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 ABSTRACT  

Article History: 
In a research study, population data are often not available, so the population parameter is 

unknown. Meanwhile, knowledge about the population parameter is needed to know the 

characteristics of the studied population. Therefore, it is needed to estimate the parameter of the 
population which can be estimated by sample data. There are several methods of parameter 

estimation which are generally classified into classical and Bayesian method. This research 

studied the Bayesian parameter estimation method to determine the parameters of the 

exponentially distributed survival data associated with the reliability measure of the estimates 
under symmetric and asymmetric loss functions for complete sample data in a closed form. The 

symmetric loss functions used in this research are Squared Error Loss Function (SELF) and 

Minimum Expected Loss Function (MELF). The asymmetric loss functions used are the General 

Entropy Loss Function (GELF) and Linex Loss Function (LLF). Performance of some loss 
functions used in this research are then compared through numerical simulation to select the 

best loss function in determining the parameter estimation of the exponentially distributed 

survival data. We also studied which loss function is best for underestimation and overestimation 
modeling. Based on simulation results, the Bayes estimates using MELF is the best method to 

estimate population parameters of the exponentially distributed survival data for the 

overestimation modeling, while LLF is the best for the underestimation modeling. We provided 

direct application in a case study of fluorescence lamp survival data. The results show that the 

best method to estimate the parameter 𝜃 of the standard fluorescence life data is using LLF for 

underestimation with �̂�𝐿 = 0.480173 and MELF for overestimation with �̂�𝑀 = 0.410872. 
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1. INTRODUCTION 

In statistics, the expected conclusion of a study is the conclusion for a wide scope, i.e., population. 

However, it isn't easy to obtain the population data, so we use sample data as the population subset. Based on 

that fact, the characteristic of the population called parameter is also unknown; therefore, it can be estimated 

using sample data. In estimation theory, the characteristics of the sample data that can describe population 

characteristics are known as the estimator of a population parameter. 

Estimation of population parameters can be done using some methods; the simplest method is a method 

of moment introduced by Karl Pearson in 1800 [1]. The second method is the maximum likelihood estimation 

method. The method is used to estimate the value of the population parameter if the distribution of the 

population is known. The other method is the Bayesian method, which is fundamentally different from the 

previous methods. Bayesian method has a prior distribution as the subjective distribution, which is then 

adjusted to the sample information. The result is referred to as posterior distribution. 

One of the data whose population parameters are interesting to estimate is lifetime/survival data. 

Lifetime is the observed time interval of an individual when first entering into observation until it is out of 

observation. Survival function distribution based on a certain knowledge or assumption about its population 

distribution is included in the parametric function. Some population distributions that can be used to describe 

lifetime data are Exponential distribution, Weibull distribution, Gamma distribution, Rayleigh distribution, 

etc [2]. Furthermore, the Exponential model is one of the most important models in lifetime data analysis 

[3]– [5]. The exponential distribution is crucial in survival data modeling due to its constant hazard rate, lack 

of memory property, ease of mathematical analysis, and widespread use in survival analysis methods like 

Cox proportional hazards regression. Its constant hazard rate makes it suitable for scenarios where the risk of 

an event remains constant over time. Moreover, its memoryless property simplifies modeling where events 

occur randomly and independently of past occurrences. Mathematically, it offers simple analysis with readily 

computable probability density and cumulative distribution functions. Despite not always perfectly fitting 

survival data, it serves as a foundational assumption in survival analysis, providing valuable insights and a 

starting point for more complex models [21], [22]. 

The loss function in Bayesian inference measures how well a statistical model or parameter estimation 

produced by Bayesian approaches predicts or reconstructs the observed data. This loss function allows for a 

qualitative assessment of the estimation quality by considering the deviation between the observed values 

and those predicted by the model. Thus, the optimal model selection or parameter estimation can be achieved 

by minimizing the resulting loss [23]. Some loss functions are popular in modeling survival analysis using 

the Bayesian method, such as squared error loss function [6], minimum expected loss function [7]–[9], 

weighted minimum expected loss function [10], general entropy loss function [9], [11]–[13], linex loss 

function [9], [12], [14]–[17]. Various results have been derived from the estimation using the previously 

mentioned loss functions. In general, squared error loss function is the simplest loss function in Bayesian 

modeling. It has been shown that the asymmetric loss functions defined by [6] are more appropriate than the 

typical squared error loss function. Another study showed that minimum expected loss function estimator has 

smaller root mean squared errors than ordinary Bayes and maximum likelihood estimators [7], [8]. Many 

studies also showed that Bayes estimators perform well under asymmetric loss functions, such as general 

entropy loss function and linex loss function, when underestimation is more serious than overestimation [9], 

