ON THE LOCATING CHROMATIC NUMBER OF DISJOINT UNION OF BUCKMINSTERFULLERENE GRAPHS

Debi Zulkarnain ${ }^{1}$, Lyra Yulianti ${ }^{2 *}$, Des Welyyanti ${ }^{3}$, Kiki Khaira Mardimar ${ }^{4}$, Muhammad Rafif Fajri ${ }^{5}$
${ }^{1,2,3,4}$ Department of Mathematics and Science Data, Faculty of Mathematics and Natural Sciences, Universitas Andalas Kampus UNAND Limau Manis Padang, 25163, Indonesia
${ }^{5}$ Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesa 10, Bandung, 40132, Indonesia
Corresponding author's e-mail: * lyra@sci.unand.ac.id

Article History:

Received: $23^{\text {rd }}$ November 2023
Revised: 'th $^{\text {th }}$ January 2023
Accepted: 13 ${ }^{\text {th }}$ March 2024
Published: $1^{\text {st }}$ June 2024

Keywords:

Locating-Chromatic Number; Buckminsterfullerene Graph; Disjoint Union of Buckminsterfullerene Graphs

ABSTRACT

Let $G=(V, E)$ be a connected non-trivial graph. Let c be a proper vertex-coloring using k colors, namely $1,2, \cdots, k$. Let $\Pi=\left\{S_{1}, S_{2}, \cdots, S_{k}\right\}$ be a partition of $V(G)$ induced by c, where S_{i} is the color class that receives the color i. The color code, denoted by $c_{\Pi}(v)$, is defined as $c_{\Pi}(v)=\left(d\left(v, S_{1}\right), d\left(v, S_{2}\right), \cdots, d\left(v, S_{k}\right)\right)$, where $d\left(v, S_{i}\right)=\min \left\{d(v, x) \mid x \in S_{i}\right\}$ for $1 \leq$ $i \leq k$, and $d(v, x)$ is the distance between two vertices v and x in G. If all vertices in $V(G)$ have different color codes, then c is called as the locating-chromatic k-coloring of G. The locating-chromatic number of G, denoted by $\chi_{L}(G)$, is the minimum k such that G has a locating coloring. Let B_{60} be the Buckminsterfullerene graph on 60 vertices. Buckminsterfullerene graph is a 3-connected planar graph and a member of the fullerene graphs, representing fullerene molecules in chemistry. In this paper, we determine the locating chromatic number of the disjoint union of Buckminsterfullerene graphs, denoted by $H=\cup_{s=1}^{5} B_{60}^{(s)}$.

How to cite this article:

D. Zulkarnain, L. Yulianti, D. Welyyanti, K. K. Mardimar and M. R. Fajri, "ON THE LOCATING CHROMATIC NUMBER OF DISJOINT UNION OF BUCKMINSTERFULLERENE GRAPHS, BAREKENG: J. Math. \& App., vol. 18, iss. 2, pp. 0915-0922, June, 2024.

[^0]
1. INTRODUCTION

Many papers have discussed the locating-chromatic number since Chartrand et al. [1] introduced the concept in 2002. The locating-chromatic number of a graph is a newly interesting topic to study because there is no general theorem for determining the locating-chromatic number of any graph. All graphs considered in this paper are finite, undirected, and simple. Let $G=(V, E)$ be a connected graph. Let c be a proper coloring using k colors, namely $1,2, \cdots, k$. Let $\Pi=\left\{S_{1}, S_{2}, \cdots, S_{k}\right\}$ be a partition of $V(G)$ induced by c, where S_{i} is the color class that receives the color i. The color code, denoted by $c_{\Pi}(v)$, is defined as

$$
c_{\Pi}(v)=\left(d\left(v, S_{1}\right), d\left(v, S_{2}\right), \ldots, d\left(v, S_{k}\right)\right)
$$

where $d\left(v, S_{i}\right)=\min \left\{d(v, x) \mid x \in S_{i}\right\}$ for $1 \leq i \leq k$, and $d(v, x)$ is the distance between two vertices v and x in G. If all vertices in $V(G)$ have different color codes, then c is called as the locating-chromatic k coloring of G. The locating-chromatic number of G, denoted by $\chi_{L}(G)$, is the minimum k such that G has a locating coloring. The dominant vertex is the vertex v such that $d\left(v, S_{i}\right)=0$ if $v \in S_{i}$, and $d\left(v, S_{i}\right)=1$ if $v \notin S_{i}$. Other notations and definitions in graph theory are taken from Diestel [2].

