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 ABSTRACT  

Article History: 
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by a coronavirus 

originating from the city of Wuhan in 2019. This disease affects the respiratory system. The 
city of Pontianak has the highest population density in West Kalimantan. This density 

results in a higher spread of Covid-19. In this article, the spread of COVID-19 is formulated 

into a mathematical model, equilibrium points are sought, stability is analyzed, and a delay 

time is introduced to reduce the spread of COVID-19. The magnitude of the delay time given 
during quarantine complies with health protocols, which is between 2 – 14 days. This article 

aims to analyze the influence of the delay time in modeling the spread of Covid-19. The 

problem of COVID-19 spread is constructed into an SIQR model, with a sub-population of 

recovered individuals returning to the susceptible sub-population. The population is 
divided into four sub-populations: susceptible (S), Infected (I), Quarantined (Q), and 

Recovered (R). The parameters used  include the natural birth rate (𝛬), the rate of 

susceptibility to infection (𝛽), the rate of infection under quarantine (𝛿), the recovery rate 

from infection (𝛾), the recovery rate from infection under quarantine (𝜀), the death rate 

from infection (𝑎1), the death rate under quarantine (𝑎2), the delay time from infection to 

quarantine process (𝜏), the natural death rate (𝜇), and the rate of recovered immunity 

returning to susceptibility (𝜃). The simulation results show that when the basic reproduction 

number is less than 1, the disease-free equilibrium is stable, and when the basic 

reproduction number is greater than 1, the endemic equilibrium point is stable. The 

addition of a time delay (𝜏) in the SIQR model affects the stability of the endemic 

equilibrium point but does not affect the stability of the disease-free equilibrium point. 
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1. INTRODUCTION 

Coronavirus Disease 2019 (COVID-19), also known as the coronavirus, began to afflict population 

towards the end of 2019. According to local habits in the city of Wuhan, where bat consumption is common, 

it is believed that this disease outbreak was caused by bats [1]. COVID-19 was first detected in West 

Kalimantan on March 14, 2020, and in Indonesia on March 2, 2020. According to the Health Department in 

2020, there were 196,759 positive cases in the city of Pontianak. Pontianak City has the highest population 

density in West Kalimantan, thus posing a higher risk of COVID-19 transmission. Severe Acute Respiratory 

Syndrome Coronavirus 2 (SARS-CoV-2) is a new coronavirus responsible for this disease. The SARS-CoV-

2 virus is more contagious than SARS-CoV and MERS-CoV, despite beingf from the same family. The high 

number of infections is due to the rapid spread of this disease [2]. Consequently, the World Health 

Organization (WHO) declared it a pandemic [2]. 

Real-world problems described mathematically are termed mathematical models. Mathematical 

models aim to understand real-world issues mathematically [3]. The spread of then COVID-19 virus can be 

modeled using various assumptions. The mathematical modeling used in the disease transmission 

mathematical model, with an example being the SIR (Susceptible, Infected, Recovered) model. The 

subpopulations are divided into Susceptible (𝑆), Infected (𝐼), and Recovered (𝑅) [4]. The SIR model can be 

modified into the SIQR model, where the sub-population Q is quarantined. This article discusses individuals 

undergoing quarantine due to virus infection. Quarantine is a measure to prevent disease transmission by 

isolating individuals already exposed to COVID-19, and providing a delay time will reduce the spread [5]. 

The delay time is a period of immunity, and incubation period and provides an estimate of the delay for a 

stable system [6]. When faced with the same problem, the government implements quarantine or delay time 

to reduce the spread of COVID-19 in Pontianak City. Previous studies [7] and [5] did not explain the transition 

of recovered individuals to susceptible individuals. Therefore, this article added the assumption that 

recovered can return to being susceptible, thus the model used in SIQR. The form of differential equation 

system used is a nonlinear differential equation system with four sub-populations, including their Susceptible 

(𝑆), Infected (𝐼), Quarantined (𝑄), and Recovered (𝑅) subpopulations. 

The data used is the spread of COVID-19 in Pontianak city from October to December 2020. During 

this period, there was no vaccine available, and immigration and emigration factors were not considered, 

irrespective of age, gender, and being closed in nature, referring to a situation where the natural death rate 

and natural birth rate are the same. The parameters used were modified from previous research from Pasaribu 

and Helmi, et al., Manaqib, et al., Yulida, Hongfan Lu, et al., and Amir Khan, et al. [7] [8] [9] with 

subpopulations including susceptible, infected, quarantined, and recovered subpopulations. The aim of this 

study is to determine the equilibrium points of the COVID-19 spread modeling and analyze stability as well 

as the significant impact of delay time in the modeling. 