[12], [13]. Each of the previous studies conducts a partial comparison to compare the loss function, such as 

only comparing the squared error loss function and general entropy loss function, squared error loss function, 

and linex loss function, etc. Therefore, in this research, we try to compare two symmetric and two asymmetric 

loss functions for complete sample data in a closed form and study the best estimator for each underestimation 

and overestimation modeling. We also provide the direct application using fluorescence lamp survival data. 

 

2. RESEARCH METHODS  

2.1 Exponentially Distributed Survival Data 

The survival data function, often referred to as the survival function, represents the probability that an 

event of interest (such as death, failure, or any other outcome) has not occurred by a certain time point. It 

gives an estimate of the proportion of individuals or units in a population that has survived up to a given time. 
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The survival function is a fundamental concept in survival analysis, a branch of statistics dealing with time-

to-event data [21], [22]. In this study, we used exponentially distributed survival data. Exponential 

distribution is widely used in the field of Statistics, especially in the reliability and queue theory. Exponential 

distribution is a special form of Gamma distribution with 𝛼 = 1 and 𝛽 =
1

𝜃
 . Its probability density function 

is defined by 

𝑓(𝑥, 𝜃) = 𝜃 𝑒−𝑥 𝜃 , 𝑥 ≥ 0 (1) 

where 𝜃 is the rate of exponential distribution or the hazard value [18]. The hazard function itself is a 
fundamental concept in survival analysis that describes the instantaneous rate of occurrence of an event (such 
as death or failure) at time 𝑡, given that the individual or unit has survived up to time 𝑡 [21], [22]. 

Furthermore, parameter 𝜃 of the exponentially distributed survival data is assumed to follow Gamma 

distribution with parameter 𝛼 and 𝛽. The distribution of the parameter in such kind of Bayesian method is 

called a conjugate prior distribution defined by 

𝜋(𝜃) =
1

Γ (𝛼)𝛽𝛼  𝜃𝛼−1 𝑒
−

𝜃
𝛽 (2) 

where 𝛼 is a complex number whose real part is positive and Γ (𝛼) is a gamma function defined by 

Γ (𝛼) =  ∫ 𝑥𝛼−1 𝑒−𝑥
∞

0

 𝑑𝑥, 𝛼 > 0 (3) 

 

2.2 Bayesian Estimation Method 

In classical approach, parameter 𝜃 is a fixed quantities whose value is unknown. In the Bayesian 

approach, it is considered a quantity whose variation is described by a probability distribution (prior 

distribution). This is a subjective distribution based on the researcher’s beliefs and is formulated before the 

sample data is taken. The adjustment of the prior distribution is called the posterior distribution. This 

adjustment is made using Bayes rules [1] given by 

𝑓𝑋|𝑌(𝑥|𝑦) =
𝑓𝑌|𝑋(𝑦|𝑥)𝑓𝑋(𝑥)

𝑓𝑌(𝑦)
  (4) 

The population parameter can be estimated in Bayesian estimation by minimizing the risk factor using 

a certain loss function. In this study, we use two types of loss functions: symmetric and asymmetric. The 

symmetric loss functions used in this study are the Squared Error Loss Function (SELF) and Minimum 

Expected Loss Function (MELF), while the asymmetric loss functions used are the General Entropy Loss 

Function (GELF) and Linex Loss Function (LLF). The four loss functions are given by 

𝐿(𝜃, 𝜃𝑆) = (𝜃𝑆 − 𝜃)
2
 ,     0 < 𝜃 < ∞ (5) 

𝐿(𝜃, 𝜃𝑀) = 𝑤(𝜃𝑀 − 𝜃)
2
,     0 < 𝜃 < ∞ (6) 

