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 ABSTRACT  

Article History: 
Gompertz distribution is a classical probability distribution extensively used in actuarial 

science, reliability, and survival analysis. Gompertz distribution also plays a role in various 

fields, such as biology, economics, and marketing analysis.  Some extensions of this 

distribution have been studied and applied to various problems. In this article, we are 

concerned with some statistical properties of a 3-parameter Gompertz distribution. This 

extension of the Gompertz distribution introduced has been used in studying competing risk 

survival analysis. Our main results are the derivation of moments of this distribution and 

other statistical properties related to moments, such as moment generating function, mean 

residual life function, mean inactivity time and Lorenz curve. These results will serve as a 

complement to the theoretical aspect of the analysis of the distribution. 
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1. INTRODUCTION 

In statistics, probability distributions provide a tool to analyze real-world problems. Regarding human 

mortality modeling, the Gompertz distribution is a classical yet popular distribution that has been proven to 

model mortality adequately. Gompertz distribution first appeared as the Gompertz mortality model, 

introduced by Benjamin Gompertz in 1825, who stated that human mortality increases exponentially with 

age [1]. Because of its significant use in mortality modeling, Gompertz distribution is extensively used in 

actuarial science and demographic analysis. Besides mortality analysis, Gompertz distribution also appears 

helpful in various fields. For example, Bemmaor and Glady [2] use Gompertz distribution in modeling 

customer lifetime, Ohishi [3] analyzes software reliability using Gompertz distribution, and in biology studied 

by Economos [4]. 

Gompertz distribution is a continuous distribution with nonnegative support and two positive 

parameters; one is the scale parameter, and the other one is the shape parameter. To know more about the 

behavior of a distribution, one can study several mathematical and statistical properties of the distribution. 

The mathematical and statistical properties of Gompertz distribution have been thoroughly studied. Moments, 

variance, skewness, and kurtosis of Gompertz distribution were provided by Lenart [5]. Castellares et al. [6] 

provide a closed-form expression for Gompertz mean residual life. Dey et al.[6] derived several properties of 

the Gompertz distribution, such as its moment-generating function, entropies, Bonferroni and Lorenz curve, 

and order statistics. In addition, Dey et al. did parameter estimation of the Gompertz model using various 

estimation methods. 

While the Gompertz distribution proved helpful in some areas of applied mathematics, there are some 

cases where classical distribution needs to provide adequate models for data. Therefore, there is a need to 

develop a new class of distribution. There are many extensions of Gompertz distribution. The most popular 

extension is the Gompertz-Makeham distribution [1], introduced by Makeham. Gompertz-Makeham 

distribution is obtained by adding a constant parameter to hazard rate of Gompertz distribution. The 

Gompertz-Makeham distribution is another classical distribution in mortality modeling, where it can fit better 

to mortality data than the Gompertz distribution. More recently, Ieren et al., in [7] used power transform 

𝑋1/𝜃, where 𝑋 is a random variable from the Gompertz distribution, and introduced a Power Gompertz 

distribution. Adubisi et al. [8] extended the power Gompertz distribution by exponentiating the cumulative 

distribution function of Power Gompertz distribution, that is [𝐺(𝑦)]𝜆, where 𝐺(𝑦) is a cumulative distribution 

function of Power Gompertz distribution. For other extensions, see [9], [10], [11], [12] and reference therein. 

In the case of medical studies, the hazard rate function of a distribution plays an important role in 

investigating survival data. The hazard rate of Gompertz distribution is monotone increasing if its shape 

parameter is positive, and vice versa.  However, in clinical settings, some observed hazard rates have 

unimodal shape rather than monotone shape [13]. This motivates Haile et al. [14] to extend the Gompertz 

distribution by modifying its hazard rate. With this modification, they obtained a more flexible hazard rate 

that can capture the unimodal shape seen in clinical settings. The new distribution is called a ‘3-parameters 

Gompertz distribution’, which is used to analyze survival data of competing risk, specifically in breast cancer 

data. Shama et al. [10] also used this new distribution to fit several real-world data. 

In their article, Haile et al. also provide basic properties of the new distribution. However, no article 

studies several mathematical and statistical properties of the 3-parameters Gompertz distribution. Therefore, 

our aim in this paper is to develop some of the properties of the 3-parameters Gompertz. The primary purpose 

of this paper is to derive the moments of the distribution and some other properties related to moments, such 

as moment-generating function, incomplete moments, and life expectancy.  These properties will help 

investigate some behaviors of the newly developed 3-parameter Gompertz distribution. For example, the 

distribution shape is indicated by the value of skewness and kurtosis, where both statistics use moments. The 

analysis of the expected value of the time-to-death of electronic devices is measured by its mean residual life, 

which can be computed using mean and first incomplete moment. The result of this research complements 

the theoretical standpoint of a 3-parameter Gompertz distribution. 
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2. RESEARCH METHODS 

This research deals with moments and some other properties related to moments of 3-parameter 

Gompertz distribution, defined in [14]. Our main results are structured as follows: First, we derive the formula 

for moments and incomplete moments of the distribution. We then provide the formula for mean, variance, 

skewness, and kurtosis. Moreover, we also show a numerical illustration of the value of those four statistics. 