 

2. RESEARCH METHODS 

A differential equation is an equation that involves the derivatives of one or more variables with respect 

to one or several independent variables [10]. Differential equations include delay, which can be expressed in 

the form: 

∑𝑎𝑘
𝑑𝑘

𝑑𝑡𝑘
𝑥(𝑡) 

𝑛

𝑘=0

+∑𝑏𝑘
𝑑𝑘

𝑑𝑡𝑘
𝑥(𝑡 − 𝜏) 

𝑚

𝑘=0

= 0 (1) 

where 𝝉 represents the delay time, and 
𝒅𝟎

𝒅𝒕𝟎 
 𝒙(𝒕) = 𝒙(𝒕). For example, 𝒙( 𝒕) = 𝒆𝝀𝒕, then 

∑ 𝒂𝒌𝝀
𝒌𝒆𝝀𝒕 +∑ 𝒃𝒌𝝀

𝒌𝒆𝝀(𝒕−𝝉) 𝒎
𝒌=𝟎 = 𝟎  𝒏

𝒌=𝟎   

𝒆𝝀𝒕(∑ 𝒂𝒌𝝀
𝒌 + ∑ 𝒃𝒌𝝀

𝒌𝒆−𝝀𝝉 𝒎
𝒌=𝟎

𝒏
𝒌=𝟎 ) = 𝟎.  

Since 𝒆𝝀𝒕 ≠ 𝟎, we have 

∑ 𝒂𝒌𝝀
𝒌 + ∑ 𝒃𝒌𝝀

𝒌𝒆−𝝀𝝉 𝒎
𝒌=𝟎

𝒏
𝒌=𝟎 = 𝟎.  

∑𝑎𝑘𝜆
𝑘 + ∑ 𝑏𝑘𝜆

𝑘𝑒−𝜆𝜏  

𝑚

𝑘=0

𝑛

𝑘=0

= 0. (2) 
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Equation (2) is termed the characteristic equation of Equation (1). For instance, if 𝑷𝟏(𝝀) = ∑ 𝒂𝒌𝝀
𝒌𝒏

𝒌=𝟎   and 

𝑷 𝟐(𝝀) = ∑ 𝒃𝒌𝝀
𝒌 ,𝒎

𝒌=𝟎  then Equation (2) can be written as: 

𝑃1(𝜆) + 𝑃2(𝜆)𝑒
−𝜆𝜏 = 0. (3) 

According to Forde [11], a system of differential equations with delay can be expressed as follows. 

𝑥1
′(𝑡) = 𝑓1(𝑥(𝑡), 𝑥(𝑡 − 𝜏)) 

(4) ⋮  ⋮ 

𝑥𝑛
′(𝑡) = 𝑓𝑛(𝑥(𝑡), 𝑥(𝑡 − 𝜏)). 

The article commences with an examination of the SIR model and the concept of time delay. 

Subsequently, several assumptions are formulated, and various parameters are defined. A flow diagram of 

COVID-19 spread is then constructed, and a model for its dissemination is developed. Equilibrium points are 

sought from the model, and stability is observed and analyzed. Following this, a delay time is introduced 

under the condition of 𝝉 > 𝟎. A numerical simulation is conducted, and the results are interpreted concerning 

the stability analysis of the system using the mathematical model of COVID-19 spread incorporating time 

delay. 

 

3. RESULTS AND DISCUSSION 

The presentation of the results and discussion can be organized either separately or combined into a 

single subsection. The summary of findings can be effectively conveyed through graphs and figures. It’s 

imperative that both the results and discussion sections avoid multiple interpretations. The discussion should 

directly address the research problems, substantiate and justify responses with the obtained results, compare 

them with relevant research findings, acknowledge the study’s limitations, and highlight any novel insights 

discovered. 

 

3.1 Mathematical Models  

The population is divided into four subpopulations: susceptible subpopulation, infected subpopulation, 

quarantined subpopulation, and recovered subpopulation. The following are the basic assumptions used to 

model the spread of COVID-19: 

1. The Population is assumed to be closed, with the natural death rate proportional to be natural birth rate. 

[9] 

2. If the susceptible subpopulation comes into contact with the infected subpopulation, it will become the 

infected subpopulation. The population is assumed to be homogeneously mixed, meaning the 

transmission occurs equally for every individual. [12] 

3. The quarantine process will be undergone by the infected subpopulation, either in hospitals or through 

self-quarantine at home. [12] 