Some interesting results are obtained to determine the locating-chromatic number of some connected graphs. The results are focused on certain families of graphs. Chartrand et al. [1] determined all graphs of order n with locating-chromatic number n, namely, a complete multipartite graph of n vertices. Moreover, Chartrand et al. [3] constructed trees on n vertices, $n \geq 5$, with locating-chromatic numbers varying from 3 to n, except for $n-1$. In [4], Baskoro and Asmiati characterized all trees with locating-chromatic number 3. Next, Wellyyanti et al. [5] determined the locating-chromatic number for complete n-ary trees. Moreover, Syofyan et al. [6] characterized all trees of order with locating-chromatic number $n-1$, for any integers n and t, where $n>t+3$ and $2 \leq t \leq \frac{n}{2}$. In [7], Asmiati et al. determined the locating-chromatic number of the amalgamation of stars. In [8], Asmiati et al. obtained the locating-chromatic number for the amalgamation of stars linked by one path. Asmiati et al. [9] determined the characterization of some Petersen graphs having locating-chromatic numbers four or five. Next, Asmiati et al. [10] obtained the locating-chromatic number for certain barbell graphs.

Welyyanti et al. [11] generalized the concept of the locating-chromatic number such that it can be applied to disconnected graphs. The locating-chromatic number of a disconnected graph H, denoted by $\chi_{L}{ }^{\prime}(H)$, is the smallest k such that H admits a locating coloring with k colors. If no integer satisfies the above conditions, then the locating-chromatic number of H is defined as $\chi_{L}^{\prime}(H)=\infty$. Some recent results are the locating-chromatic number of a graph with two components [12], two homogeneous components [13], and disconnected graphs with path, cycle, and star or double stars as its components [14]. Recently, Zikra et al. [15] determined the locating-chromatic number of disjoint unions of fan graphs.

In [16], Andova et al. discussed the fullerene graphs, the graph representation of fullerene molecules, where fullerenes are polyhedral molecules in chemistry made entirely of carbon atoms. They also determined that the fullerene graphs are 3-connected planar graphs with precisely 12 pentagonal faces, while all other faces are hexagons. Akhter et al. [17] obtained the metric dimension of some $(3,6)$-fullerene and $(4,6)$-fullerene graphs, where $(k, 6)$-fullerene graph is fullerene graph with all faces on k and six vertices, for $k=3,4,5$. Next, Mehreen et al. [18] obtained the partition dimension of $(3,6)-$ fullerene graphs and gave some conjecture related to the structure of $(5,6)$-fullerene graphs.

The most symmetric fullerene graph is the Buckminsterfullerene, B_{60}, discovered by Kroto et al. [19]. This $(5,6)$-fullerene graph comprises 60 carbon atoms and is named after Buckminster Fuller, whose geodetic dome resembled the structure of the molecules. Putri et al. [20] determined the metric dimension of Buckminsterfullerene B_{60}. Moreover, in [21], Mardimar et al. obtained the locating chromatic number of the Buckminsterfullerene graph B_{60}. The recent result is the locating chromatic number of the Buckminsterfullerene-type graph $B_{60}(1, t)$ for $1 \leq t \leq 5$ by Putri et al. [22]. Motivated by the result of [21] and of [22], we construct a new graph, namely the disjoint union of Buckminsterfullerene graphs, denoted by $H=\mathrm{U}_{s=1}^{5} B_{60}^{(s)}$, and determine its locating-chromatic number.

2. RESEARCH METHODS

Let G be a non-trivial connected graph. The upper bound of the locating chromatic number of G is obtained by constructing a partition $\Pi=\left\{S_{1}, S_{2}, \cdots, S_{k}\right\}$ for some positive integer k such that every two vertices in G have different color codes, denoted by $\chi_{L}(G) \leq k$. The lower bound of $\chi_{L}(G)$ is determined by showing that for every possibility of Π^{*} with $\left|\Pi^{*}\right|<k$, there are at least two vertices with the same color codes, denoted by $\chi_{L}(G) \geq k$. The proof for disconnected graph H is similar. If no integer k satisfies the above conditions, then the locating-chromatic number of H is defined as $\chi_{L}^{\prime}(H)=\infty$.

Chartrand et al. [1] gave some characterization for the locating-chromatic coloring of a graph in Theorem 1. This theorem showed some restrictions in the construction of vertex coloring of a graph.

Theorem 1. [1] Let G be a connected graph, and c be a locating-chromatic coloring of G. If $v, w \in V(G)$ and $v \neq w$ such that $d(v, x)=d(w, x)$ for all $x \in V(G) \backslash\{v, w\}$, then $c(v) \neq c(w)$. In particular, if v and w are two non-adjacent vertices of G such that the neighborhood of v is equal to that of w, then $c(v) \neq$ $c(w)$.