The following properties will be formulated: mean residual life, mean inactivity time, and Bonferroni and 

Lorenz curve. These three formulas can be considered a corollary of moment and incomplete moment 

formulas, as they can be calculated from the first and incomplete moment.  We end the discussion by deriving 

the formula for the moment generating function (mgf), and we will see that the derivation of mgf is quite 

similar to the derivation of moments. This research is done using a literature study and thoroughly reviewing 

previous research on probability distribution. In the next subsections, we present the definition of a 3-

parameter Gompertz distribution. Then, we briefly explain the required definitions for some statistical 

properties of distributions.   

 

2.1 3-Parameter Gompertz Distribution 

The 3-parameter Gompertz distribution introduced by Haile et al. [14] extends the Gompertz 

distribution. As its name suggests, this distribution has three shape parameters: one parameter defined on 

positive real numbers and the other two parameters defined on real numbers. However, in this article, we 

restrict all three parameters to positive real numbers since only in this setting is the 3-parameter Gompertz 

distribution proper. Moreover, the computation is easier in this setting. In this case we write 𝑋 ∼
ThGo(𝛼, 𝛽, 𝜂) if random variable 𝑋 follows the 3-parameter Gompertz distribution where 𝛼, 𝛽 𝛾 are all 

positive parameters.  The cumulative distribution function (cdf) and probability distribution function (pdf) of 

𝑋, respectively, is as follows: 

 

𝐹(𝑥) = 1 − exp (−
𝛼

𝛽𝜂
 (𝑒𝜂𝑒𝛽𝑥

− 𝑒𝜂)) (1) 

 

and 

 

𝑓(𝑥) = 𝛼 exp (𝛽𝑥 + 𝜂𝑒𝛽𝑥 −
𝛼

𝛽𝜂
 (𝑒𝜂𝑒𝛽𝑥

− 𝑒𝜂)) (2) 

 

where 𝛼, 𝛽, 𝜂 > 0 and 𝑥 ≥ 0. When we let 𝜂 → 0+ we obtain the classical Gompertz distribution. That is, if 

we let 𝜂 → 0+ in Equation (1) and (2), then we get the cdf and pdf of Gompertz distribution. The cdf and pdf 

of Gompertz distribution, respectively, is given by 

 

𝐺(𝑥) = 1 − exp (−
𝛼

𝛽
 (𝑒𝛽𝑥 − 1)), 

  𝑔(𝑥) = 𝛼 exp (𝛽𝑥 −
𝛼

𝛽
 (𝑒𝛽𝑥 − 1)), 

 

where 𝛼 > 0 is shape parameter, 𝛽 > 0 is scale parameter and 𝑥 ≥ 0 [1]. 

 

2.2 Moments and Incomplete Moments 

For a continuous, nonnegative, random variable 𝑋, the 𝑟-th moment of 𝑋 is defined as 

 

𝜇𝑟 = 𝐸[𝑋𝑟] = ∫ 𝑥𝑓(𝑥)
∞

0

d𝑥 

 

and the 𝑟-th incomplete moment of 𝑋 is defined as 
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𝑚𝑟(𝑥) = ∫ 𝑦𝑟𝑓(𝑦)d𝑦
𝑥

0

 

 

where 𝑓(𝑥) is the probability density function (pdf) of 𝑋 [15]. It is clear that 𝑚𝑟(𝑥) → 𝐸[𝑋𝑟] if 𝑥 → ∞. Some 

properties of a distribution can be described using moments and incomplete moments. The mean, variance, 

skewness, and kurtosis of a distribution rely on the first four moments. More precisely, we have the following 

relation for variance, skewness, and kurtosis, respectively: 

Var(𝑋) = 𝜇2 − 𝜇1
2

 (3a) 
  

Skew(𝑋) =
𝜇3 − 3𝜇1𝜎2 + 2𝜇1

3

𝜎3
 (3b) 

  

Kurt(𝑋) =
𝜇4 − 4𝜇1𝜇3 + 6𝜇2𝜎2 + 3𝜇1

4

𝜎4
 

(3c) 

  

2.3 Mean Residual Life and Mean Inactivity Time Function 

Suppose that 𝑋 is a nonnegative random variable. For a fixed real number 𝑥 ≥ 0, define a random 

variable 𝑅𝑥 = 𝑋 − 𝑥|𝑋 > 𝑥. Then, 𝐸[𝑅𝑥] is the mean residual life (MRL) of 𝑋 [16] and 

 

𝑒𝑥 = 𝐸[𝑋 − 𝑥|𝑋 > 𝑥] =
1

𝑆(𝑥)
∫ (𝑡 − 𝑥)𝑓(𝑡)d𝑡

∞

𝑥

. (4) 

 

Mean residual life also known as life expectancy at age 𝑥, the measure of the expected or average time 

to failure of a system, given that it is still active at age 𝑥.  