4. The infected subpopulation will decrease due to virus-related deaths and deaths during quarantine. [13] 

5. Quarantine is conducted according to applicable health protocols. [12] 

6. Both the subpopulation suffering from the disease and the subpopulation in quarantine can recover from 

the disease. [8] 

7. Due to waning immunity, the recovered subpopulation can re-enter the susceptible subpopulation. [14] 

8. The infected subpopulation undergoes the recovery process with critical care time obtained through the 

calculation of the time delay. [7] 

From these assumptions, the following transition diagram is formed. 
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Figure 1. Transmission diagram of COVID-19 spread 

 

Based on Figure 1, a system of differential equations can be employed to mathematically represent the 

spread of COVID-19 as follows: 

{
 
 
 
 

 
 
 
 

𝑑𝑆(𝑡)

𝑑𝑡
=  𝛬𝑁 − 𝜇𝑆(𝑡) −

𝛽𝑆(𝑡)𝐼(𝑡)

𝑁
+ 𝜃𝑅(𝑡)

 
𝑑𝐼(𝑡)

𝑑𝑡
=
𝛽𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝛿𝐼(𝑡) − 𝜇𝐼(𝑡) − 𝛼1𝐼(𝑡) − 𝛾𝐼(𝑡 − 𝜏)

𝑑𝑄(𝑡)

𝑑𝑡
= 𝛿𝐼(𝑡) −  𝜀𝑄(𝑡) − 𝜇𝑄(𝑡) − 𝛼2𝑄(𝑡)

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡 − 𝜏) +  𝜀𝑄(𝑡) −  𝜇𝑅(𝑡) − 𝜃𝑅(𝑡),

 (5) 

where 𝑁 = 𝑆 + 𝐼 + 𝑄 + 𝑅 represents the total population. 

The variables used in the SIQR model to mathematically represent the spread of COVID-19 are defined as 

follows: 

𝑁 : Total compartments (individuals) 

𝑆(𝑡) : Total susceptible compartments at time t (individuals) 

𝐼(𝑡) : Total infected compartments at time t (individuals) 

𝑄(𝑡) : Total quarantined compartments at time 𝑡 (individuals) 

𝑅(𝑡) : Total recovered compartments at time 𝑡 (people) 

𝛬 : The natural birth rate (
1

𝑑𝑎𝑦
) 

𝛽 : the rate of susceptibility to infection (
1

𝑑𝑎𝑦
) 

𝛿 : The rate of infection under quarantine (
1

𝑑𝑎𝑦
) 

𝛾 : The recovery rate from infection. (
1

𝑑𝑎𝑦
) 

𝜀 : The recovery rate from infection under quarantine (
1

𝑑𝑎𝑦
) 

𝛼1 : The death rate from infection (
1

𝑑𝑎𝑦
) 

𝛼2 : The death rate under quarantine (
1

𝑑𝑎𝑦
) 

𝜏 : The delay time from infection to quarantine process (2 − 14 day) 

𝜇 : the natural death rate (
1

𝑑𝑎𝑦
) 

𝜃 : The rate of recovered immunity returning to susceptibility (
1

𝑑𝑎𝑦
) 

The equilibrium point, which remains constant over time, is the point of equilibrium or balance point 

[15]. From the system, there are two equilibrium points, namely 𝐸1 = (𝑆1, 𝐼1, 𝑄1, 𝑅1) and 𝐸2 =
 (𝑆2, 𝐼2, 𝑄2, 𝑅2). The stability of the system is then analyzed where: 𝑆1 = 𝑁, 𝐼1 = 0, 𝑄1 = 0, 𝑅1 = 0, 𝑆2 =
(𝛿+𝜇+𝑎2+𝛾)𝑁

𝛽
,  

𝑆 
 

𝐼 
 

𝑄 
 

𝛬𝑁 

𝜇𝑆(𝑡) 𝛼1𝐼(𝑡) 
𝜇𝐼(𝑡) 

𝛿𝐼(𝑡) 

𝛼2𝑄(𝑡) 𝜇𝑄(𝑡) 

𝜀𝑄(𝑡) 

𝛾𝐼(𝑡 − 𝜏) 

𝜃𝑅(𝑡) 

𝜇𝑅(𝑡) 

𝛽𝑆(𝑡)𝐼(𝑡)

𝑁
 

 
𝑅 
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𝐼2 =
𝛽𝜇𝑁−𝜇((𝛿+𝜇+𝑎1+𝛾)𝑁)+𝛽𝜃𝑅