Welyyanti et al. [11] gave the upper and lower bounds of the locating-chromatic number for the disjoint union of arbitrarily connected graphs.
Theorem 2. [11] For every i, let G_{i} be the connected graph, and let $H=\bigcup_{i=1}^{m} G_{i}$. If $\chi_{L}^{\prime}(G)<\infty$ then $\max \left\{\chi_{L}\left(G_{i}\right) \mid 1 \leq i \leq m\right\} \leq \chi_{L}^{\prime}(H) \leq \min \left\{\left|V\left(G_{i}\right)\right| \mid 1 \leq i \leq m\right\}$.

3. RESULTS AND DISCUSSION

In this section, we will discuss about the locating-chromatic number of the disjoint union of Buckminsterfullerene graphs, denoted by $H=\bigcup_{s=1}^{5} B_{60}^{(s)}$. The vertex-set and edge-set of the Buckminsterfullerene graph B_{60} are given by Putri et al. [20] as follows.

$$
\begin{align*}
V\left(B_{60}\right)= & \left\{v_{i}, z_{i} \mid 1 \leq i \leq 5\right\} \cup\left\{w_{j}, y_{j} \mid 1 \leq j \leq 15\right\} \cup\left\{x_{k} \mid 1 \leq k \leq 20\right\} \tag{1}\\
E\left(B_{60}\right)= & \left\{v_{l} v_{l+1}, z_{l} z_{l+1} \mid 1 \leq l \leq 4\right\} \cup\left\{w_{m} w_{m+1}, y_{m} y_{m+1} \mid 1 \leq m \leq 14\right\} \\
& \cup\left\{x_{n} x_{n+1} \mid 1 \leq n \leq 19\right\} \cup\left\{w_{3 l} x_{4 l+1}, x_{4 l} y_{3 l+1}, y_{3 l} z_{l+1} \mid 1 \leq l \leq 4\right\} \\
& \cup\left\{v_{i} w_{3 i-2}, w_{3 i-1} x_{4 i-2}, x_{4 i-1} y_{3 i-1} \mid 1 \leq i \leq 5\right\} \\
& \cup\left\{w_{15} x_{1}, x_{20} y_{1}, y_{15} z_{1}, v_{1} v_{5}, z_{1} z_{5}, w_{1} w_{15}, y_{1} y_{15}, x_{1} x_{20}\right\} . \tag{2}
\end{align*}
$$

Mardimar et al.[21] determined the locating-chromatic number for Buckminsterfullerene graph B_{60} as follows.

Theorem 3. [21] Let B_{60} be the Buckminsterfullerene graph. Then $\chi_{L}\left(B_{60}\right)=5$.
Proof. The sketch of proof is as follows. Because B_{60} is a 3-regular graph, then it is clear that $\chi_{L}\left(B_{60}\right) \geq 4$. Next, assume that $\chi_{L}\left(B_{60}\right)=4$. Because every vertex has degree 3, then every vertex in B_{60} is the dominant vertex. Therefore, we have four ways to color each vertex and its neighbors. Because $\left|V\left(B_{60}\right)\right|=60$, then at least two dominant vertices are in the same color class. Thus, $\chi_{L}\left(B_{60}\right) \geq 5$.
Next, by defining $c: V\left(B_{60}\right) \rightarrow\{1,2,3,4,5\}$ as follows:
$c(v)=\left\{\begin{array}{l}1, v=z_{1}, y_{1}, y_{3}, y_{5}, y_{9}, y_{12}, y_{14}, x_{1}, x_{4}, x_{6}, x_{8}, x_{12}, x_{16}, x_{18}, w_{6}, w_{8}, w_{12}, \\ 2, v=z_{3}, z_{5}, y_{2}, y_{4}, y_{7}, y_{10}, y_{13}, y_{15}, x_{2}, x_{11}, x_{15}, x_{17}, x_{19}, w_{4}, w_{7}, w_{9}, w_{11}, w_{13}, w_{15}, v_{4}, \\ 3, v=x_{9}, x_{14}, w_{3}, w_{10}, v_{1}, \\ 4, v=w_{1}, v_{3}, \\ 5, v=z_{2}, z_{4}, y_{6}, y_{8}, y_{11}, x_{3}, x_{5}, x_{7}, x_{10}, x_{13}, x_{20}, w_{2}, w_{5}, w_{14}, v_{2}, v_{5},\end{array}\right.$
it can be easily shown that for $\Pi=\left\{S_{1}, S_{2}, S_{3}, S_{4}, S_{5}\right\}$, where