There is ‘dual’ of random variable 𝑅𝑥 and its expectation. If we let of 𝐼𝑥 = 𝑥 − 𝑋|𝑋 < 𝑥, the 

expectation of 𝐼𝑥 is called mean incativity time (MIT) of 𝑋 [17] and we have 

 

𝜁(𝑥) = 𝐸[𝑥 − 𝑋|𝑋 < 𝑥] =
1

𝐹(𝑥)
∫ (𝑥 − 𝑡)𝑓(𝑡)d𝑡

𝑥

0

. (5) 

 

Mean inactivity time measures the average time of a system has been inactive when measured at time 

𝑥, given that it is already inactive before time 𝑥. Mean residual life and mean inactivity time are important 

role in reliability analysis and actuarial science. For example, the random variable 𝑅𝑥 is important in survival 

analysis of human mortality and the calculation of insurance loss when there is a deductible [18]. 

 

2.4 Lorenz and Bonferroni Curve 

For continuous random variable 𝑋, the Lorenz curve is defined as 
 

𝐿(𝑝) =
1

𝜇1
∫ 𝐹−1(𝑡)d𝑡

𝑝

0

, 0 ≤ 𝑝 ≤ 1 (6) 

 

where 𝐹−1(𝑝) is the quantile function of 𝑋 associated with probability 𝑝. Bonferroni curve is defined as 
 

𝐵(𝑝) =
1

𝑝𝜇1
∫ 𝐹−1(𝑡)d𝑡

𝑝

0

, 0 ≤ 𝑝 ≤ 1. (7) 

 

Lorenz curve and Bonferroni curve are two important quantities to measure inequality. This concept is 

useful in economics, for example, in measuring inequality of income distribution [19]. 
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2.5 Moment Generating Function 

The moment generating function (mgf) of nonnegative random variable 𝑋 is defined as  

 

𝑀(𝑡) = 𝐸[𝑒𝑡𝑋] = ∫ 𝑒𝑡𝑥𝑓(𝑥)d𝑥
∞

0

 

 

where the domain for 𝑡 must contain 0. That is, the integral exists (converge) in some neighborhood of 0. 

 

2.6 Special Functions 

Next, we present some special functions that is needed in our results. For complex numbers 𝑠 and 𝑧 

and for nonnegative integer 𝑛, the generalized integro-exponential function 𝐸𝑠
𝑛(𝑧), introduced by Milgram 

[20], is defined as 

 

𝐸𝑠
𝑛(𝑧) =

1

Γ(𝑛 + 1)
∫ (ln 𝑤)𝑛𝑤−𝑠𝑒−𝑧𝑤d𝑤

∞

1

 (8) 

 

where 

 

Γ(𝑢) = ∫ 𝑡𝑢−1𝑒−𝑡d𝑡
∞

0

, (9) 

 

for complex number 𝑢 with positive real part, is a gamma function. If 𝑢 is a nonnegative integer, we have 

Γ(𝑢) = (𝑢 − 1)!. For further details about the generalized integro-exponential function, see Milgram [20] 

and Pogany et al., [21].  

Another special integral is the incomplete generalized integro-exponential function. This function 

appears in Reyes et al., [12]. For 𝑠, 𝑧 ∈ ℂ, 𝑥 ≥ 1, and nonnegative integer 𝑛, the incomplete generalized 

integro-exponential function is defined as 

 

𝐸𝑠
𝑛(𝑧; 𝑥) =

1

Γ(𝑛 + 1)
∫ (ln 𝑤)𝑛𝑤−𝑠𝑒−𝑧𝑤d𝑤

𝑥

1

 (10) 

 

It is clear that lim
𝑥→∞

𝐸𝑠
𝑛(𝑧; 𝑥) = 𝐸𝑠

𝑛(𝑧).  

For any real number 𝑥 and nonnegative integer 𝑛, the Pochhammer Symbol (𝑥)𝑛, also known as shifted 

factorial or rising factorial, is defined as [22] 

 

(𝑥)𝑛 =
Γ(𝑥 + 𝑛)

Γ(𝑥)
= 𝑥(𝑥 + 1) ⋯ (𝑥 + 𝑛 − 1). (11) 

 

3. RESULTS AND DISCUSSION 

3.1 Moments 

For the rest of this paper, we define a constant 𝜉 = 𝛼𝑒𝜂 𝛽𝜂⁄  to simplify the presentation. Our first result 

is the expression of moments of ThGO distribution, given in the following theorem. 

 

Theorem 1. If 𝑋 ∼ 𝑇ℎ𝐺𝑜(𝛼, 𝛽, 𝜂) where 𝛼, 𝛽 , 𝜂 > 0, the 𝑟-th moments of 𝑋 is 
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𝜇𝑟 = 𝐸[𝑋𝑟] =
𝜂𝜉𝑒𝜉

𝛽𝑟
∑ ∑

(−1)𝑘+𝑛(𝑘 + 2)𝑚𝑟!

𝑘! 𝑛! (𝑚 − 𝑛)!