𝛽(𝛿+𝜇+𝑎1+𝛾)
, 𝑄2 =

𝛿𝜇𝑁

(𝛿+𝜇+𝑎1+𝛾)(𝜀+𝜇+𝑎2)
−

𝛿𝜇𝑁

𝛽(𝜀+𝜇+𝑎2)
+

𝛿𝜃𝑅

(𝛿+𝜇+𝑎1+𝛾)(𝜀+𝜇+𝑎2)
, 𝑅2 =

𝛽𝛾𝜇𝑁(𝜀+𝜇+𝑎2)+𝛽𝜀𝛿𝜇𝑁−𝛾𝜇𝑁(𝜀+𝜇+𝑎2)(𝛿+𝜇+𝑎1+𝛾)−𝜀𝛿𝜇𝑁(𝛿+𝜇+𝑎1+𝛾)

𝛾𝜃(𝜀+𝜇+𝑎2)−𝜀𝛿𝜃+(𝜇+𝜃)(𝛿+𝜇+𝑎1+𝛾)(𝜀+𝜇+𝑎2)
. 

 

 

3.2. Stability Analysis Without Time Delay  

The basic reproduction numbers are determined by identifying the largest eigenvalue in the Next 

Generation Matrix method. In deriving the basic reproduction numbers for the observed sub-population I, 

which represents the source of disease spread. The following differential equations are considered 

𝑑𝐼(𝑡)

𝑑𝑡
=
𝛽𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝛿𝐼(𝑡) − 𝜇𝐼(𝑡) − 𝛼1𝐼(𝑡) − 𝛾𝐼(𝑡 − 𝜏) 

𝑑𝑄(𝑡)

𝑑𝑡
= 𝛿𝐼(𝑡) −  𝜖𝑄(𝑡) − 𝜇𝑄(𝑡) − 𝛼2𝑄(𝑡). 

(6) 

(7) 

Based on Equation (6) and Equation (7), involving infected and quarantined individuals, respectively, 

we derive two matrices, F and V, by substituting the disease-free equilibrium point into the matrix. This yield 

𝐽(𝐼, 𝑄) = (

𝜕

𝜕𝐼
(
𝛽𝑆𝐼

𝑁
− 𝛿𝐼 − 𝜇𝐼 − 𝑎1𝐼 − 𝛾𝐼)

𝜕

𝜕𝑄
(
𝛽𝑆𝐼

𝑁
− 𝛿𝐼 − 𝜇𝐼 − 𝑎1𝐼 − 𝛾𝐼)

𝜕

𝜕𝐼
(𝛿𝐼 − 𝜀𝑄 − 𝜇𝑄 − 𝛼2𝑄)

𝜕

𝜕𝑄
(𝛿𝐼 − 𝜀𝑄 − 𝜇𝑄 − 𝛼2𝑄)

)  

𝐽(𝐼, 𝑄) = (

𝛽𝑆

𝑁
− 𝛿 − 𝜇 − 𝑎1 − 𝛾 0

𝛿 𝜀 − 𝜇 − 𝑎2

) 

𝐹 = (
𝛽 0
0 0

) ,  𝑉 = (
𝛿 + 𝜇 + 𝑎1 + 𝛾 0

−𝛿 𝜀 + 𝜇 + 𝑎2
). 

This leads to the formulation of the next-generation matrix as follows: 

𝐹𝑉−1 = (
𝛽(𝜀+𝜇+𝑎2)

(𝛿+𝜇+𝑎1+𝛾)(𝜀+𝜇+𝑎2)
0

0 0
).  

The Next Generation Matrix is typically constructed from the coefficients of the differential equations 

governing the spread of the disease. In this case, there are two subpopulations spreading the disease, 

subpopulations I and Q, and the resulting matrix V is square. Additionally, knowing that 𝛿 > 0 and 𝜀 > 0, it 

follows that the determinant of the matrix V is not equal to zero. Thus, because the matrix is square and 

nonsingular, it has an inverse. The basic reproduction number (𝑅0) is obtained by finding the spectral radius 

(largest eigenvalue) of the Next Generation Matrix. Subsequently, the transitivity and transmission 

mathematical formulas are applied, followed by employing Jacobian mathematical formulas to determine the 

mathematical expressions. The calculation yield:  

 

𝑅0 =
𝛽

(𝛿+𝜇+𝑎1+𝛾)
 . (8) 

 

Theorem 1. If 𝑅0 < 1, then the disease-free equilibrium point in the SIQR model is asymptotically locally 

stable and if 𝑅0 > 1, then it is unstable.  

