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 ABSTRACT   

Article History: 
In this research, we study a proficient computational model designed to simulate shallow 

flows involving one- and two-layer shallow flow. This numerical model is built upon the 

Saint Venant equations, which are widely used in hydraulics to depict the behavior of 

shallow water flow. The numerical scheme used here is constructed based on the 

conventional leapfrog technique implemented on a staggered grid framework, referred to 

as MCS. The primary objective of this research is to re-examine and implement the MCS in 

accurately modelling the free surface and interface waves produced by different flows 

passing through irregular geometries. Unlike the conventional MCS, we modify the 

momentum conservation principle to be more general, accommodating a non-negative wet 

cross-sectional area due to irregular geometry. We successfully conduct numerous 

numerical simulations by examining various scenarios involving one-layer and two-layer 

flow through irregularly shaped channels or structures. Our results show that the correct 

surface wave profile generated by a one-dimensional dam break through the triangular 

obstacle in the open channel can be simulated very well. Comparison with the existing 

experimental data seems promising although some disparities are being found due to 

dispersive phenomena with RMSE less than 5%. Furthermore, our scheme is successfully 

extended to simulate the steady sub-maximal exchange in two-layer flows using specific 

boundary conditions. The alignment between the submaximal numerical results with 

exchange flow theory is noticeable in the interface profile, characteristics of flow conditions 

and the flux values achieved when the steady situation occurs. These satisfying results 

indicate that our proposed numerical model can be used for practical needs involving 

various flow situations both one and two-layer cases  
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1. INTRODUCTION 

The Non-Linear Shallow Water Equation (NLSWE) stands as a versatile mathematical model with 

extensive applications across different fields. Its ability to capture the complex behaviors of fluid in shallow 

environments makes it invaluable in various engineering applications, from coastal and hydraulic engineering 

to understanding and mitigating risks associated with water-related disasters. One of the primary strengths of 

the NLSWE lies in its ability to represent and predict the dynamics of different phenomena. For instance, it 

proves useful in understanding internal wave generation within narrow straits [1][2][3]. These internal waves, 

often occurring in regions with varying depths, have significant implications for oceanographic processes and 

the distribution of water properties. Additionally, the NLSWE finds application in studying coastal 

phenomena [4] which encompass a range of dynamic processes along coastlines, including wave propagation, 

tides, and storm surges. Its utility extends to hydraulic flow scenarios [5][6][7], where the equation aids in 

modelling water flow within pipes, channels, or hydraulic systems, critical in various engineering designs. 

Furthermore, the equation's capability extends to understanding and predicting the behavior of water level 

generated from catastrophic events like hydro dam failures [8][9][10][11]. 

Extensive investigation has been carried out in order to obtained a solution to NLWSE. So far, only 

few accurate solutions to the NLSWE have been discovered, the majority of which describe basic flows in 

idealized situations [12]. This constitutes a significant barrier in terms of applications that no one has yet 

been able to overcome. As a result, it is necessary to developing robust and reliable model to solve NLSWE 

in real-world situations. 

Several authors have been conducted comprehensive research on numerical models for solving 

NLSWE, one of which is using the finite difference method. Recently there has been very rapid development 

in the use of finite difference such us; A Q-scheme of Roe upwinding [13], Lax-Fredrich [14], Lax-Wendroff 

[15], staggered conservative scheme [16], etc. Stelling and Duinmeijer [16], extend Arakawa C-grid [15], 

and allows the use of conservation of energy or momentum locally. In our previous work we focus only on 

the development of momentum conservative principle to approximate the advection term 

[4][17][18][19][20][21], which is the reason for the name of momentum conserving staggered-grid (MCS) 

scheme.  

The MCS employs by utilizing the conventional leapfrog technique implemented on a staggered grid 

framework. It discretizes the nonlinear aspects through a conservative approach. This means it employs 

methods that prioritize conservation, such as employing momentum-conserving approximations for handling 

advection terms within the momentum equation. Additionally, it utilizes upwind approximations for 

managing the nonlinear term in the mass continuity equation [19]. The method has been demonstrated to be 

explicit, effective, devoid of numerical damping, and doesn't necessitate a Riemann solver for flux 

calculation. Therefore, it is computationally efficient. 