𝑚

𝑛=0

𝜉𝑘𝑒(𝑛+1)𝜂 𝐸0
𝑟((𝑛 + 1)𝜂)

𝑘,𝑚≥0

 (12) 

 

Proof. First, we rewrite the pdf of 𝑋 as 

 

𝑓(𝑥) = 𝛼𝑒𝜂𝑒𝛽𝑥 𝑒𝜂(𝑒𝛽𝑥−1) exp (−
𝛼𝑒𝜂

𝛽𝜂
(𝑒𝜂(𝑒𝛽𝑥−1) − 1)) 

Now, the moment of 𝑋 is  

 

𝜇𝑟 = ∫ 𝑥𝑟𝑓(𝑥)d𝑥
∞

0

= 𝛼𝑒𝜂 ∫ 𝑥𝑟𝑒𝛽𝑥 𝑒𝜂(𝑒𝛽𝑥−1) exp (−
𝛼𝑒𝜂

𝛽𝜂
(𝑒𝜂(𝑒𝛽𝑥−1) − 1))

∞

0

d𝑥. 

 

First, we make a substitution 𝑢 = 𝑒𝜂(𝑒𝛽𝑥−1), then 𝑥 =
1

𝛽
ln (1 +

ln 𝑢

𝜂
) and we have 

 

𝜇𝑟 =
𝛼𝑒𝜂

𝛽𝑟+1𝜂
exp (

𝛼𝑒𝑟

𝛽𝜂
) ∫ (ln (1 +

𝑢

𝜂
))

𝑟

exp (−
𝛼𝑒𝜂

𝛽𝜂
𝑢) d𝑢

∞

1

 

=
𝜉𝑒𝜉

𝛽𝑟
∫ (ln (1 +

ln 𝑢

𝜂
))

𝑟

𝑒−𝜉𝑥d𝑢
∞

1

. 

 

 

(13) 

 

For the integral in Equation (13), we substitute 𝑢 =
1

1−𝑣
, then 𝑣 = 1 −

1

𝑢
 and d𝑣 = (1 − 𝑢)−2d𝑢. After 

this substitution, we expand the exponential and binomial term to obtain 

 

∫ (ln (1 +
ln 𝑥

𝜂
))

𝑟

exp(−𝜉𝑥) d𝑥
∞

1

= ∫ [ln (1 −
ln(1 − 𝑢)

𝜂
)]

𝑟

exp (−𝜉
1

1 − 𝑢
) (1 − 𝑢)−2d𝑢

1

0

                  

= ∫ [ln (1 −
ln(1 − 𝑢)

𝜂
)]

𝑟

∑
(−1)𝑘𝜉𝑘

𝑘!

∞

𝑘=0

(1 − 𝑢)−𝑘−2d𝑢
1

0

 

= ∑
(−1)𝑘𝜉𝑘

𝑘!

∞

𝑘=0

∫ [ln (1 −
ln(1 − 𝑢)

𝜂
)]

𝑟

(1 − 𝑢)−𝑘−2d𝑢
1

0

 

= ∑
(−1)𝑘𝜉𝑘

𝑘!

∞

𝑘=0

∫ [ln (1 −
ln(1 − 𝑢)

𝜂
)]

𝑟

∑ (
−𝑘 − 2

𝑚
) (−𝑢)𝑚

∞

𝑚=0

d𝑢
1

0

 

= ∑
(−1)𝑘(𝑘 + 2)𝑚𝜉𝑘

𝑘! 𝑚!

∞

𝑘,𝑚=0

∫ [ln (1 −
ln(1 − 𝑢)

𝜂
)]

𝑟

𝑢𝑚d𝑢
1

0

. 

 

Where we expand the binomial coefficient (
−𝑘 − 2

𝑚
) and write it out as 

 

(
−𝑘 − 2

𝑚
) =

(−𝑘 − 2)(−𝑘 − 3) … (−𝑘 − 2 − 𝑚 + 1)

𝑚!
=

(−1)𝑚

𝑚!
(𝑘 + 2)𝑚 

 

using the Pochhammer symbol in Equation (11). Keep in mind that binomial series (1 − 𝑢)𝛼 for real 𝛼 

converge only for |𝑢| < 1. Hence, we have 

 

∫ (ln (1 +
ln 𝑥

𝜂
))

𝑟

exp(−𝜉𝑥) d𝑥
∞

1

= ∑
(−1)𝑘(𝑘 + 2)𝑚𝜉𝑘

𝑘! 𝑚!

∞

𝑘,𝑚=0

∫ [ln (1 −
ln(1 − 𝑢)

𝜂
)]

𝑟

𝑢𝑚d𝑢
1

0

 

(14) 
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Next, we set 𝑢 = 1 − 𝑒−𝑣, then 𝑣 = − ln(1 − 𝑢) and the integral on the right-hand side of Equation (14) 

expanded into 

 

∫ [ln (1 −
ln(1 − 𝑢)

𝜂
)]

𝑟

𝑢𝑚
1

0

d𝑢 = ∫ [ln (1 +
𝑣

𝜂
)]

𝑟

(1 − 𝑒−𝑣)𝑚𝑒−𝑣d𝑣
∞

0

 

= ∫ [ln (1 +
𝑣

𝜂
)]

𝑟

∑ (
𝑚
𝑛

) (−1)𝑛𝑒−(𝑛+1)𝑣

𝑚

𝑛=0

d𝑣
∞

0

 

= ∑(−1)𝑛 (
𝑚
𝑛

) ∫ [ln (1 +
𝑣

𝜂
)]

𝑟

𝑒−(𝑛+1)𝑣d𝑣
∞

0

𝑚

𝑛=0

 

= ∑(−1)𝑛 (
𝑚
𝑛

) ∫ (ln 𝑤)𝑟𝑒−(𝑛+1)(𝑤−1)𝜂𝜂
∞

1

d𝑤

𝑚

𝑛=0

 

= ∑
(−1)𝑛𝑚!