𝐿(𝜃, 𝜃𝐺) = (
𝜃𝐺

𝜃
) − 𝛼1 ln (

𝜃𝐺

𝜃
) − 1,     0 < 𝜃 < ∞,𝛼1 ≠ 0 (7) 

𝐿(𝜃, 𝜃𝐿) = exp[𝛼2(𝜃𝐿 − 𝜃)] − 𝛼2(𝜃𝐿 − 𝜃) − 1,      0 < 𝜃 < ∞,𝛼2 ≠ 0 (8) 

 

 

3. RESULTS AND DISCUSSION 

3.1 Posterior Distribution 

Let 𝑋 is a survival data follows Exponential distribution with parameter 𝜃. In Bayesian analysis, 

parameter 𝜃 is considered to follow a certain distribution known as prior distribution. In this case, Gamma 
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distribution is chosen as the conjugate prior distribution for Exponential distribution with parameter 𝛼 and 𝛽. 

By matching the mean and variance of Gamma distribution with the mean and variance of Exponential 

distribution, we obtain 𝛼 = 1 and 𝛽 = �̅�. The posterior distribution can be determined by multiplying the 

prior distribution with the sample information obtained from its likelihood, and the prior is independent of 

the likelihood [19]. The likelihood function is obtained as below 

𝑓(�̃�|𝜃) = Π𝑖=1
𝑛  𝑓(𝑥, 𝜃)  = 𝜃𝑛 𝑒−∑ 𝑥𝑖 𝜃

𝑛
𝑖=1   (9) 

The joint probability function of �̃� and 𝜃 is obtained by multiplying Equation (9) and the prior 

distribution as in Equation (2) so that 

𝑓(�̃�, 𝜃) =  𝑓(�̃�|𝜃) ⋅ 𝜋(𝜃)  =  𝑒
−𝜃(∑ 𝑥𝑖 +

1
𝛽

 𝑛
𝑖=1 )

 
𝜃𝑛+𝛼−1

Γ (𝛼)𝛽𝛼   (10) 

While the probability density function of the marginal distribution of �̃� is 

𝑚(�̃�)  = ∫ 𝑓(�̃�, 𝜃) 𝑑𝜃 
∞

−∞

=
Γ(𝑛 + 𝛼)

Γ(𝛼)𝛽𝛼 (∑ 𝑥𝑖  +
1
𝛽

𝑛
𝑖=1 )

𝑛+𝛼

  

  
(11) 

By using Equation (10) and the Bayes rules from Equation (4), the posterior distribution is obtained as 

follows 

𝜋(𝜃|�̃�)  =
𝑓(�̃�|𝜃)𝜋(𝜃)

𝑚(�̃�)
 =

𝑒
−(∑ 𝑥𝑖+

1
𝛽

𝑛
𝑖=1 )

 𝜃𝑛+𝛼−1

Γ(𝑛 + 𝛼)(
1

∑ 𝑥𝑖  +
1
𝛽

𝑛
𝑖=1

) 

, 𝜃 > 0  

(12) 

Therefore, the posterior distribution of 𝜃|�̃� follows Gamma distribution with parameter 𝛼∗  =  𝑛 + 𝛼 

and 𝛽∗  =
1

∑ 𝑥𝑖 +
1

𝛽
𝑛
𝑖=1

 . 

 

3.2 Bayesian Estimates using Symmetric and Asymmetric Loss Functions 

In this section, we determined Bayesian estimates of exponentially distributed survival data for 

complete sample data using symmetric and asymmetric loss functions as in Equation (5) to Equation (8). 

Unlike any other research which solves the estimation using numerical method, we obtained the estimation 

in a closed form. Bayesian estimator of 𝜃 can be obtained by minimizing the expectation of the loss function 

with respect to the estimator 𝜃 as follows 

𝑑

𝑑 𝜃
(𝐸 (𝐿(𝜃, 𝜃))) = 0  (13) 

 

3.2.1 Bayesian Estimates using Symmetric Loss Functions 

We used two types of symmetric loss functions, i.e., Squared Error Loss Function (SELF) and 

Minimum Expected Loss Function (MELF). Squared Error Loss Function (SELF) is a symmetric loss 

function used to minimize the risk factor in Bayesian estimates, where the formula of SELF is referred to 