Thus, the aim in this manuscript is to re-examine and implement the momentum-conserving staggered-

grid (MCS) scheme to address different problems within both single-layer and two-layer fluid systems. The 

process begins by outlining the governing equations for these systems in Section 2. This section lays the 

groundwork by defining the equations that govern the behavior of both the single-layer and two-layer fluid 

systems. Section 3 delves into a detailed revisit of the MCS scheme itself. In Section 4, the study proceeds to 

conduct benchmark tests. These tests involve comparing the computed results obtained using the MCS 

scheme with experimental data. The objective here is to evaluate and analyze how accurately the MCS scheme 

models and predicts the behavior of the fluid systems. This comparison helps in assessing the reliability and 

robustness of the scheme in practical scenarios. Finally, in Section 5, the discussion reaches its conclusion. 

This section summarizes the findings, draws conclusions from the benchmark tests, and includes overall 

remarks about the performance and effectiveness of the MCS scheme in addressing the complexities of the 

single-layer and two-layer fluid systems. It serves as the concluding part that encapsulates the key takeaways 

and insights obtained throughout the study. 

 

 

2. RESEARCH METHODS 

The research method used in this article combines literature reviews, case studies, quantitative 

methods, simulation and modelling. Initially, literature, including books, articles, and journals, is reviewed 
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(a) (b) 

to govern the behavior of fluid flows in shallow environments, such as irregularly shaped channels. This 

mathematical model is based on the Saint Venant equations (a variant of NLSWE), commonly used in 

hydraulics for shallow water flow in open channels. Next, a literature study was also carried out to choose an 

appropriate numerical method that was used to solve the case study to be discussed. A numerical model is 

then constructed using MATLAB software and the MCS algorithm to model the one- and two-layer fluid 

system and predict its behavior under various conditions. Quantitative methods are used to analyze the 

numerical results, aiming to match the comparative data. The comparative data for the one-layer fluid case is 

taken from a dam-break experiment [22], while the two-layer fluid case is based on sub maximal exchange 

theory on [23]. 

 

2.1 One Layer Shallow Flow 

In this part, we present the one-layer shallow model, which is used to simulate the free surface waves 

as sketched in Figure 1 (a). Suppose a fluid layer bounded below by a topography 𝑑(𝑥) and above by the 

free surface 𝜂(𝑥, 𝑡), flowing through an open channel with a rectangular cross-section. The motion of the free 

surface is governed by the one-layer Saint Venant equations given by the followings  

𝜕𝐴

𝜕𝑡
+

𝜕𝑄

𝜕𝑥
= 0 (1) 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑔

𝜕(ℎ + 𝑑)

𝜕𝑥
= 0 (2) 

 

The notations ℎ(𝑥, 𝑡) represents the fluid height, 𝑄(𝑥, 𝑡) is flux. Note that 𝑄(𝑥, 𝑡)  =  𝐴(𝑥, 𝑡)𝑢(𝑥, 𝑡), 
with 𝑢(𝑥, 𝑡) is the horizontal fluid velocity. Equation (1) and Equation (2) will be used for simulation of 
one-layer cases.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Sketch of Computational Domain and Notation; (a) for One-Layer; (b) for Two Layer. 

2.2 Two Layer Shallow Flow 

Suppose a fluid layer bounded below by a topography 𝑑(𝑥) and above by the free surface 𝜂(𝑥, 𝑡), 

flowing through an open channel with a rectangular cross-section. The fluids as sketched in Figure 1 (b), 

consist of two immiscible waters with different densities. The two-layer Saint Venant equations govern the 

motion of the free surface and interface given by the following set of equations. 