𝑛! (𝑚 − 𝑛)!
𝜂𝑒(𝑛+1)𝜂𝑟! 𝐸0

𝑟((𝑛 + 1)𝜂)

𝑚

𝑛=0

 

 

where the last integral is written as a generalized integro-exponential function using Equation 8. Hence, we 

conclude that 

 

∫ [ln (1 −
ln(1 − 𝑢)

𝜂
)]

𝑟

𝑢𝑚
1

0

𝑑𝑢 = 𝜂 ∑
(−1)𝑛𝑚! 𝑟!

𝑛! (𝑚 − 𝑛)!
𝑒(𝑛+1)𝜂𝐸0

𝑟((𝑛 + 1)𝜂)

𝑚

𝑛=0

. (15) 

 

Combining Equation (15) and Equation (14) into Equation (13), we immediately have Equation 

(12). The proof is completed. 

Knowing the moments of distribution allows us to calculate the mean, variance, skewness, and kurtosis 

of the ThGo distribution from Equation (3) (a) through Equation (3) (d). To illustrate the value of these four 

statistics, we use some sets of values of parameters 𝛼, 𝛽, and 𝜂. We use small values for each parameter since 

the estimated value of each parameter is usually small in mortality analysis. This situation also happened in 

Haile et al. [14]. Of course, we can also consider other ranges of values for each parameter. The value of 

these parameters and the resulting statistics are presented in Table 1. The computation is done in Wolfram 

Mathematica. 

Table 1. Values of Mean, Variance, Skewness, and Kurtosis of the ThGo Distribution  

for Different Sets of Parameter Values 

Parameter Statistics 

𝛼 𝛽 𝜂 Mean Variance Skewness Kurtosis 

0.1 

1 

0.001 2.00929 0.82281 32.45271 2.33258 

0.05 1.81123 0.59051 38.92445 2.34637 

1 0.77474 0.10919 38.27561 2.34794 

2 

0.001 1.29208 0.25646 49.45923 2.54893 

0.05 1.13072 0.16172 66.00985 2.81908 

1 0.48330 0.02953 66.03239 2.87946 

5 

0.001 0.67960 0.04905 86.05756 3.00466 

0.05 0.56558 0.02467 138.96207 3.99010 

1 0.24178 0.00452 138.14382 4.04802 

2 1 
0.01 0.35747 0.07839 7.24917 3.73433 

0.5 0.22100 0.02981 7.26389 3.59028 
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Parameter Statistics 

𝛼 𝛽 𝜂 Mean Variance Skewness Kurtosis 

2 0.05730 0.00247 5.92632 4.94704 

2 

0.01 0.29471 0.04287 9.35945 2.95564 

0.5 0.18116 0.01575 9.65628 2.73635 

2 0.05065 0.00162 6.98782 3.79193 

5 

0.01 0.20655 0.01501 14.70462 2.37370 

0.5 0.12432 0.00501 16.40731 2.16541 

2 0.03903 0.00071 10.09051 2.68525 

Data source: Own computation. 

 

From Table 1, we can see that the variance is very small for each set of parameters. As 𝜂 increases, 

the mean and variance of ThGO distribution both decreases. However, the skewness is quite large and 

increases with 𝜂. Positive skewness means that the pdf is leaning to the left. Meanwhile, the kurtosis is fairly 

small and varies from all parameters.    

  

Figure 1. The graph of: (a) mean, (b) variance, (c) skewness, and (d) kurtosis of the ThGo distribution  

with 𝛼 = 0.1, 𝛽 = 1, and 𝜂 varies.  

Source: Own computation 

 

(c) (d) 

(a) (b) 
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Furthermore, we present the graph of the mean, variance, skewness, and kurtosis of ThGo distribution 

with respect to 𝜂 and fixed 𝛼 and 𝛽 are given in Figure 1. These graphs will illustrate the change of mean, 

variance, skewness, and kurtosis as 𝜂 > 0 increases. That means we shall see how this distribution differ 

from Gompertz distribution (𝜂 = 0) in those statistics. 
 

3.2 Incomplete Moments 

The 𝑟-th incomplete moments of ThGO distribution is given in the following theorem. 

 

Theorem 2. If 𝑋 ∼ 𝑇ℎ𝐺𝑜(𝛼, 𝛽, 𝜂) where 𝛼, 𝛽 , 𝜂 > 0, the 𝑟-th incomplete moments of 𝑋 is 

 

𝑚𝑟(𝑥) =
𝜉𝑒𝜉

𝛽𝑟
∑ ∑

(−1)𝑘+𝑛(𝑘 + 2)𝑚𝑟!