Equation (5). By assuming that both positive and negative errors are serious and the Bayesian estimator of 

𝜃 using this function is notated by 𝜃𝑆, the estimator is obtained by minimizing the expectation of the SELF 

with respect to 𝜃𝑆, using Equation (13). With some calculations, the Bayesian estimator for 𝜃 using the SELF 

approach is obtained as 

𝜃𝑆 = 𝐸(𝜃) (14) 

Therefore, the closed form of 𝜃𝑆 is 
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𝜃𝑆 = 𝐸(𝜃) = ∫ 𝜃 𝑓(𝜃) 𝑑𝜃
∞

0

=
𝑛 + 𝛼

∑ 𝑥𝑖 +
1
𝛽

𝑛
𝑖=1

 
(15) 

The second type of symmetric loss function is MELF. Minimum Error Loss Function (MELF) is a 

symmetric loss function used to minimize the risk factor in Bayesian estimates, where the formula of MELF 

is referred to Equation (6) where 𝑤 is a weighting function. For 𝑤 = 1, the loss function is referred to the 

SELF formula. In this study, we used 𝑤 = 𝜃−2 [7], so that Equation (6) become 

𝐿(𝜃, 𝜃𝑀) =
(𝜃𝑀 − 𝜃)

2

𝜃2  (16) 

𝜃𝑀 is Bayesian estimator of 𝜃 using MELF approach. By using Equation (13), Bayesian estimator 𝜃𝑀 

is obtained 

𝜃𝑀 =
𝐸 (

1
𝜃
)

𝐸 (
1
𝜃2)

 (17) 

From Equation (17), we determined the value of the numerator and denominator as follows 

𝐸 (
1

𝜃
) = ∫

1

𝜃
 𝑓(𝜃) 𝑑𝜃

∞

0

=
(∑ 𝑥𝑖 +

1
𝛽

𝑛
𝑖=1 )

(𝑛 + 𝛼 − 1)
 (18) 

𝐸 (
1

𝜃2
) = ∫

1

𝜃2
 𝑓(𝜃) 𝑑𝜃

∞

0

=
(∑ 𝑥𝑖 +

1
𝛽

𝑛
𝑖=1 )

2

(𝑛 + 𝛼 − 1)(𝑛 + 𝛼 − 2)
 

(19) 

Therefore, substitute Equation (18) and Equation (19) into Equation (17), we obtained the closed 

form of 𝜃𝑀, i.e. 

𝜃𝑀 =
𝑛 + 𝛼 − 2

∑ 𝑥𝑖 +
1
𝛽

𝑛
𝑖=1

 
(20) 

 

3.2.2 Bayesian Estimates using Asymmetric Loss Functions 

We used the General Entropy Loss Function (GELF) and Linex Loss Function (LLF) for the 

asymmetric loss functions. In some estimations using the symmetric loss function, it was found that some 

matters, like the assumption, are unsuitable. Over-estimation may be more serious than under-estimation 

otherwise. In this situation, the asymmetric loss function is considered more accurate. General Entropy Loss 

Function (GELF) is one of the types of asymmetric loss functions [20] with the formula given by Equation 

(7) where parameter 𝛼1 represents asymmetric deviation. By using Equation (13), the Bayesian estimator 𝜃𝐺 

is obtained as follows 

𝜃𝐺 = (𝐸(𝜃−𝛼1))
−

1
𝛼1 (21) 

The value of 𝐸(𝜃−𝛼1) in Equation (21) is given by 

𝐸(𝜃−𝛼1) = ∫ 𝜃−𝛼1 𝑓(𝜃) 𝑑𝜃
∞

0

=
Γ(𝑛 + 𝛼 − 𝛼1)

Γ(𝑛 + 𝛼) (∑ 𝑥1 +
1
𝛽

𝑛
𝑖=1 )

−𝛼1
 

(22) 

Therefore, the closed form of Bayesian estimator 𝜃𝐺 is obtained by substituting Equation (22) into 

Equation (21) 

𝜃𝐺 = (
Γ(𝑛 + 𝛼 − 𝛼1)

Γ(𝑛 + 𝛼)
)