𝜕𝐴1

𝜕𝑡
+

𝜕𝑄1

𝜕𝑥
= 0 (3) 

𝜕𝑢1

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
+

1

𝜎

𝜕

𝜕𝑥
(ℎ1 + ℎ2) = 0 (4) 

𝜕𝐴2

𝜕𝑡
+

𝜕𝑄2

𝜕𝑥
= 0 (5) 

𝜕𝑢2

𝜕𝑡
+ 𝑢2

𝜕𝑢2

𝜕𝑥
−

𝜕ℎ1

𝜕𝑥
+

1

𝜎

𝜕

𝜕𝑥
(ℎ1 + ℎ2 + 𝑑) = 0 (6) 
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where 𝜎 =  1 − 𝑟 and 𝑟 = 𝜌1/𝜌2 is the ratio of the densities. In the above equations, variables 𝑄𝑖 = 𝐴𝑖𝑢𝑖 

represent the discharge for each layer whereas 𝐴𝑖 denote the wet cross-sectional area of each layer. The 

Equation (3) - Equation (6) is the depth average of Euler equations written in the form of balance laws, 

applicable for nearly horizontal flows, which are hydrostatic, and frictionless. Further, we will use the 

following relation 𝜂1 = ℎ1 + ℎ2 and 𝜂2 = ℎ2 + 𝑑. The Equation (3) - Equation (6) will be used for 

simulation of two-layer cases.  

 

2.3 Numerical Scheme 

In this subsection, we revisit MCS scheme as discussed in [17], [18] to solve both one layer and two-

layer model. The MCS scheme is basically a leapfrog method applied in staggered grid framework where the 

momentum-conservative principle, proposed by Stelling and Duinmeijer [16], are used to discretized the 

advective (non-linear) term.  

Suppose the spatial domain −𝐿 ≤  𝑥 ≤  𝐿 is uniformly discretized by half-step partition intervals, 

resulting in a staggered grid domain with partition points: 

−𝐿 =  𝑥1
2

, 𝑥1,· · · , 𝑥
𝑗−

1
2

, 𝑥𝑗 , 𝑥
𝑗+

1
2

,· · · , 𝑥
𝑁+

1
2

 =  𝐿 

with 𝑁 =
2𝐿

∆𝑥
. This staggered arrangement allows us to alternately calculate the unknown variables on 

adjacent grid points. Thus, the numerical approximation for one-layer cases in Equation (1) and Equation 

(2) read as, 

𝑑𝐴𝑗
𝑛

𝑑𝑡
+

𝑄
𝑗+

1
2

𝑛 − 𝑄
𝑗−

1
2

𝑛

Δ𝑥
= 0 (7) 

𝑑𝑢
𝑗+

1
2

𝑛

𝑑𝑡
+ (𝑢𝜕𝑥𝑢)

𝑗+
1
2

𝑛 + 𝑔 (
𝜂𝑗+1

𝑛+1 − 𝜂𝑗
𝑛+1

Δ𝑥 
) = 0 (8) 

 

where 𝜂𝑗  =  ℎ𝑗  + 𝑑𝑗 . The numerical flux 𝑄 𝑗+1/2
𝑛  can be approximated by upwind method that will be 

described later as well as the advective term (𝑢𝜕𝑥𝑢). The fully discrete scheme of Equation (7) and Equation 

(8) can be obtained by using a standard ODE solver w.r.t of time 𝑡 variable. 

Furthermore, there are many numerical techniques to approximate the advective term (𝑢𝜕𝑥𝑢), 

meanwhile, here we adopt the momentum conservative principle first proposed in [16] 

(𝑢𝜕𝑥𝑢) =
1

ℎ
(𝑄𝑢)𝑥 − (𝑢𝑄𝑥) (9) 

 

Since the channel wall is irregular involving non-negative wet-cross sectional area 𝐴, rather than using the 

conventional momentum conservative principle as in [24], [25], here we modify the Equation (9) to get the 

discrete approach of modified momentum conservative principle as given by the following 

(𝑢𝜕𝑥𝑢)
𝑗+

1
2

𝑛 =
1

�̅�
𝑗+

1
2

𝑛 (
�̅�𝑗+1

𝑛 𝑢𝑗+1
𝑛

⬚
∗ − �̅�𝑗

𝑛 𝑢𝑗
𝑛

⬚
∗

Δ𝑥
− 𝑢

𝑗+
1
2

𝑛
�̅�𝑗+1

𝑛 − �̅�𝑗
𝑛

Δ𝑥
) (10) 

where the quantity ℎ̅𝑗+1/2
𝑛 , �̅�𝑗+1

𝑛  𝑢𝑗
𝑛

⬚
∗  and will be discussed later below. 