𝑘! 𝑛! (𝑚 − 𝑛)!

𝑚

𝑛=0

𝜉𝑘𝑒(𝑛+1)𝜂𝐸0
𝑟−1 ((𝑛 + 1)𝜂; 𝑒𝛽𝑥)

𝑘,𝑚≥0

 (16) 

 

Proof. The proof using the same process used in the proof of Theorem 1. First, by substituting 𝑢 =

𝑒𝜂(𝑒𝛽𝑦−1), we obtain 

 

𝑚𝑟(𝑥) = ∫ 𝑦𝑟𝑓(𝑦)d𝑦
𝑥

0

=
𝜉𝑒𝜉

𝛽𝑟
∫ ln𝑟 (1 +

ln 𝑢

𝜂
) 𝑒−𝜉𝑢d𝑢

𝜌

1

 (17) 

 

where 𝜌 = 𝑒𝜂(𝑒𝛽𝑥−1). Next, substitute 𝑢 =
1

1−𝑣
 , we have 

 

∫ [ln (1 +
ln 𝑢

𝜂
)]

𝑘

e−𝜉𝑢d𝑢
𝜌

1

= ∫ ln𝑟 (1 −
ln(1 − 𝑣)

𝜂
) 𝑒−

𝜉
1−𝑣(1 − 𝑣)−2d𝑣

1−
1
𝜌

0

 

= ∑
(−1)𝑘

𝑘!
𝜉𝑘 ∫ ln𝑟 (1 −

ln(1 − 𝑣)

𝜂
) (1 − 𝑣)𝑘−2d𝑣

1−
1
𝜌

0

∞

𝑘=0

 

= ∑
(−1)𝑘(𝑘 + 2)𝑚

𝑘! 𝑚!
𝜉𝑘 ∫ ln𝑟 (1 −

ln(1 − 𝑣)

𝜂
) 𝑣𝑚d𝑣

1−
1
𝜌

0

.

𝑘,𝑚≥0

 

 

 

 

 

 

(18) 

 

Setting 𝑢 = 1 − 𝑒−𝑣 gives 

 

∫ ln𝑟 (1 −
ln(1 − 𝑣)

𝜂
) 𝑣𝑚d𝑣

1−
1
𝜌

0

= ∫ ln𝑟 (1 +
𝑤

𝜂
) (1 − 𝑒−𝑤)𝑚e−𝑤d𝑤

ln 𝜌

0

 

= ∑(−1)𝑛 (
𝑚

𝑛
) ∫ ln𝑟 (1 +

𝑤

𝜂
) 𝑒−(𝑛+1)𝑤d𝑤

ln 𝜌

0

𝑚

𝑛=0

 

= ∑(−1)𝑛 (
𝑚

𝑛
) ∫ lnr 𝑤 𝑒−(𝑛+1)𝜂(𝑤−1)d𝑤

𝑒𝛽𝑥

1

𝑚

𝑛=0

 

= ∑
(−1)𝑛𝑚! 𝑟!

𝑛! (𝑚 − 𝑛)!
𝜂𝑒(𝑛+1)𝜂𝐸0

𝑟 ((𝑛 + 1)𝜂; 𝑒𝛽𝑥)

𝑚

𝑛=0

. 

 

 

 

 

 

 

 

 

(19) 

 

Combining Equation (19) and Equation (18) into Equation (17), we have Equation (16).  

The first incomplete moment has several corollaries. In the following subsections, we present some 

structural properties of the ThGo distribution that can be derived from the first incomplete moments. These 

are mean residual life, mean inactivity time, and Lorenz and Bonferroni curve. Although these are corollaries 

of incomplete moments, these properties are of interest. 
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3.3 Mean Residual Life and Mean Inactivity Time 

The mean residual life and mean inactivity time are defined in Equation (4) and Equation (5), 

respectively. After some algebra, we can write the formula for MRL and MIT in terms of the first moment 

and first incomplete moment, specifically, 

 

𝑒𝑥 =
𝜇1 − 𝑚1(𝑥)

𝑆(𝑥)
− 𝑥. (20) 

 

and 

 

𝜁(𝑥) = 𝑥 −
𝑚1(𝑥)

𝐹(𝑥)
. (21) 

 

where 𝜇1 is the first moment (mean) of 𝑋, 𝑚1(𝑥) is the first incomplete moment of 𝑋, 𝐹(𝑥) is the cdf of 𝑋, 

and 𝑆(𝑥) = 1 − 𝐹(𝑥) is the survival function of 𝑋. In the case of 𝑋 ∼ ThGo(𝛼, 𝛽, 𝜂), we have the following 

result for MRL of 𝑋. 