Proof. Given 𝑅0 < 1, we have 𝛽(𝛿 + 𝜇 + 𝑎1 + 𝛾). The stability of the disease-free equilibrium point of 

system (1) is investigated by linearizing the system (1) using the Jacobian matrix, followed by employing the 

disease-free equilibrium points. The eigenvalues of the Jacobian matrix for disease-free state are obtained 

with |𝐽 − 𝜆𝐼 |, and the characteristic equation is derived. The next step is to find the determinants of the 

equation and obtain the proper values 𝜆1 = −𝜇, 𝜆2 = 𝛽 − (𝛿 + 𝜇 + 𝑎1 + 𝛾), 𝜆3 = −(𝜀 + 𝜇 +  𝑎2) and 𝜆4 =
−(𝜇 + 𝜃). Thus, it is proven that 𝑅0 < 1, then the disease-free equilibrium point is stable asymptotically 

locally.  Knowing 𝑅0 > 1, thus 𝛽 > (𝛿 + 𝜇 + 𝑎1 + 𝛾), with the same analysis, it can be seen that 𝜆2 is a 

positive value; consequently, 𝜆1 < 0,  𝜆2 > 0, 𝜆3 < 0, and 𝜆4 < 0. Then, the disease-free equilibrium point 

is unstable, thus proving that 𝑅0 > 1 has a point of equilibrium free of disease of unstable nature. 
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Theorem 2. If 𝑅0 > 1, then the endemic equilibrium point in the SIQR model is asymptomatically locally 

stable, and if 𝑅0 < 1, then it is unstable. 

Proof. Given 𝑅0 > 1, thus 𝛽 > (𝛿 + 𝜇 + 𝑎1 + 𝛾). To investigate the stability of the disease-free equilibrium 

point of (1), we linearize the system (1) using the Jacobian matrix and then examine the endemic equilibrium 

points obtained with |𝜆𝐼 − 𝐽 |. Thus, we obtain eigenvalue 𝜆1 > 0, 𝜆2 > 0, 𝜆3 > 0, and  𝜆4 > 0. Therefore, it 

is proven that when 𝑅0 > 1, the endemic equilibrium point is locally asymptotically stable. Knowing 𝑅0 <
1, thus 𝛽 > (𝛿 + 𝜇 + 𝑎1 + 𝛾). With the same analysis, it can be seen that 𝜆 is a negative value. Consequently 

𝜆1 > 0, 𝜆2 > 0, 𝜆3 > 0, and 𝜆4 < 0. Then the endemic equilibrium point is unstable thus proving that 𝑅0 <
1 has an endemic equilibrium point is unstable nature. 
 

3.3. Stability Analysis with Time Delay (𝝉) 

In System (1), its stability is further analyzed by considering the delay time (𝜏) with the condition 𝜏 >
0. 

{
 
 
 
 

 
 
 
 

𝑑𝑆(𝑡)

𝑑𝑡
=  𝛬𝑁 − 𝜇𝑆(𝑡) −

𝛽𝑆(𝑡)𝐼(𝑡)

𝑁
+ 𝜃𝑅(𝑡)

𝑑𝐼(𝑡)

𝑑𝑡
=
𝛽𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝛿𝐼 − 𝜇𝐼 − 𝛼1𝐼 − 𝛾𝐼(𝑡 − 𝜏)

𝑑𝑄(𝑡)

𝑑𝑡
= 𝛿𝐼(𝑡) −  𝜀𝑄(𝑡) − 𝜇𝑄(𝑡) − 𝛼2𝑄(𝑡)

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡 − 𝜏) +  𝜀𝑄(𝑡) −  𝜇𝑅(𝑡) − 𝜃𝑅(𝑡).

 

 
To evaluate the disease-free equilibrium point, the system is linearized using the Jacobian matrix. The 

growth rate of the sub-population is then analyzed with a delay time, assuming 𝐼(𝑡 − 𝜏) = 𝑒𝜆𝜏. 

𝐽 =

(

  
 

−𝜇 −
𝛽𝐼

𝑁
−
𝛽𝑆

𝑁
0                      𝜃

𝛽𝐼

𝑁

𝛽𝑆

𝑁
− 𝛿 − 𝜇 − 𝑎1 − 𝛾𝑒

−𝜆𝜏 0                       0

0
0

𝛿
𝛾𝑒−𝜆𝜏

−(𝜀 + 𝜇 + 𝑎2)  0

           𝜀               −(𝜇 + 𝜃)

  

)

  
 

  

Substituting the disease-free equilibrium point and finding the characteristic equation of Jacobian 
matrix for the disease-free state. 

||(

−𝜇 − 𝜆 −𝛽 0                         𝜃

0 𝛽 − 𝛿 − 𝜇 − 𝑎1 − 𝛾𝑒
−𝜆𝜏 − 𝜆 0                         0

0
0

𝛿
𝛾𝑒−𝜆𝜏

−(𝜀 + 𝜇 + 𝑎2) − 𝜆
𝜀

0
−(𝜇 + 𝜃) − 𝜆

)|| = 0   

The resulting characteristic equation is. 