If we generalized the same momentum-conservative principle in two-layer system as in [18], then 

Equation (10) can be generalized into the following approximation 

(𝑢𝑖𝜕𝑥𝑢𝑖)
𝑗+

1
2

𝑛 =
1

�̅�
𝑖,𝑗+

1
2

𝑛 (
�̅�𝑖,𝑗+1

𝑛 𝑢𝑖,𝑗+1
𝑛

⬚
∗ − �̅�𝑖,𝑗

𝑛 𝑢𝑖,𝑗
𝑛

⬚
∗

Δ𝑥
− 𝑢

𝑖,𝑗+
1
2

𝑛
�̅�𝑖,𝑗+1

𝑛 − �̅�𝑖,𝑗
𝑛

Δ𝑥
) (11) 

for 𝑖 = 1,2. 
Suppose we apply the same staggered arrangement as before, then we can approximate the unknown 

variables alternately on adjacent grid points. Thus, the fully discrete scheme for two-layer shallow flows as 

given below 
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𝐴1,𝑗
𝑛+1 − 𝐴1,𝑗

𝑛

Δ𝑡
+

𝑄1,𝑗+1/2
𝑛 − 𝑄1,𝑗−1/2

𝑛

Δ𝑥
= 0   (12) 

𝑢1,𝑗+1/2
𝑛+1 − 𝑢1,𝑗+1/2

𝑛

Δ𝑡
+ (𝑢𝜕𝑥𝑢)𝑗+1/2

𝑛 +
1

𝜎

𝜂1,𝑗+1
𝑛+1 − 𝜂1,𝑗

𝑛+1

Δ𝑥 
= 0 (13) 

𝐴2,𝑗
𝑛+1 − 𝐴2,𝑗

𝑛

Δ𝑡
+

𝑄2,𝑗+1/2
𝑛 − 𝑄2,𝑗−1/2

𝑛

Δ𝑥
= 0   (14) 

𝑢2,𝑗+1/2
𝑛+1 − 𝑢2,𝑗+1/2

𝑛

Δ𝑡
+ (𝑢𝜕𝑥𝑢)𝑗+1/2

𝑛 −
ℎ1,𝑗+1

𝑛+1 − ℎ1,𝑗
𝑛+1

Δ𝑥 
+

1

𝜎

𝜂1,𝑗+1
𝑛+1 − 𝜂1,𝑗

𝑛+1

Δ𝑥 
= 0 (15) 

where 𝜂1,𝑗  =  ℎ1,𝑗  + ℎ2,𝑗 + 𝑑𝑗. The later expression in Equation (12) - Equation (15) are obtained after 

using Euler Explicit w.r.t time derivative. 

Furthermore, the upwind approximation for the fluxes 𝑄𝑖,𝑗+1/2
𝑛  is given by the following 

𝑄𝑖,𝑗+1/2
𝑛 = ℎ𝑖,𝑗+1/2

𝑛
⬚
∗  𝑢𝑖,𝑗+1/2

𝑛  
𝑄𝑖,𝑗+1/2

𝑛
⬚
∗ = {

𝑄𝑖,𝑗+1
𝑛 , 𝑢𝑖,𝑗+1/2

𝑛 < 0

𝑄𝑖,𝑗
𝑛 , 𝑢𝑖,𝑗+1/2

𝑛 ≥ 0
.   (16) 

Whereas all other variables are calculated accordingly, as follows 

�̅�𝑖,𝑗
𝑛 =

𝐴𝑖,𝑗+1
𝑛 + 𝐴𝑖,𝑗

𝑛

2
 �̅�𝑖,𝑗

𝑛 =
𝑄𝑖,𝑗+1/2

𝑛 + 𝑄𝑖,𝑗−1/2
𝑛

2
   (17) 

𝑢𝑖,𝑗
𝑛

⬚
∗ = {

𝑢𝑖,𝑗−1/2
𝑛 , �̅�𝑖,𝑗

𝑛 ≥ 0

𝑢𝑖,𝑗+1/2
𝑛 ,, �̅�𝑖,𝑗

𝑛 < 0
,   for 𝑖 = 1,2. (18) 

The upwind approximation in Equation (16) is direct generalization of upwind for one layer. 