 

Theorem 4. If 𝑋 ∼ 𝑇ℎ𝐺𝑜(𝛼, 𝛽, 𝜂) where 𝛼, 𝛽, 𝜂 > 0, and 𝑥 ≥ 0, we have 

 

𝑒𝑥 =
𝜉𝜂

𝛽
𝜅𝛼,𝛽,𝜂(𝑥) ∑ ∑

(−1)𝑘+𝑛(𝑘 + 2)𝑚

𝑘! 𝑛! (𝑚 − 𝑛)!
𝜉𝑘𝜂𝑒(𝑛+1)𝜂 [𝐸0

1((𝑛 + 1)𝜂)

𝑚

𝑛=0𝑘,𝑚≥0

− 𝐸0
1 ((𝑛 + 1)𝜂; 𝑒𝛽𝑥)] − 𝑥. 

(22) 

 

where 𝜅𝛼,𝛽,𝜂(𝑥) = exp (
𝛼 exp(𝜂𝑒𝛽𝑥)

𝛽𝜂
). 

 

Proof. It immediately follows from  Equation (20) and the formula for the moment, which needed to be 

completed in the previous discussion. 

 

𝑒𝑥 =
1

exp (−
𝛼

𝛽𝜂
 (𝑒𝜂𝑒𝛽𝑥

− 𝑒𝜂))
(

𝜉𝑒𝜉

𝛽
∑ ∑

(−1)𝑘+𝑛(𝑘 + 2)𝑚

𝑘! 𝑛! (𝑚 − 𝑛)!
𝜉𝑘𝜂𝑒(𝑛+1)𝜂[𝐸0

1((𝑛 + 1)𝜂)

𝑚

𝑛=0𝑘,𝑚≥0

− 𝐸0
1 ((𝑛 + 1)𝜂; 𝑒𝛽𝑥)) − 𝑥 

𝑒𝑥 =
𝜉𝜂

𝛽
𝜅𝛼,𝛽,𝜂(𝑥) ∑ ∑

(−1)𝑘+𝑛(𝑘 + 2)𝑚

𝑘! 𝑛! (𝑚 − 𝑛)!
𝜉𝑘𝜂𝑒(𝑛+1)𝜂 [𝐸0

1((𝑛 + 1)𝜂) − 𝐸0
1 ((𝑛 + 1)𝜂; 𝑒𝛽𝑥)]

𝑚

𝑛=0𝑘,𝑚≥0

− 𝑥. 

 

This concludes the proof. 

 As for MIT of 𝑋, the result is as follows. 

 

Theorem 5. If 𝑋 ∼ 𝑇ℎ𝐺𝑜(𝛼, 𝛽, 𝜂) where 𝛼, 𝛽, 𝜂 > 0, and 𝑥 ≥ 0, we have 

 

𝜁(𝑥) = 𝑥 −
𝜅𝛼,𝛽,𝜂(𝑥)

𝜅𝛼,𝛽,𝜂(𝑥) − 𝜉

𝜉𝑒𝜉

𝛽
∑ ∑

(−1)𝑘+𝑛(𝑘 + 2)𝑚

𝑘! 𝑛! (𝑚 − 𝑛)!

𝑚

𝑛=0

𝜉𝑘𝑒(𝑛+1)𝜂𝐸0
1 ((𝑛 + 1)𝜂; 𝑒𝛽𝑥)

𝑘,𝑚≥0

. (23) 

 

Proof. It follows immediately from Equation (21) and the formula for an incomplete moment. 
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3.4 Lorenz and Bonferroni Curve  

We can represent the Lorenz and Bonferroni curves in Equation (6) and Equation (7), respectively, 

in terms of the first moment and the first incomplete moment of 𝑋. Since 𝐹−1(𝑝) = 𝑥 equivalent to 𝐹(𝑥) =
𝑝, where 0 ≤ 𝑝 ≤ 1, we can calculate the Lorenz and Bonferroni curve using the following formula, that 

follows from substitution 𝐹(𝑥) = 𝑝 in Equation (6) and Equation (7): 
 

𝐿(𝐹(𝑥)) =
𝑚1(𝑥)

𝜇1
, 𝐵(𝐹(𝑥)) =

𝐿(𝐹(𝑥))

𝐹(𝑥)
. (24) 

 

For the ThGo distribution, we have the following. 

 

Theorem 6. If 𝑋 ∼ 𝑇ℎ𝐺𝑜(𝛼, 𝛽, 𝜂) where 𝛼, 𝛽, 𝜂 > 0, and 𝑥 ≥ 0, we have 

 

𝐿(𝐹(𝑥)) =

∑ ∑
(−1)𝑘+𝑛(𝑘 + 2)𝑚

𝑘! 𝑛! (𝑚 − 𝑛)!
𝑚
𝑛=0 𝜉𝑘𝑒(𝑛+1)𝜂  (

𝑒−1 − 𝑒− exp(𝛽𝑥)

𝑛 + 1 ) 𝑘,𝑚≥0

𝜂2 ∑ ∑
(−1)𝑘+𝑛(𝑘 + 2)𝑚

𝑘! 𝑛! (𝑚 − 𝑛)!
𝑚
𝑛=0 𝜉𝑘𝑒(𝑛+1)𝜂 𝐸0

1((𝑛 + 1)𝜂)𝑘,𝑚≥0

. (25) 

 

Proof. The result follows by substituting first moment and incomplete moment into Equation (23).  

