛽𝑆1𝐼1 + 𝑧3𝐼1

0
0 ]

 
 
 
 

+

[
 
 
 
 
𝜇
0
0
0
0]
 
 
 
 

 

 

<

[
 
 
 
 

𝜂2𝑆2

𝜂1𝑆1

𝛽𝑆1𝐼1 + 𝜂2𝐼2
𝜂1𝐼1

𝛼(𝐼1 + 𝐼2) ]
 
 
 
 

+

[
 
 
 
 
𝑧1𝛽𝑆1𝐼1
𝑧2𝑆2

0
𝑧3𝐼1
0 ]

 
 
 
 

+

[
 
 
 
 
𝜇
0
0
0
0]
 
 
 
 

 

 

≤
|
|

[
 
 
 
 

𝜂2𝑆2

𝜂1𝑆1

𝛽𝑆1𝐼1 + 𝜂2𝐼2
𝜂1𝐼1

𝛼(𝐼1 + 𝐼2) ]
 
 
 
 

|
|
+ |

|

[
 
 
 
 
𝑧1𝛽𝑆1𝐼1
𝑧2𝑆2

0
𝑧3𝐼1
0 ]

 
 
 
 

|
| + ||

[
 
 
 
 
𝜇
0
0
0
0]
 
 
 
 

|| 

 

≤

[
 
 
 
 
𝑀1

𝑀2

𝑀3

𝑀4

𝑀5]
 
 
 
 

= �⃗⃗� . 

It's clear that the right-hand side of the autonomous Equation (1) is bounded by a control variable and 

a linear function. 

4. The functional objective is convex with the 𝑍 region 

Consider any variables 𝑥𝑖 and 𝑦𝑗, where 𝑖, 𝑗 = 1,2,3, and a domain of 0 ≤ 𝜃 ≤ 1. In this section, we 

will demonstrate that 

 

𝐽((1 − 𝜃)𝑥 (𝑡) + 𝜃𝑦 (𝑡)) ≤ (1 − 𝜃)𝐽(𝑥 (𝑡)) + 𝜃𝐽(𝑦 (𝑡)), (16) 

 

with 𝑥 = (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡))
𝑇

, and 𝑦 = (𝑦1(𝑡), 𝑦(𝑡), 𝑦3(𝑡))
𝑇
. Next, by incorporating the objective 

function in Hakim [12] into Equation (16), resulting in 

𝐴𝐼1(𝑡) + 𝐵𝐼2(𝑡) + 𝐶((1 − 𝜃)𝑥1(𝑡) + 𝜃𝑦1(𝑡))
2
+ 𝐷((1 − 𝜃)𝑥2(𝑡) + 𝜃𝑦2(𝑡))

2

+ 𝐸((1 − 𝜃)𝑥3(𝑡) + 𝜃𝑦3(𝑡))
2

≤ (1 − 𝜃) (𝐴𝐼1(𝑡) + 𝐵𝐼2(𝑡) + 𝐶𝑥1
2(𝑡) + 𝐷𝑥2

2(𝑡) + 𝐸𝑥3
2(𝑡))

+ 𝜃 (𝐴𝐼1(𝑡) + 𝐵𝐼2(𝑡) + 𝐶𝑦1
2(𝑡) + 𝐷𝑦2

2(𝑡) + 𝐸𝑦3
2(𝑡)). 

(17) 

Subsequently, through manipulation and organization of Equation (17), we obtain a detailed and 

equivalent expression as follows 
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(1 − 𝜃)𝐶𝑥1
2(𝑡) + 𝜃𝐶𝑦1

2(𝑡) − 𝐶(1 − 𝜃)2𝑥1
2(𝑡) − 2𝐶(1 − 𝜃)𝜃𝑥1(𝑡)𝑦1(𝑡) − 𝐶𝜃2𝑦1

2 + (1 − 𝜃)𝐷𝑥2
2(𝑡)

+ 𝜃𝐷𝑦2
2(𝑡) − 𝐷(1 − 𝜃)2𝑥2

2(𝑡) − 2𝐷(1 − 𝜃)𝜃𝑥2(𝑡)𝑦2(𝑡) − 𝐷𝜃2𝑦2
2 + (1 − 𝜃)𝐸𝑥3

2(𝑡)
+ 𝜃𝐷𝑦3

2(𝑡) − 𝐷(1 − 𝜃)2𝑦3
2(𝑡) − 2𝐷(1 − 𝜃)𝜃𝑥3(𝑡)𝑦3(𝑡) − 𝐷𝜃2𝑦1

2 ≥ 0, 

𝐶𝑥1
2(𝑡)((1 − 𝜃) − (1 − 𝜃)2) + 𝐶𝜃𝑦1

2(𝑡)(1 − 𝜃) − 2𝐶(1 − 𝜃)𝜃𝑥1(𝑡)𝑦1(𝑡)