−
1
𝛼1

(
1

∑ 𝑥𝑖 +
1
𝛽

𝑛
𝑖=1

) (23) 
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The second type of the asymmetric loss function used in this paper is LLF. Linex Loss Function (LLF) 

is the abbreviation of Linear Exponential Loss Function and the other type of asymmetric loss function. The 

formula of LLF is given by Equation (8), where parameter 𝛼2 is used to determine the form of the linex loss 

function. When the estimation error 𝜃 = 𝜃 is in interval -1 to 1, it can be seen that for |𝛼2|  =  1, the function 

is asymmetric. By using Equation (13), Bayesian estimator of 𝜃𝐿 is obtained as 

𝜃𝐿 =
− ln𝐸(𝑒−𝛼2𝜃)

𝛼2
 (24) 

The value of 𝐸(𝑒−𝛼2𝜃) in Equation (24) is given by 

𝐸(𝑒−𝛼2𝜃) = ∫ 𝑒−𝛼2𝜃𝑓(𝜃) 𝑑𝜃 
∞

0

=

[
 
 
 
(

1

∑ 𝑥𝑖 +
1
𝛽

𝑛
𝑖=1

)

𝑛+𝛼

(∑𝑥𝑖 +
1

𝛽
+ 𝛼2

𝑛

𝑖=1

)

𝑛+𝛼

]
 
 
 
−1

 (25) 

Therefore, the closed form of Bayesian estimator 𝜃𝐿 is obtained by substituting Equation (25) into 

Equation (24), i.e., 

𝜃𝐿 = −
𝑛 + 𝛼

𝛼2
ln(

∑ 𝑥𝑖 +
1
𝛽

𝑛
𝑖=1

∑ 𝑥𝑖 +
1
𝛽

+ 𝛼2
𝑛
𝑖=1

) (26) 

 

3.3 Simulation  

In this section, we conducted a simulation for parameter estimation using the Bayesian method under 

symmetric and asymmetric loss functions and compared the results of the two approaches to obtain the 

characteristics of each approach. 

3.3.1 Simulation of Bayesian Estimates using Symmetric Loss Functions 

In the simulation using SELF and MELF approach, we generated exponentially distributed data with 

𝜃 = 1 and 𝛼 = 1 with various number of samples 𝑛. The result of the simulation is given by Figure 1. 

 

Figure 1. Bayesian Estimates using SELF and MELS Approaches 

Figure 1 shows that as the number of 𝑛 increases, the value of the two estimators 𝜃 will get closer to 

the actual 𝜃. This means that the larger the sample size used, the better the estimated parameter will get and 
the closer it is to the actual value of the parameter. In other words, the loss value is close to zero. Figure 2 
shows the loss value of SELF and MELF. 
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Figure 2. Loss Value of SELF and MELF 

Based on Figure 1 and Figure 2, we concluded that MELF is good for over-estimation, while SELF 

is good for under-estimation. 

3.3.2 Simulation of Bayesian Estimates using Asymmetric Loss Function 

In the simulation using GELF, we generated exponentially distributed data with 𝜃 = 1, 𝛼1 =
−2,−1,1,2 with various number of 𝑛. The weakness of this method is the limited size of 𝑛 which can be 

used, this is because there is factorial operation in the GELF formula which makes the calculation limited in 

the number of samples used. The result of the estimation is shown in Figure 3. 

 

Figure 3. Bayesian Estimates using GELF 

Based on Figure 3, the larger the value of 𝑛, the better the estimation of 𝜃. The estimation using 𝛼1 =
−1 or 𝛼1 = 1 gives smaller loss value than using 𝛼1 = −2 or 𝛼1 = 2. This is supported by the loss value of 

GELF approach for various value of 𝛼1 which is given by Figure 4. 
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Figure 4. Loss Value of GELF 

The value of 𝛼1 > 0 gives good results for over-estimation and 𝛼1 < 0 gives good results for under-

estimation. 

The second simulation using asymmetric loss function is the simulation using LLF approach. In this 

simulation, we generated exponentially distributed data with 𝜃 = 1, 𝛼2 = −0.25,−0.1,0.1,0.25 with various 

number of 𝑛. Unlike GELF approach, the sample size of 𝑛 in this approach is unlimited. The result of the 

estimation is given by Figure 5. 