$$
\begin{aligned}
& S_{1}=\left\{z_{1}, y_{1}, y_{3}, y_{5}, y_{9}, y_{12}, y_{14}, x_{1}, x_{4}, x_{6}, x_{8}, x_{12}, x_{16}, x_{18}, w_{6}, w_{8}, w_{12}\right\} \\
& S_{2}=\left\{z_{3}, z_{5}, y_{2}, y_{4}, y_{7}, y_{10}, y_{13}, y_{15}, x_{2}, x_{11}, x_{15}, x_{17}, x_{19}, w_{4}, w_{7}, w_{9}, w_{11}, w_{13}, w_{15}, v_{4}\right\}, \\
& S_{3}=\left\{x_{9}, x_{14}, w_{3}, w_{10}, v_{1}\right\}, \\
& S_{4}=\left\{w_{1}, v_{3}\right\}, \\
& S_{5}=\left\{z_{2}, z_{4}, y_{6}, y_{8}, y_{11}, x_{3}, x_{5}, x_{7}, x_{10}, x_{13},, x_{20}, w_{2}, w_{5}, w_{14}, v_{2}, v_{5}\right\},
\end{aligned}
$$

every two vertices in B_{60} have different color codes. Therefore, $\chi_{L}\left(B_{60}\right) \leq 5$.
Denote $B_{60}^{(s)}$ as the $s^{t h}$ Buckminsterfullerene B_{60}, for $1 \leq s \leq m$. We construct the disjoint union of five B_{60} denoted by $H=\bigcup_{s=1}^{5} B_{60}^{(s)}$. The vertex set and edge set of H ' s are defined similarly as in Equation (1) and Equation (2) as follows.
$V(H)=\left\{v_{s, i}, z_{s, i} \mid 1 \leq i \leq 5\right\} \cup\left\{w_{s, j}, y_{s, j} \mid 1 \leq j \leq 15\right\} \cup\left\{x_{s, k} \mid 1 \leq k \leq 20\right\}$,
$E(H)=\left\{v_{s, l} v_{s, l+1}, z_{s, l} z_{s, l+1} \mid 1 \leq l \leq 4\right\} \cup\left\{w_{s, m} w_{s, m+1}, y_{s, m} y_{s, m+1} \mid 1 \leq m \leq 14\right\}$
$\cup\left\{x_{s, n} x_{s, n+1} \mid 1 \leq n \leq 19\right\} \cup\left\{w_{s, 3 l} x_{s, 4 l+1}, x_{s, 4 l} y_{s, 3 l+1}, y_{s, 3 l} z_{s, l+1} \mid 1 \leq l \leq 4\right\}$
$\cup\left\{v_{s, i} w_{s, 3 i-2}, w_{s, 3 i-1} x_{s, 4 i-2}, x_{s, 4 i-1} y_{s, 3 i-1} \mid 1 \leq i \leq 5\right\}$
$\cup\left\{w_{s, 15} x_{s, 20}, x_{s, 20} y_{s, 1}, y_{s, 15} z_{s, 1}, v_{s, 1} v_{s, 5}, z_{s, 1} z s, 5, w_{s, 1} w_{s, 15}, y_{s, 1} y_{s, 15}, x_{s, 1} x_{s, 20}\right\}$.
In Theorem 4, we determine the chromatic location number of the disjoint union of Buckminsterfullerene graphs $H=\bigcup_{s=1}^{5} B_{60}^{(s)}$.

Theorem 4. Let $H=\bigcup_{s=1}^{5} B_{60}^{(s)}$ as the disjoint union of Buckminsterfullerene graphs. Then $\chi_{L}^{\prime}(H)=5$.
Proof. Let $H=\bigcup_{s=1}^{5} B_{60}^{(s)}$ be the disjoint union of Buckminsterfullerene graphs. Since $\chi_{L}\left(B_{60}\right)=5$ (Theorem 3), then we have that $\chi_{L}^{\prime}(H) \geq \max \left\{\chi_{L}\left(G_{i}\right) \mid 1 \leq i \leq m\right\}=5$, from Theorem 2 .
Let $c_{1}\left(a_{1, i}\right)=q$ for $a_{1, i} \in V\left(B_{60}^{(1)}\right)$ for $1 \leq q \leq 5$ and $1 \leq i \leq 60$, following the 5 -coloring in eq. (3). For the corresponding vertices $a_{p, i}$ in $B_{60}^{(p)}, 2 \leq p \leq 5$, define the 5 -coloring as follows. In constructing this coloring, we use Theorem 1 as the restriction.

$$
\begin{aligned}
& c_{1}\left(a_{2, i}\right)=(q+1) \bmod 5, \text { for } a_{2, i} \in B_{60}^{(2)} \\
& c_{1}\left(a_{3, i}\right)=(q+2) \bmod 5, \text { for } a_{3, i} \in B_{60}^{(3)} \\
& c_{1}\left(a_{4, i}\right)=(q+3) \bmod 5, \text { for } a_{4, i} \in B_{60}^{(4)} \\
& c_{1}\left(a_{5, i}\right)=(q+4) \bmod 5, \text { for } a_{5, i} \in B_{60}^{(5)}
\end{aligned}
$$