(−𝜇 − 𝜆)(𝛽 − 𝛿 − 𝜇 − 𝑎1 − 𝛾𝑒
−𝜆𝜏 − 𝜆)(−(𝜀 + 𝜇 + 𝑎2 ) − 𝜆)( −(𝜇 + 𝜃) − 𝜆) = 0. 

The eigenvalues are obtained as follows: 

𝜆1 = −𝜇,  𝜆2 = 𝛽 − 𝛿 − 𝜇 − 𝑎1 − 𝛾𝑒
−𝜆𝜏 ,  𝜆3 = −(𝜀 + 𝜇 + 𝑎2), 𝜆4 = −(𝜇 + 𝜃) 

For 𝜏 = 0, because 𝜇, 𝜃, 𝜀, and 𝑎2 > 0 then 𝜆1, 𝜆3 and 𝜆4 < 0. For 𝜆2 = 𝛽 − 𝛿 − 𝜇 − 𝑎1 − 𝛾𝑒 − 𝜆𝜏 has some 

of the following possibilities. 

1. If 𝜆2 < 0, the system (1) is stable asymptotic at the disease-free equilibrium point. 
2. If 𝜆2 = 0, the system (1) is stable at the disease-free equilibrium point. 
3. If 𝜆2 > 0, the system (1) becomes unstable at the disease-free equilibrium point, resulting in 𝐼 > 0 and 

endemic occurs in system (1). 

For 𝜏 > 0 and 𝑤 > 0, If 𝜆2 = 𝑖𝑤 is obtained, 
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−𝛽 + 𝛿 + 𝜇 + 𝑎1 + cos(𝑤𝜏) + 𝑖(𝑤 + sin(𝑤𝜏)) = 0. 

Then the real and imaginary parts are separated, squared, and added to obtained. 

𝑊 = −𝛽 + 𝛿 + 𝜇 + 𝑎1 + cos(𝑤𝜏) − sin(𝑤𝜏). 

Consequently, the system (1) becomes unstable at the disease-free equilibrium point if 𝑤 > 0 when 𝜏 > 0, 
then resulting in 𝛽𝜇𝑁 − 𝜇((𝛿 + 𝜇 + 𝑎1 + 𝛾)𝑁) + 𝛽𝜃𝑅 >  𝛽(𝛿 +  𝜇 + 𝑎1 + 𝛾), thus leading to endemicity 

in the system (1). The Jacobian matrix 𝐽 𝑖𝑠 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑎𝑠  

𝐽 =

(

 
 
 

−𝜇 − (
𝛽𝜇𝑁−𝜇((𝛿+𝜇+𝑎1+𝛾)𝑁)+𝛽𝜃𝑅

(𝛿+𝜇+𝑎1+𝛾)
) −𝛿 − 𝜇 − 𝑎2 − 𝛾 0                      𝜃

(
𝛽𝜇𝑁−𝜇((𝛿+𝜇+𝑎1+𝛾)𝑁)+𝛽𝜃𝑅

(𝛿+𝜇+𝑎1+𝛾)
) 𝛾 − 𝛾𝑒−𝜆𝜏 0                       0

0
0

𝛿
𝛾𝑒−𝜆𝜏

−(𝜀 + 𝜇 + 𝑎2)  0

           𝜀               −(𝜇 + 𝜃)

  

)

 
 
 
.  

Let’s assume: 

𝑘1 = −𝜇 − (
𝛽𝜇𝑁 − 𝜇((𝛿 + 𝜇 + 𝑎1 + 𝛾)𝑁) + 𝛽𝜃𝑅

(𝛿 + 𝜇 + 𝑎1 + 𝛾)
) 

ℎ = (𝜀 + 𝜇 + 𝑎2 ) 

𝑔 = (𝜀 + 𝜇 + 𝑎2 )(𝜇 + 𝜃) 

(9) 

Then, the characteristic equation of the Jacobian matrix is obtained as follows: 

−𝜆4 + 𝜆3(ℎ − 𝛾 − 𝑘1) + 𝜆
2(−𝑔 − 𝛾ℎ − 𝑘1ℎ + 𝑘1𝛾) + 𝜆(−𝛾𝑔 − 𝑘1𝑔 + 𝑘1𝛾ℎ) +

𝑘1𝛾𝑔 + (𝜆
3𝛾 + 𝜆2𝛾ℎ − 𝜆2𝑘1𝛾 − 𝜆𝑘1𝛾ℎ − 𝑘1𝛾𝑔)𝑒

−𝜆𝜏 = 0.     
(10) 