 

Figure 5. Bayesian Estimates of LLF 

Based on Figure 5, we can see that the larger the sample size 𝑛, the closer the estimation value to the 

actual value of 𝜃. The estimation using this approach tend to give a small interval loss value compared to the 

previous approach, that are SELF, MELF, and GELF. The loss value of LLF is given by Figure 6. 
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Figure 6. Loss Value of LLF 

The best estimation is when the loss value is close to zero. When the loss function approaches zero, it 

indicates that the statistical model or parameter estimation generated by the Bayesian approach predicts or 

reconstructs the observed data very well. In other words, the smaller the value of the loss function, the closer 

the model's predictions are to the observed data, and therefore, the parameter estimation is considered better. 

In this context, the primary goal of Bayesian inference is to find model parameters that minimize the loss 

function [24]. Based on the simulation, the value of 𝛼2 = −0.1 or 𝛼2 = 0.1 gives the smaller loss value than 

𝛼2 = −0.25 or 𝛼2 = 0.25. The value 𝛼2 > 0 gives good estimation for over estimation and 𝛼2 < 0 gives 

good estimation for under estimation. 

Furthermore, we compared the simulation result between GELF and LLF by generated exponentially 

distributed data with 𝜃 = 1, 𝛼1 = −1,1, 𝛼2 = −0.1,0.1 (the best value of 𝛼1 and 𝛼2 in each simulation) with 

the sample size of 𝑛 = 100. The result of the comparison between GELF and LLF is given by Figure 7. 

 

Figure 7. Bayesian Estimates using GELF and LLF 
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In comparing performance between GELF and LLF, we used loss value as the reference, where the 

best estimation is when the loss value is close to zero. From the estimation result, we obtained the smallest 

loss value when we used the LLF approach with 𝛼2 = −0.1 and 𝛼2 = 0.1. The result showed in Figure 8. 

 

Figure 8. Loss Value of GELF and LLF 

3.3.3 Comparison Between SELF, MELF, GELF, and LLF 

In this section, we compared the best Bayesian estimation between SELF, MELF, GELF, and LLF by 

generating exponentially distributed data with 𝜃 = 1, 𝛼1 = −1,1,  𝛼2 = −0.1,0.1 with sample size 𝑛 = 100. 

The result of the four estimation is given by 

 

Figure 9. Bayesian Estimates using SELF, MELF, GELF, and LLF 

Based on the result shown in Figure 9, we obtained that under symmetric loss function, MELF is the 

best approach for over-estimation, while SELF is the best approach for under-estimation. Furthermore, under 
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asymmetric loss function, GELF with 𝛼1 > 0 is the best approach for over estimation and LLF with 𝛼2 < 0 

is the best approach for under estimation. Those result is shown by 

 

Figure 10. Loss Value of SELF, MELF, GELF, and LLF 

To determine the best loss function approach, we compared all approaches with the best 𝛼1 and 𝛼2 in 

each approach (for asymmetric loss function) with sample size 𝑛 = 100. Based on Figure 10, we can see 

that LLF has the smallest loss value compared to SELF, MELF, and GELF. It is supported by the loss value 

of LLF, which is in the bottom near zero. 

In addition to the loss value, we choose the best loss function approach using the value of each bias for 

under-estimation and over-estimation. The results are shown in Table 1 and Table 2 for under-estimation, 

Table 3 and Table 4 for over-estimation. 

Table 1. Estimation Results of All Loss Functions for Under Estimation 

No. 𝜃𝑆 𝜃𝑀 𝜃𝐺(1) 𝜃𝐺(−1) 𝜃𝐿(0.1) 𝜃𝐿(−0.1) 
1. 0.9162 0.8981 0.9071 0.9162 0.9158 0.9166 