By this coloring, we define $\Pi=\left\{S_{1}, S_{2}, S_{3}, S_{4}, S_{5}\right\}$, where:

```
\(S_{1}=\left\{z_{1,1}, y_{1,1}, y_{1,3}, y_{1,5}, y_{1,9}, y_{1,12}, y_{1,14}, x_{1,1}, x_{1,4}, x_{1,6}, x_{1,8}, x_{1,12}, x_{1,16}, x_{1,18}, w_{1,6}, w_{1,8}, w_{1,12}\right\} \cup\)
\(\left\{z_{2,2}, z_{2,4}, y_{2,6}, y_{2,8}, y_{2,11}, x_{2,3}, x_{2,5}, x_{2,7}, x_{2,10}, x_{2,13}, x_{2,20}, w_{2,2}, w_{2,5}, w_{2,14}, v_{2,2}, v_{2,5}\right\} \cup\left\{w_{3,1}, v_{3,3}\right\} \cup\)
\(\left\{x_{4,9}, x_{4,14}, w_{4,3}, w_{4,10}, v_{4,1}\right\} \cup\left\{z_{5,3}, z_{5,5}, y_{5,2}, y_{5,4}, y_{5,7}, y_{5,10}, y_{5,13}, y_{5,15}, x_{5,2}, x_{5,11}, x_{5,15}, x_{5,17}, x_{5,19}\right\} \cup\)
\(\left\{w_{5,4}, w_{5,7}, w_{5,9}, w_{5,11}, w_{5,13}, w_{5,15}, v_{5,4}\right\}\)
\(S_{2}=\left\{z_{1,3}, z_{1,5}, y_{1,2}, y_{1,4}, y_{1,7}, y_{1,10}, y_{1,13}, y_{1,15}, x_{1,2}, x_{1,11}, x_{1,15}, x_{1,17}, x_{1,19}\right\} \cup\)
\(\left\{w_{1,4}, w_{1,7}, w_{1,9}, w_{1,11}, w_{1,13}, w_{1,15}, v_{1,4}\right\} \cup\)
\(\left\{z_{2,1}, y_{2,1}, y_{2,3}, y_{2,5}, y_{2,9}, y_{2,12}, y_{2,14}, x_{2,1}, x_{2,4}, x_{2,6}, x_{2,8}, x_{2,12}, x_{2,16}, x_{2,18}, w_{2,6}, w_{2,8}, w_{2,12}\right\} \cup\)
\(\left\{z_{3,2}, z_{3,4}, y_{3,6}, y_{3,8}, y_{3,11}, x_{3,3}, x_{3,5}, x_{3,7}, x_{3,10}, x_{3,13}, x_{3,20}, w_{3,2}, w_{3,5}, w_{3,14}, v_{3,2}, v_{3,5}\right\} \cup\left\{w_{4,1}, v_{4,3}\right\} \cup\)
\(\left\{x_{5,9}, x_{5,14}, w_{5,3}, w_{5,10}, v_{5,1}\right\}\),
\(S_{3}=\left\{x_{1,9}, x_{1,14}, w_{1,3}, w_{1,10}, v_{1,1}\right\} \cup\)
\(\left\{z_{2,3}, z_{2,5}, y_{2,2}, y_{2,4}, y_{2,7}, y_{2,10}, y_{2,13}, y_{2,15}, x_{2,2}, x_{2,11}, x_{2,15}, x_{2,17}, x_{2,19}\right\} \cup\)
\(\left\{w_{2,4}, w_{2,7}, w_{2,9}, w_{2,11}, w_{2,13}, w_{2,15}, v_{2,4}\right\} \cup\)
\(\left\{z_{3,1}, y_{3,1}, y_{3,3}, y_{3,5}, y_{3,9}, y_{3,12}, y_{3,14}, x_{3,1}, x_{3,4}, x_{3,6}, x_{3,8}, x_{3,12}, x_{3,16}, x_{3,18}, w_{3,6}, w_{3,8}, w_{3,12}\right\} \cup\)
\(\left\{z_{4,2}, z_{4,4}, y_{4,6}, y_{4,8}, y_{4,11}, x_{4,3}, x_{4,5}, x_{4,7}, x_{4,10}, x_{4,13}, x_{4,20}, w_{4,2}, w_{4,5}, w_{4,14}, v_{4,2}, v_{4,5}\right\} \cup\left\{w_{5,1}, v_{5,3}\right\}\),
\(S_{4}=\left\{w_{1,1}, v_{1,3}\right\} \cup\left\{x_{2,9}, x_{2,14}, w_{2,3}, w_{2,10}, v_{2,1}\right\} \cup\)
\(\left\{z_{3,3}, z_{3,5}, y_{3,2}, y_{3,4}, y_{3,7}, y_{3,10}, y_{3,13}, y_{3,15}, x_{3,2}, x_{3,11}, x_{3,15}, x_{3,17}, x_{3,19}\right\} \cup\)
```