 

3.5 Moment Generating Function 

The mgf of the ThGo distribution is given in the following theorem. 

 

Theorem 7. The moment generating function of 𝑋 ∼ 𝑇ℎ𝐺𝑜(𝛼, 𝛽, 𝜂) where 𝛼, 𝛽 , 𝜂 > 0 is 

 

𝑀(𝑡) =
𝜉𝑒𝜉

𝜂𝑡/𝛽
∑ ∑

(−1)𝑘+𝑛(𝑘 + 2)𝑚

𝑘! (𝑛 + 1)! (𝑚 − 𝑛)!

𝑚

𝑛=0

𝜉𝑘𝑒(𝑛+1)𝜂

(𝑛 + 1)𝑡 𝛽⁄
Γ (

𝑡

𝛽
+ 1, (𝑛 + 1)𝜂)

𝑘,𝑚≥0

 (26) 

 

where for complex number 𝑧 with positive real part and 𝑥 ≥ 0 

 

Γ(𝑧, 𝑥) = ∫ 𝑡𝑧−1𝑒−𝑡d𝑡
∞

𝑥

 

 

denotes the upper incomplete gamma function. 

 

Proof. The proof is highly similar to the derivation of incomplete moments. First, we have 

 

𝑀(𝑡) = ∫ 𝑒𝑡𝑥𝑓(𝑥)d𝑥
∞

0

= 𝛼𝑒𝜂 ∫ 𝑒𝑡𝑥𝑒𝛽𝑥 𝑒𝜂(𝑒𝛽𝑥−1) exp (−
𝛼𝑒𝜂

𝛽𝜂
(𝑒𝜂(𝑒𝛽𝑥−1) − 1)) d𝑥

∞

0

. (27) 

 

Substitute 𝑢 = 𝑒𝜂(𝑒𝛽𝑦−1) into the right-hand side of Equation (16), we have 

 

𝑀(𝑡) = 𝜉𝑒𝜉 ∫ (1 +
ln 𝑢

𝜂
)

𝑡 𝛽⁄

exp(−𝜉𝑢) d𝑢
∞

1

. (28) 

 

Next, substitute 𝑣 = 1 − 1/𝑢 into the integral on Equation (17) and expand the exponential and binomial 

term to obtain 
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𝑀(𝑡) = 𝜉𝑒𝜉 ∑
(−1)𝑘(𝑘 + 2)𝑚

𝑘! 𝑚!
𝜉𝑘 ∫ (1 −

ln(1 − 𝑣)

𝜂
)

𝑡/𝛽

𝑣𝑚d𝑣
1

0

.

𝑘,𝑚≥0

 (29) 

 

In the integral on Equation (18), let 𝑣 = 1 − 𝑒−𝑤 and then simplifying the integral so that 

 

∫ (1 −
ln(1 − 𝑣)

𝜂
)

𝑡/𝛽

𝑣𝑚d𝑣
1

0

= ∫ (1 +
𝑤

𝜂
)

𝑡/𝛽

(1 − 𝑒−𝑤)𝑚e−𝑤d𝑤
∞

0

 

= ∑(−1)𝑛 (
𝑚

𝑛
) ∫ (1 +

𝑤

𝜂
)

𝑡/𝛽

𝑒−(𝑛+1)𝑤d𝑤
∞

0

𝑚

𝑛=0

 

= ∑(−1)𝑛 (
𝑚

𝑛
) 𝜂𝑒(𝑛+1)𝜂 ∫ 𝑤𝑡 𝛽⁄ 𝑒−(𝑛+1)𝜂𝑤d𝑤

∞

1

𝑚

𝑛=0

 

= ∑(−1)𝑛 (
𝑚

𝑛
)

𝜂𝑒(𝑛+1)𝜂

((𝑛 + 1)𝜂)
𝑡/𝛽+1

 ∫ 𝑤𝑡 𝛽⁄ 𝑒−𝑤d𝑤
∞

(𝑛+1)𝜂

𝑚

𝑛=0

 

= ∑
(−1)𝑛𝑚!

(𝑛 + 1)! (𝑚 − 𝑛)!
 

𝑒(𝑛+1)𝜂

((𝑛 + 1)𝜂)
𝑡 𝛽⁄

Γ (
𝑡

𝛽
+ 1, (𝑛 + 1)𝜂)

𝑚

𝑛=0

. 

 

 

 

 

 

 

 

 

 

 

(30) 

 

Combining Equation (29) and Equation (30) into Equation (27), we obtain Equation (26) and the proof is 

complete. 

 

4. CONCLUSIONS 

In this paper, we have established the formula for moments and incomplete moments, as well as several 

properties related to them, of the 3-parameter Gompertz distribution, such as mean residual life and mean 

inactivity time function, which is a useful concept in reliability analysis, Lorenz and Bonferroni Curve, which 

is a useful notion in economics. We illustrate and visualize the mean, variance, skewness, and kurtosis using 

some sets of parameter values. This will provide a glimpse into the distribution behavior. The results should 

add to the understanding of the distribution structure from a theoretical point of view. 
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