2. 0.9072 0.8892 0.8982 0.9072 0.9068 0.9076 

3. 0.9882 0.9687 0.9784 0.9882 0.9877 0.9887 

4. 0.9961 0.9763 0.9862 0.9961 0.9956 0.9966 

5. 0.9845 0.9650 0.9748 0.9845 0.9840 0.9850 

6. 0.9472 0.9284 0.9378 0.9472 0.9467 0.9476 

7. 0.9795 0.9601 0.9698 0.9795 0.9790 0.9800 

8. 0.9710 0.9517 0.9614 0.9710 0.9705 0.9714 

9. 0.9953 0.9756 0.9854 0.9953 0.9948 0.9958 

10. 0.9976 0.9779 0.9878 0.9976 0.9971 0.9981 

Table 2. Bias Value of All Loss Functions for Under Estimation 

No. 𝜃𝑆 𝜃𝑀 𝜃𝐺(1) 𝜃𝐺(−1) 𝜃𝐿(0.1) 𝜃𝐿(−0.1) 
1. -0.0838 -0.1019 -0.0929 -0.0838 -0.0842 -0.0834 

2. -0.0928 -0.1108 -0.1018 -0.0928 -0.0932 -0.0924 

3. -0.0118 -0.0313 -0.0216 -0.0118 -0.0123 -0.0113 

4. -0.0039 -0.0237 -0.0138 -0.0039 -0.0044 -0.0034 

5. -0.0155 -0.0350 -0.0252 -0.0155 -0.0160 -0.0150 

6. -0.0528 -0.0716 -0.0622 -0.0528 -0.0533 -0.0524 
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No. 𝜃𝑆 𝜃𝑀 𝜃𝐺(1) 𝜃𝐺(−1) 𝜃𝐿(0.1) 𝜃𝐿(−0.1) 
7. -0.0205 -0.0399 -0.0302 -0.0205 -0.0210 -0.0200 

8. -0.0290 -0.0483 -0.0386 -0.0290 -0.0295 -0.0286 

9. -0.0047 -0.0244 -0.0146 -0.0047 -0.0052 -0.0042 

10. -0.0024 -0.0221 -0.0122 -0.0024 -0.0029 -0.0019 

BIAS -0.0317 -0.0509 -0.0413 -0.0317 -0.0322 -0.0313 

 

Based on Table 1 and Table 2, LLF approach with 𝛼2 < 0 has the smallest value of bias compared to 

the SELF, MELF, and GELF approaches. 

Table 3. Estimation Results of All Loss Functions for Over Estimation 

No. 𝜃𝑆 𝜃𝑀 𝜃𝐺(1) 𝜃𝐺(−1) 𝜃𝐿(0.1) 𝜃𝐿(−0.1) 
1. 1.0247 1.0044 1.0145 1.0247 1.0241 1.0252 

2. 1.0977 1.0759 1.0868 1.0977 1.0971 1.0983 

3. 1.0962 1.0745 1.0863 1.0962 1.0956 1.0986 

4. 1.0746 1.0533 1.0639 1.0746 1.0740 1.0752 

5. 1.0431 1.0224 1.0327 1.0430 1.0425 1.0436 

6. 1.1016 1.0797 1.0906 1.1016 1.1009 1.1022 

7. 1.0239 1.0036 1.0138 1.0239 1.0234 1.0244 

8. 1.0676 1.0465 1.0570 1.0676 1.0760 1.0682 

9. 1.0883 1.0667 1.0775 1.0883 1.0877 1.0888 

10. 1.0995 1.0778 1.0886 1.0995 1.0989 1.1001 

Table 4. Bias Value of All Loss Functions for Over Estimation 

No. 𝜃𝑆 𝜃𝑀 𝜃𝐺(1) 𝜃𝐺(−1) 𝜃𝐿(0.1) 𝜃𝐿(−0.1) 
1. 0.0247 0.0044 0.0145 0.0247 0.0241 0.0252 

2. 0.0977 0.0759 0.0868 0.0977 0.0971 0.0983 

3. 0.0962 0.0745 0.0863 0.0962 0.0956 0.0986 

4. 0.0746 0.0533 0.0639 0.0746 0.0740 0.0752 

5. 0.0431 0.0224 0.0327 0.0430 0.0425 0.0436 

6. 0.1016 0.0797 0.0906 0.1016 0.1009 0.1022 

7. 0.0239 0.0036 0.0138 0.0239 0.0234 0.0244 

8. 0.0676 0.0465 0.0570 0.0676 0.0760 0.0682 

9. 0.0883 0.0667 0.0775 0.0883 0.0877 0.0888 

10. 0.0995 0.0778 0.0886 0.0995 0.0989 0.1001 

BIAS 0.0717 0.0505 0.0611 0.0717 0.0711 0.0723 

Based on Table 3 and Table 4, MELF has the smallest bias value compared to SELF, GELF, and LLF 

approaches. Overall, we concluded the best loss function of Bayesian estimation by grouping it in Figure 11. 