$\left\{w_{3,4}, w_{3,7}, w_{3,9}, w_{3,11}, w_{3,13}, w_{3,15}, v_{3,4}\right\} \cup$
$\left\{z_{4,1}, y_{4,1}, y_{4,3}, y_{4,5}, y_{4,9}, y_{4,12}, y_{4,14}, x_{4,1}, x_{4,4}, x_{4,6}, x_{4,8}, x_{4,12}, x_{4,16}, x_{4,18}, w_{4,6}, w_{4,8}, w_{4,12}\right\} \cup$
$\left\{z_{5,2}, z_{5,4}, y_{5,6}, y_{5,8}, y_{5,11}, x_{5,3}, x_{5,5}, x_{5,7}, x_{5,10}, x_{5,13}, x_{5,20}, w_{5,2}, w_{5,5}, w_{5,14}, v_{5,2}, v_{5,5}\right\}$,
$S_{5}=\left\{z_{1,2}, z_{1,4}, y_{1,6}, y_{1,8}, y_{1,11}, x_{1,3}, x_{1,5}, x_{1,7}, x_{1,10}, x_{1,13}, x_{1,20}, w_{1,2}, w_{1,5}, w_{1,14}, v_{1,2}, v_{1,5}\right\} \cup\left\{w_{2,1}, v_{2,3}\right\} \cup$
$\left\{x_{3,9}, x_{3,14}, w_{3,3}, w_{3,10}, v_{3,1}\right\} \cup\left\{z_{4,3}, z_{4,5}, y_{4,2}, y_{4,4}, y_{4,7}, y_{4,10}, y_{4,13}, y_{4,15}, x_{4,2}, x_{4,11}, x_{4,15}, x_{4,17}, x_{4,19}\right\} \cup$
$\left\{w_{4,4}, w_{4,7}, w_{4,9}, w_{4,11}, w_{4,13}, w_{4,15}, v_{4,4}\right\} \cup$
$\left\{z_{5,1}, y_{5,1}, y_{5,3}, y_{5,5}, y_{5,9}, y_{512}, y_{5,14}, x_{5,1}, x_{5,4}, x_{5,6}, x_{5,8}, x_{5,12}, x_{5,16}, x_{5,18}, w_{5,6}, w_{5,8}, w_{5,12}\right\}$.
From Theorem 3, it is clear that every two vertices in $B_{60}^{(1)}$ have different color codes. Then we can conclude that every two vertices in $B_{60}^{(p)}$, for $2 \leq p \leq 5$ also have different color codes. Now, consider two vertices in different $a \in V\left(B_{60}^{(k)}\right)$ and $b \in V\left(B_{60}^{(t)}\right)$ for $1 \leq k, t \leq 5, k \neq t$, where $c_{1}(a)=c_{1}(b)$. We will show that $c_{\Pi}(a) \neq c_{\Pi}(b)$. Without loss of generalities, let $a \in V\left(B_{60}^{(1)}\right)$ and $b \in V\left(B_{60}^{(2)}\right)$, with $c(a)=$ $c(b)=1$. For every two vertices in $V\left(B_{60}^{(k)}\right)$ and $V\left(B_{60}^{(t)}\right)$ for $1 \leq k, t \leq 5$ and $k \neq t$, the proofs are similar. If $c(a)=1$ then the corresponding vertices in $B_{60}^{(2)}$ is given color 2. For example, if $c\left(x_{1,12}\right)=1$ then $c\left(x_{2,12}\right)=2$. Similarly, if $c(b)=1$ then the corresponding vertices in $B_{60}^{(1)}$ is given color 5. For example, if $c\left(x_{2,13}\right)=1$ then $c\left(x_{1,13}\right)=5$. Because the distance to the vertex of color 5 are different, $d\left(x_{1,12}, x_{1,13}\right)=1$, and $d\left(x_{2,13}, v_{2,3}\right)=4$
then $c_{\Pi}(a) \neq c_{\Pi}(b)$. Therefore, every two vertices in $H=\bigcup_{s=1}^{m} B_{60}^{(s)}$ have different color codes, and $\chi_{L}^{\prime}(H) \leq 5$.