Let’s assume: 

𝑎 = −1   

𝑏 = ℎ − 𝛾 − 𝑘1  

𝑐 = (−𝑔 − 𝛾ℎ − 𝑘1ℎ + 𝑘1𝛾)  

𝑑 = (−𝛾𝑔 − 𝑘1𝑔 + 𝑘1𝛾ℎ)  

𝑒 = 𝑘1𝛾𝑔 + (𝜆
3𝛾 + 𝜆2𝛾ℎ − 𝜆2𝑘1𝛾 − 𝜆𝑘1𝛾ℎ − 𝑘1𝛾𝑔).  

(11) 

When 𝜏 = 0, the roots of Equation (9) are obtained as follows. 

𝜆 =
−(ℎ−𝛾−𝑘1)±√(ℎ−𝛾−𝑘1)

2−4(ℎ−𝛾−𝑘1)(−𝑔−𝛾ℎ−𝑘1ℎ+𝑘1𝛾)

−2
  (12) 

According to the Routh-Hurwitz criterion, when 𝑏 > 0 and −2𝑐 > 0, there are no positive real roots if 𝑏 >
 0 and 𝑐 > 0. For 𝑏 > 0, the following applies: 

𝑊1,2 =
−𝑏 ± √(𝑏)2 − 4(−12 − 𝑐2)

−2
. 

Thus, 𝜆 in the characteristic Equation (11) is a negative value. If 𝑏 > 0 and ( −12 − 𝑐2 ) > 0, there is no 

positive real root 𝑊. Then, considering (−12 − 𝑐2), 

1. If (−12 − 𝑐2) < 0, it is unlikely to occur because it results in 𝐼 < 0 when 𝜏 > 0. 
2. If (−12 − 𝑐2) = 0, there are two characteristics roots of 𝑊2, namely the positive characteristic 𝑊+

2 

resulting in 𝜆 = 0 and the negative characteristics 𝑊−
2 resulting in a negative value of 𝜆, indicating 

that the system (1) is stable at the equilibrium point for 𝜏 > 0 
3. If (−12 − 𝑐2) > 0, 𝜆 has no positive root. Thus, the system (1) is asymptomatically stable at the 

endemic equilibrium point at 𝜏 > 0 
By substituting Equation (11) to obtain −2𝑐 > 0. 
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3.4. Numerical Simulations 

The simulation was conducted using a mathematical application by providing each parameter value 

can be seen in Table 1. And there are 3 cases as well as numerical simulation, namely disease-free, endemic, 

and endemic with delay time. 

Table 1. The Parameter Values of the Mathematical Model for the Spread of COVID-19 

Parameter Value 

𝛿 0.00032 

∧ 0.00006 

𝜇 0.00006 

𝛾 0.00077 

      𝛽 0.00329 

𝜀 0.00077 

𝑎1 0.00002 

𝑎2 0.00009 

𝜃 0.02 

 
These parameter values were derived from COVID-19 data in Pontianak City. Graphs for disease-free, 

endemic, and endemic were obtained with the given delay time.  

 
Figure 2. Disease-free 

In Figure 2, the blue line represents the growth rate of the susceptible subpopulation, which is moving 

upwards. This is because the recovered subpopulations transition back to the susceptible state due to the loss 

of the immune system and natural births. On the red line, it can be observed that the growth rate of the infected 

subpopulation has decreased. This is because the susceptible subpopulation does not have direct contact with 

an infected subpopulation. Then, the yellow line represents the growth rate of the quarantined subpopulation. 

The number of infected subpopulations equals the number of subpopulations in quarantine because every 

infected compartment must undergo quarantine. This line does not experience any upward or downward 

movements because the susceptible populations do not have direct contact, thus the quarantined 

subpopulations do not increase. The green line indicates that the growth rate of the treated subpopulation has 

slowed down. This is because the sub-population transitions back to the susceptible state due to the loss of 

the human immune system. Additionally, the recovered subpopulation decreases due to natural deaths. 
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Figure 3. Endemic 

Figure 3 illustrates that the blue line represents the growth rate of the susceptible subpopulation, which 
is increasing. This is because the susceptible individuals transition into the susceptible state due to loss of the 
immune system and natural births. On the red line, it can be observed that the growth rate of the infected 
subpopulation has slightly increased. This is attributed to the susceptibility of the subpopulations to infection 
due to direct contact with infected individuals. Moreover, the yellow line depicts an increasing growth rate 
of the subpopulation in quarantine. This is due to the rising number of infected subpopulations, resulting in 
an increase in the quarantined subpopulation. 