 

Figure 11. The Best Loss Function for Bayesian Estimation 
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Figure 11 shows that the loss function for the best Bayesian estimation is divided into two, namely 

MELF for overestimation and LLF with 𝛼2 < 0 for underestimation. Thus, the selection of the loss function 

can be done in a more tolerant manner regarding which estimation results, whether overestimation or 

underestimation. 

3.4 Application 

In this section, we implemented the result of the simulation by estimating the value of parameter 𝜃 of 

the real data, which follows Exponential distribution Data used in this study is secondary data, that is, lifetime 

data, also called time-to-event data, which means the duration required for fluorescence to persist, from the 

standard fluorescence life recommended to use with LEDs and laser diodes. The data is given in Table 5. 

Table 5. Lifetime Data of Fluorescence 

Standard Lifetime (ns) 

Dimethyl-POPOP 1.45 

BBO 1.24 

Coumarin 6 2.5 

Dimethyl-POPOP 1.45 

Coumarin 6 2.5 

Fluorescein  4 

Fluorescein 4 

BodipyFL  5.8 

Cy5 1 

Alexa Fluor 647 1 

Alexa Fluor 700 1 

Alexa Fluor 750 0.66 

Indocynanine Green 0.52 

Source: http://www.iss.com/resources/reference/data_tables/StandardsLEDsLaserDiodes.html 

Before estimating the parameter, we check the distribution of the standard fluorescence life data using 

the Anderson-Darling (AD) test to determine whether it is exponentially distributed data. The output of the 

AD test is given in Table 6. 

Table 6. Anderson Darling Test for Standard Fluorescence Life Data 

Distribution  AD p-value 

Exponential  0.779 0.199 

The null hypothesis (𝐻0) states that the standard fluorescence life data follows Exponential distribution 

otherwise and using the significant level of 5%, we obtained that the decision is failed to reject 𝐻0. It gives 

the conclusion that the standard fluorescence life data is exponentially distributed data. Furthermore, we 

estimated the parameter of θ of the standard fluorescence life data by using the Bayesian method under 

symmetric and asymmetric loss functions, and the result is given in Table 7. 

Table 7. Parameter Estimation of Standard Fluorescence Life Data using Bayesian Method Under 

Symmetric and Asymmetric Loss Functions 

Loss Function Bayesian Estimates 

Squared Error Loss Function (SELF) 0.479351 

Minimum Expected Loss Function (MELF) 0.410872 

General Entropy Loss Function (GELF) with 𝛼1 = 1 0.445111 

General Entropy Loss Function (GELF) with 𝛼1 = −1 0.479351 

Linex Loss Function (LLF) with 𝛼2 = 0.1 0.478532 

Linex Loss Function (LLF) with 𝛼2 = −0.1 0.480173 

Based on the result of the parameter estimation from Table 7 and the conclusion result given in Figure 

11, we concluded that the best method to estimate the parameter 𝜃 of the standard fluorescence life data is 

using LLF for underestimation with 𝜃𝐿 = 0.480173 and MELF for overestimation with 𝜃𝑀 = 0.410872. 
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4. CONCLUSIONS 

Parameter estimation of the exponentially distributed survival data using the Bayesian method under 

symmetric and asymmetric loss functions has been derived, and the closed form of the estimates has been 

obtained. The result showed that for the symmetric loss function, the best estimation method is to use the 

Minimum Expected Loss Function (MELF) for overestimation and the Squared Error Loss Function (SELF) 

for underestimation. While for asymmetric loss function, the best estimation method is General Entropy Loss 

Function (GELF) with 𝛼1 > 0 for overestimation and Linex Loss Function (LLF) with 𝛼2 < 0 for 

underestimation. Overall, the best estimation method from both symmetric and asymmetric loss function is 

MELF for overestimation and LLF with 𝛼2 < 0  for underestimation. Further study can be done to determine 

how to select whether the estimated parameter is underestimation or overestimation and apply the result of 

this research to choose the best estimation method. 
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