In Example 1 we give the 5-locating coloring of $H=\bigcup_{s=1}^{5} B_{60}^{(s)}$.
Example 1. Using the 5-locating coloring defined in Theorem 4, we will show that every two vertices have different color codes. Consider the following cases.
Case 1. Vertices with color 1 in $B_{60}^{(s)}$ for $1 \leq s \leq 5$. Without loss of generality, let $c\left(w_{1,8}\right)=c\left(w_{2,5}\right)=$ $c\left(w_{3,1}\right)=c\left(w_{4,3}\right)=c\left(w_{5,9}\right)=1$. Then their color codes are $c_{\Pi}\left(w_{1,8}\right)=(0,1,2,2,1), \quad c_{\Pi}\left(w_{2,5}\right)=$ $(0,1,1,2,3), c_{\Pi}\left(w_{3,1}\right)=(0,1,2,1,1), c_{\Pi}\left(w_{4,3}\right)=(0,2,1,2,1)$ and $c_{\Pi}\left(w_{5,9}\right)=(0,1,3,1,1)$.
Case 2. Vertices with color 2 in $B_{60}^{(s)}$ for $1 \leq s \leq 5$. Without loss of generality, let $c\left(w_{1,7}\right)=c\left(w_{2,8}\right)=$ $c\left(w_{3,5}\right)=c\left(w_{4,1}\right)=c\left(w_{5,10}\right)=2$. Then their color codes are $c_{\Pi}\left(w_{1,7}\right)=(1,0,2,1,2), c_{\Pi}\left(w_{2,8}\right)=$ $(1,0,1,2,2), c_{\Pi}\left(w_{3,5}\right)=(3,0,1,2,2), c_{\Pi}\left(w_{4,1}\right)=(1,0,1,2,1)$ and $c_{\Pi}\left(w_{5,10}\right)=(1,0,4,2,2)$.

Case 3. Vertices with color 3 in $B_{60}^{(s)}$ for $1 \leq s \leq 5$. Without loss of generality, let $c\left(w_{1,10}\right)=c\left(w_{2,9}\right)=$ $c\left(w_{3,8}\right)=c\left(w_{4,5}\right)=c\left(w_{5,1}\right)=3$. Then their color codes are $c_{\Pi}\left(w_{1,10}\right)=(2,1,0,4,2), c_{\Pi}\left(w_{2,9}\right)=$ $(1,1,0,1,3), c_{\Pi}\left(w_{3,8}\right)=(2,1,0,1,2), c_{\Pi}\left(w_{4,5}\right)=(2,3,0,1,2)$ and $c_{\Pi}\left(w_{5,1}\right)=(1,1,0,1,2)$.
Case 4. Vertices with color 4 in $B_{60}^{(s)}$ for $1 \leq s \leq 5$. Without loss of generality, let $c\left(w_{1,1}\right)=c\left(w_{2,3}\right)=$ $c\left(w_{3,4}\right)=c\left(w_{4,6}\right)=c\left(w_{5,5}\right)=4$. Then their color codes are $c_{\Pi}\left(w_{1,1}\right)=(2,1,1,0,1), c_{\Pi}\left(w_{2,3}\right)=$ $(1,2,1,0,2), c_{\Pi}\left(w_{3,4}\right)=(3,1,2,0,1), c_{\Pi}\left(w_{4,6}\right)=(1,2,2,0,1)$ and $c_{\Pi}\left(w_{5,5}\right)=(1,2,3,0,1)$.

Case 5. Vertices with color 5 in $B_{60}^{(s)}$ for $1 \leq s \leq 5$. Without loss of generality, let $c\left(w_{1,14}\right)=c\left(w_{2,1}\right)=$ $c\left(w_{3,10}\right)=c\left(w_{4,9}\right)=c\left(w_{5,8}\right)=1$. Then their color codes are $c_{\Pi}\left(w_{1,14}\right)=(1,1,3,2,0), c_{\Pi}\left(w_{2,1}\right)=$ $(1,2,1,1,0), c_{\Pi}\left(w_{3,10}\right)=(4,2,2,1,0), c_{\Pi}\left(w_{4,9}\right)=(1,3,1,1,0)$ and $c_{\Pi}\left(w_{5,8}\right)=(1,2,2,1,0)$.
Graph $H=\cup_{s=1}^{5} B_{60}^{(s)}$ and its 5-locating coloring is given in Figure 1.

Figure 1. The 5-locating-chromatic coloring of $H=\bigcup_{s=1}^{5} B_{60}^{(s)}$.

4. CONCLUSIONS

In this paper, we modified the locating chromatic 5-coloring of one Buckminsterfullerene to construct the locating chromatic 5 -coloring of the disjoint union of the Buckminsterfullerene graphs, denoted by $H=$ $\mathrm{U}_{s=1}^{5} B_{60}^{(s)}$.

ACKNOWLEDGMENT

This paper is partially supported by Hibah Penelitian Tesis Magister DRTPM Diktiristek Kemdikbudristek No. 115/E5/PG.02.00.PL/2023 and No. 90/UN16.19/PT.01.03/2023.