 

 
Figure 4. Endemic Delay Time 

From Figure 4, it is evident that the initial parameters do not result in an increase or decrease when no 
delay time is applied, indicating that the endemic equilibrium point reaches stability within a value less than 
𝑡 = 90. Therefore, the introduction of a delay in endemics, specifically when 𝜏 = 12, impacts the spread of 
COVID-19, consequently reducing the number of infected sub-population. 
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(a)                                             (b) 

 
(c) 

Figure 5. Graphic Differences (a) Disease-free, (b) Endemic, (c) Endemic Delay Time 

 
In Figure 5 (a), Figure 5 (b), and Figure 5 (c), the blue line represents the growth rate of the susceptible 

subpopulation, which rises due to natural births. in Figure 5 (a) and Figure 5 (c), the yellow lines represent 
the growth rate of the infected sub-population, which decreases due to natural deaths, deaths from infection, 
the recovery process with delayed calculations, and the presence of quarantined subpopulations. However, 
Figure 5 (b) shows an increase due to the increase in the infected Sub-population. Furthermore, in Figure 5 
(a) and Figure 5 (c), the red lines represent the growth rate of the quarantined sub-population, which remains 
stable due to natural deaths, deaths from infection, and the recovery rate of the quarantined subpopulations, 
while Figure 5 (b) shows an increase due to the increase in the quarantined infected subpopulations. In Figure 
5 (a), Figure 5 (b), and Figure 5 (c), the green lines represent the growth rate represents the growth rate of 
the recovered subpopulations, which decreases due to natural deaths and a decline in the immune system. In 
Figure 5 (c), with the inclusion of a delay, the yellow line representing the infected sub-populations, and the 
green line representing the recovered compartments can reduce or delay the spread of the disease for a period 
of 2-14 days. 

The obtained value of 𝑅0 = 0,281196, indicating that 𝑅0 < 1. Therefore, 𝑅0 < 1 the disease will not 
spread; in other words, the group will be free from the disease for a certain period. However, with 𝑅0 =
3,046413 indicating 𝑅0 > 1, the disease will spread, resulting in an epidemic. All three simulations showed 
a decrease in the infected sub-populations. Without a delay, the spread of COVID-19 continues to increase, 
resulting in a decrease in the recovered sub-population. However, with a delay, the spread of COVID-19 is 
hindered for a certain period, reducing the spread and increasing the recovered sub-populations. 
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4. CONCLUSIONS 

1. There are two equilibrium points: the disease-free equilibrium (𝑆1, 𝐼1, 𝑄1, 𝑅1) = (𝑁, 0,0,0) and the 

endemic equilibrium point (𝑆2, 𝐼2, 𝑄2, 𝑅2) = (
(𝛿+𝜇+𝑎2+𝛾)𝑁

𝛽
= 𝑆2,

𝛽𝜇𝑁−𝜇((𝛿+𝜇+𝑎1+𝛾)𝑁)+𝛽𝜃𝑅

𝛽(𝛿+𝜇+𝑎1+𝛾)
=

𝐼2,
𝛿𝜇𝑁

(𝛿+𝜇+𝑎1+𝛾)(𝜀+𝜇+𝑎2)
−

𝛿𝜇𝑁

𝛽(𝜀+𝜇+𝑎2)
+

𝛿𝜃𝑅

(𝛿+𝜇+𝑎1+𝛾)(𝜀+𝜇+𝑎2)
= 𝑄2,     

𝛽𝛾𝜇𝑁(𝜀+𝜇+𝑎2)+𝛽𝜀𝛿𝜇𝑁−𝛾𝜇𝑁(𝜀+𝜇+𝑎2)(𝛿+𝜇+𝑎1+𝛾)−𝜀𝛿𝜇𝑁(𝛿+𝜇+𝑎1+𝛾)

𝛾𝜃(𝜀+𝜇+𝑎2)−𝜀𝛿𝜃+(𝜇+𝜃)(𝛿+𝜇+𝑎1+𝛾)(𝜀+𝜇+𝑎2)
= 𝑅2)  

2. If 𝑅0 < 1, then the disease-free balance point is locally asymptotically stable. This indicates that the 

spread of COVID-19 will decrease within a few days, leading to a decrease in the sub-population infected 

with COVID-19, or it can be said that the disease is absent altogether. However, if 𝑅0 > 1, then the 

endemic equilibrium point is local asymptotically stable. 

3. The sub-population infected with the COVID-19 virus will increase and remain endemic with a locally 

asymptotically stable spread rate. 
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