When simulating the dam-break, dry area conditions are frequently occurred. To avoid the instability 

situation, we will use a basic wet-dry approach [26], [27] in conjunction with a thin layer technique [19]. 

Thus, we resume here, the MCS scheme for the one-layer shallow flow is Equation (7) - Equation (8) 

whereas for the two-layer shallow flow is Equation (12) - Equation (15) 

 

3. RESULT AND DISCUSSION 

3.1 One Layer Shallow Flows 

In this section we simulate a dam-break flow cases taken from [22]. A dam-break laboratory 

experiment is conducted in a rectangular horizontal channel, consist of a triangle obstruction as depicts in 

Figure 2. The channel dimensions are the following: 5.60 m long, 0.5 m wide, and 0.11 m high. The water 

barrier (gate) is situated 2.39 m upstream to produce a fluid reservoir, which is initially filled with water and 

has a height of ℎ0  =  0.111m. The triangle bottom obstruction with a height of 0.065 m, a length of 0.9 m, 

and bed slopes of 0.14 is placed 1.61m from the gate, forming a still water pool downstream of the channel. 

The downstream pool is 0.02m high at the right border is hard-wall. The simulations are conducted with; wet-

dry threshold =  0.0001, thin film tolerance =  0.0001, spatial step ∆𝑥 =  0.025, and CFL-like condition 

=  0.1. Initial condition for simulations is as follows: initial velocity 𝑢(𝑥, 0)  =  0, initial flux 𝑄(𝑥, 0)  =  0. 
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Figure 2. Dam-break experiment configurations across the triangle bottom obstacle. The top view of the 

channel, as well as the positions of the three gauges, are denoted by crosses: G1 (blue), G2 (magenta), and 

G3 (brown), which have been redrawn from [22]. 

The simulation results from our numerical approach (red) were shown alongside the experimental data 

(green) for the three-gauge sites plotted in Figure 3 for Gauge 1-3 respectively. The experimental data can 

be found in [22]. The time series plot of water levels shows that the MCS scheme accurately predict the 

surface wave profile with RMSE ≤ 5% and can anticipate the arrival of the shock fronts with sufficient 

accuracy, which is consistent with the experimental results in [22]. However, our model did not account for 

dispersive phenomena, considerable disparities were seen at Gauges 3, particularly in places where some 

hydraulic jump occurred. These disparities are also obtained in [24] which indicated that the model used was 

a hydrostatic without accommodating non-hydrostatic terms, thus inspiring us to recommend using the 

appropriate non-hydrostatic models as in our other published research on [28]. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a)  
 

(b) 

 

 
(c) 

Figure 3. Time series plot of water levels, recorded at three gauges, data from experimental (green), numerical 

(red) for simulation with bottom triangular obstacles. (a) Gauge 1 G1, (b) Gauge 2 G2, and (c) Gauge 3 G3. 
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3.2 Two Layer Shallow Flows 

In this section we simulate a steady sub-maximal exchange flow taken from [23]. Suppose we consider 

a rectangular channel with spatial domain 𝑥 ∈ [−3, 3]. Here, the bottom topography is given by the following.  