REFERENCES

[1] Chartrand, G., Erwin, D., Henning, M.A., Slater, P.J., Zhang, P., 2002, The locating chromatic number of a graph, Bulletin of the Institute of Combinatorics and Its Applications Vol. 36: 89-101
[2] Diestel, R. 2017, Graph Theory, $5^{\text {th }}$ ed., Springer-Verlag New York Inc., New York
[3] Chartrand, G., Erwin, D., Henning, M.A., Slater, P.J., Zhang, P., 2003, Graphs of order n - 1, Discrete Mathematics Vol. 269(13): $65-79$
[4] Baskoro, E.T, Asmiati, A., 2013, Characterizing all trees with locating chromatic number 3, Electronic Journal of Graph Theory and Applications Vol. 1(2): 109-117
[5] Welyyanti, D., Baskoro, E.T., Simanjuntak, R., Uttunggadewa, S., 2013, On locating chromatic number of complete n-ary tree, AKCE International Journal of Graphs and Combinatorics Vol. 10(3): 309-315
[6] Syofyan, D.K., Baskoro, E.T., Assiyatun, H., 2016, Trees with certain locating chromatic number, Journal of Mathematical and Fundamental Sciences Vol. 48(1): $39-47$
[7] Asmiati, A., Assiyatun, H., Baskoro, E.T., 2011, Locating chromatic number of amalgamation of stars, ITB Journal of Science Vol. 43A(1): 1 - 8
[8] Asmiati, A., Yulianti, L., Widyastuti, C.I.T., 2018, Further Results on Locating Chromatic Number for Amalgamation of Stars Linking by One Path, Indonesian Journal of Combinatorics Vol. 2(1): 50-56
[9] Asmiati, A., Wamiliana, W., Devriyadi, D., Yulianti, L., 2017, On some petersen graphs having locating chromatic number four or five, Far East Journal of Mathematical Sciences Vol. 102(4): 769 - 778
[10] Asmiati, A., Yana, I.K.S.G., Yulianti, L., 2018, On the Locating Chromatic Number of Certain Barbell Graphs, International Journal of Mathematics and Mathematical Sciences Volume 2018: article ID 5327504
[11] Welyyanti, D., Baskoro, E.T., Simanjuntak, R., Uttunggadewa, S., 2014, The locating chromatic number of disconnected graphs, Far East Journal of Mathematical Sciences Vol. 94(2): 169-182
[12] Welyyanti, D., Simanjuntak, R., Utunggadewa, S., Baskoro, E.T., 2016, Locating chromatic number for a graph of two components, AIP Conf. Proc. 1707: 02002410.1063/1.4940825
[13] Welyyanti, D., Simanjuntak, R., Utunggadewa, S., Baskoro, E.T., 2018, Locating chromatic number for a graph of two homogenous components, IOP Conf Proc. 893: 012040
[14] Welyyanti, Putri, S.R., Azhari, M., Lestari, R., 2021, On locating chromatic number of disconnected graphs with path, cycle, stars or double stars as its Components. Journal of Physics: Conference Series 1742: 012020
[15] Zikra, F., D. Welyyanti, L. Yulianti, 2022, The Locating chromatic Number of Disjoint Union of Fan Graphs, Jurnal Matematika UNAND Vol. 11(3): 159 - 179
[16] Andova, V., Kardos, F., Skrekovsi, R., 2014, Fullerene Graphs and Some Relevant Graphs Invariant. in : Topics in Chemical Graph Theory, University of Kragujevac and Faculty of Science, Kragujevac, pp 39 - 54. Mathematical Chemistry Monographs. 978-86-6009-027-2
[17] Akhter, S., Farooq, R. Metric Dimension of Fullerene Graph. 2019. Electronic Journal of Graph Theory and Applications 7(1): pp 91-103
[18] Mehreen, N., Farooq, R., Akhter, S., 2018, On Partition Dimension of Fullerene Graphs, AIMS Mathematics 3(3): 343 - 352
[19] Kroto, H., Heath, J., O’Brien, S. et al. C60: Buckminsterfullerene. Nature 318, 162-163 (1985) https://doi.org/10.1038/318162a0
[20] Putri, A. H., L. Yulianti, D. Welyyanti, 2019, Dimensi Metrik dari Graf Buckminsterfullerene (in Bahasa), Jurnal Matematika UNAND Vol. 8(4): $91-100$
[21] Mardimar, K.K., Yulianti, L., Welyyanti, D., 2021, Bilangan kromatik lokasi dari graf Buckmisterfullerene B_{60} (in Bahasa), Jurnal Matematika UNAND Vol. 10(1): 159-163
[22] Putri, Y.S., L. Yulianti, Y. Yanita, 2021, On The Locating Chromatic Number Of Some Buckminsterfullerene-Type Graphs, IOP Conf Series: Journal of Physics: Conf Series 1836 (2021) 012005

[^0]: Copyright © 2024 Author(s)
 Journal homepage: https://ojs3.unpatti.ac.id/index.php/barekeng/
 Journal e-mail: barekeng.math@yahoo.com; barekeng.journal@mail.unpatti.ac.id
 Research Article - Open Access