+ 𝐷𝑥2
2(𝑡)((1 − 𝜃) − (1 − 𝜃)2) + 𝐷𝜃𝑦2

2(𝑡)(1 − 𝜃) − 2𝐷(1 − 𝜃)𝜃𝑥2(𝑡)𝑦2(𝑡)

+ 𝐸𝑥3
2(𝑡)((1 − 𝜃) − (1 − 𝜃)2) + 𝐸𝜃𝑦3

2(𝑡)(1 − 𝜃) − 2𝐸(1 − 𝜃)𝜃𝑥3(𝑡)𝑦3(𝑡) ≥ 0, 

𝐶𝜃 ((1 − 𝜃)𝑥1
2(𝑡) − 2(1 − 𝜃)𝑥1(𝑡)𝑦1(𝑡) + (1 − 𝜃)𝑥1

2(𝑡))

+ 𝐷𝜃 ((1 − 𝜃)𝑥2
2(𝑡) − 2(1 − 𝜃)𝑥2(𝑡)𝑦2(𝑡) + (1 − 𝜃)𝑦2

2(𝑡))

+ 𝐸𝜃 ((1 − 𝜃)𝑥3
2(𝑡) − 2(1 − 𝜃)𝑥3(𝑡)𝑦3(𝑡) + (1 − 𝜃)𝑦3

2(𝑡)) ≥ 0, 

𝐶𝜃 (√(1 − 𝜃)𝑥1(𝑡) − √(1 − 𝜃)𝑦1(𝑡))
2

+ 𝐷𝜃 (√(1 − 𝜃)𝑥2(𝑡) − √(1 − 𝜃)𝑦2(𝑡))
2

+ 𝐸𝜃 (√(1 − 𝜃)𝑥3(𝑡) − √(1 − 𝜃)𝑦3(𝑡))
2

≥ 0. 

 

As a result, the value of the integrand for the goal function is convex. 

5. The integrand of the objective function is bounded 

Given parameters 𝜐1 > 𝐶, 𝜐2 > 𝐷, 𝜐3 > 𝐸, as well as variables 𝐼1(𝑡) and 𝐼2(𝑡) constrained within the 

interval [𝑡0, 𝑡𝑓], such that the population size of 𝐼1(𝑡) remains below or equal to 𝐼1(𝑡𝑓), and 𝐼2(𝑡) is limited 

to 𝐼2(𝑡𝑓), the objective function 

𝐴𝐼1(𝑡) + 𝐵𝐼2(𝑡) + 𝐶𝑧1
2(𝑡) + 𝐷𝑧2

2(𝑡) + 𝐸𝑧3
2(𝑡) ≤ 𝐴𝐼1(𝑡) + 𝐵𝐼2(𝑡) + 𝜐1𝑧1

2(𝑡) + 𝜐2𝑧2
2(𝑡) + 𝜐3𝑧3

2(𝑡)

≤ 𝐴(𝑡𝑓) + 𝐵(𝑡𝑓) + 𝜐1|𝑧1
2|(𝑡) + 𝜐2|𝑧2

2|(𝑡) + 𝜐3|𝑧3
2|(𝑡) = ℳ. 

It is obvious that the functional objective is bounded by the ℳ = 𝐴(𝑡𝑓) + 𝐵(𝑡𝑓) + 𝜐1|𝑧1
2|(𝑡) +

𝜐2|𝑧2
2|(𝑡) + 𝜐3|𝑧3

2|(𝑡). 

 

4. CONCLUSIONS 

This research is an extension of the optimal control problem investigated by Hakim. The fundamental 

goal of this study is to evaluate the boundedness and confirm the existence of solutions for the proposed 

control system on the mathematical modelling of COVID-19. The analytical results show that the control 

system designed adheres to the positivity and boundedness criteria, respectively the existence of control 

variable on the COVID-19 model is satisfied the all criteria. As a consequence, the following requirements 

for mathematical modeling of COVID-19 with several control are achieved: the control variable is not an 

empty set, and it is convex and closed. Furthermore, the right-hand side of the nonlinear equation is bounded 

by control variable and linear functions, whereas the functional objective is convex and bounded by a constant 

value, and theorem 5 contains a detailed proof of the existence of control variable in optimal problems. 
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