𝑑(𝑥) = {0.5 − 0.125 (cos
𝜋𝑥

2
+ 1)

2

,  |𝑥| ≤ 2

0.5,                                                otherwise
 , (19) 

Suppose the following parameters are used for computational simulation; ratio of the density 𝑟 =
 0.9784, the spatial and temporal step size of ∆𝑥 =  0.01 and ∆𝑡 =  0.0005, respectively. We consider the 

two-layer fluid system is initially steady-at rest with conditions; initial heights ℎ1(𝑥, 0)  =  1, ℎ2(𝑥, 0)  =
 0.5, with zero velocities 𝑢1(𝑥, 0)  =  0, 𝑢2(𝑥, 0)  =  0. Further, we assume that the fluids in the upper and 

lower layers are moving in opposite directions or the flux ratio are 𝑞𝑟  = |𝑄1/𝑄2| = 1. If we adopt the 

following boundary  

 

h1(−3, t) =  0.2370,  q1(3, t) =  −0.1979 , q2(−3, t)  =  0.1979, (20) 

then, the initial two-layer system will undergo an adjustment process towards a steady state condition.  
 

Figure 4. Sub-maximal exchange flow. From left to the right denoted water level evolution at subsequent 

time 𝒕 = 𝟎. 𝟐𝟓, 𝒕 = 𝟎. 𝟕𝟓, 𝒕 = 𝟎. 𝟖𝟓, 𝒕 = 𝟏. The flow condition plotted below are indicated composite Froude 

number (black circle) and shear (green line) along spatial domain x.  

 

Under the influence of boundary conditions Equation (21), the interface is deformed and eventually 

develops into equilibrium, as depicted in Figure 4. As seen in Figure 4, the interface is higher than other 

areas on the left (upstream) side of the sill. The interface is distorted just above the sill and generates an upper 

convex shape due to the sill profile. In the downstream part, the interface gradually declines. Meanwhile the 

free surface is relatively flat during evolution. The horizontal velocity of the fluid in the two-layer system is 

depicted by the density color map. The blue color in the upper layer indicates that the fluid is flowing to the 

left (negative value on the color scale). Meanwhile, the yellow color at the bottom indicates that the fluids 

are going in another direction (to the right). In Figure 4 (below), the flow conditions are plotted. We observe 

the variation of the composite Froude number 𝐺2 ≡ 𝐹1
2 +  𝐹2

2 =
𝑢1

2

𝑔′ℎ1
+

𝑢2
2

𝑔′ℎ2
 at subsequent times until a steady 

state is reached at 𝑡 = 1 (see Figure 4). The Froude number is one just above the sill at 𝑥 = 0 and on the far-

left side at approximately 𝑥 ≈ −2. These two locations, where 𝐺2 ≈ 1, are referred to as control. During the 

evolution, the Froude number over the sill gradually changes, and the value 𝐺2 ≈ 1 is not maintained, 

indicating that control over the sill is lost. Additionally, the shear parameters 𝑆 =
(𝑢1−𝑢2)2

𝑔′(ℎ1+ℎ2)
 of the flow 

conditions are less than 1 on both the right and left sides of the sill. Further, the flux at steady condition 

|q1s| =  q2s = 0.1979 which is less than threshold value of maximal exchange fluxes 𝑞 = 0.2081, see [23] 

for detailed description. This circumstance suggests that a steady state in the form of an sub-maximal 

exchange flow without sill control has been achieved, see [23]. Furthermore, the free surface remains flat at 

a constant height equal to one. 
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4. CONCLUSIONS 

We have successfully re-examined and implemented the MCS scheme as a computational model to solve 

various cases involving one and two-layer shallow flows. The study emphasizes the robustness of their 

computational technique in handling complex flow scenarios, demonstrating its ability to effectively replicate 

the generation and propagation of free surface waves due to the dam-break in one layer and sub-maximal 

behavior in a two-layer fluid system. The capability of our scheme is validated by conducting numerous 

numerical simulations, examining various scenarios involving one-dimensional dam-break through triangular 

obstacles in open channels and steady sub-maximal exchange. The simulation results show good agreement 

with the experimental data and the theoretical aspect as in the literature. This satisfying assessment indicates 

that our proposed numerical model is not only powerful but also efficient, meaning it provides accurate results 

without unnecessary computational overhead. This alignment between simulated and experimental or 

theoretical aspects underscores the accuracy and reliability of our scheme. Furthermore, the MCS scheme is 

suitable for practical needs involving various flow situations both one- and two-layer cases.  
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