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 ABSTRACT   

Article History: 
This research focuses on the analysis of Resolving Efficient Dominating Set (REDS) and its 
application in solving Electronic Traffic Law Enforcement (ETLE) problems using the Spatial 

Temporal Graph Neural Network (STGNN). Resolving Efficient Dominating Set (REDS) is a 

concept in graph theory that studies a set of points in a graph that efficiently monitors other 

points. It involves ensuring that each point v ∈ V (G) - D is dominated by exactly one point in 

D, with no adjacent points in D, and the representation of point v ∈ V (G) concerning D is 

not the same, which is termed as a resolving efficient dominating set.  In the context of 

Electronic Traffic Law Enforcement (ETLE), the analysis of REDS has a significant impact. 

The theorem resulting from the analysis of REDS enables the determination of the number of 
traffic violation sensors required. Furthermore, by taking simulation data from road points, 

violation forecasting can be performed. The accurate predictions from this forecasting can 

assist authorities in anticipating and addressing traffic violation issues more effectively. 
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1. INTRODUCTION 

Traffic is the movement of vehicles on the road from one place to another. Traffic violations are the 

most common occurrences on the roads, committed by a majority of the population, including users of four-

wheeled vehicles, two-wheeled vehicles, buses, or trucks. This is the primary concern on the roads and is a 

crucial task for the police [1], [2]. In the implementation of ETLE (Electronic Traffic Law Enforcement), the 

police deploy traffic violation detection sensors at each road point. The Electronic Traffic Law Enforcement 

system requires a vital management center to enhance the monitoring and enforcement of traffic rules 

efficiently, namely the traffic control center. This traffic control center is a location that enables the 

monitoring of data received from road network sensors and manages the handling of traffic violations. In 

placing the traffic control center for Electronic Traffic Law Enforcement, the location and operational costs 

will be strategic if kept to a minimum while still being able to effectively monitor and enforce traffic laws in 

various specific zones. Therefore, a method is needed to place the traffic control center, one of which is by 

applying a branch of mathematics, namely graph theory. 

A graph 𝐺 is an ordered pair of sets 𝑉(𝐺) and 𝐸(𝐺), where 𝑉(𝐺) is a non-empty set of elements called 

vertices, and 𝐸(𝐺) is a (possibly empty) set of unordered pairs of elements from 𝑉(𝐺), called edges [3]. From 

this definition, a graph can be formed with at least one vertex and may not necessarily have edges. A graph 

with at least one vertex and no edges is called an empty graph. The number of vertices in a graph is referred 

to as the order of 𝐺. The number of edges in the graph 𝐺 is called the size of 𝐺. The order of the graph 𝐺 is 

denoted by |𝑉(𝐺)|, and the size of the graph 𝐺 is denoted by |𝐸(𝐺)| [4].  

In this research, the chosen graph theory topic is Resolving Efficient Dominating Set. A resolving 

efficient dominating set exists if every point 𝑣 ∈ 𝑉(𝐺) − 𝐷 is dominated by exactly one point in D, and no 

two points in D are adjacent, and the representation of point 𝑣 ∈  𝑉 (𝐺) to D is unique [5], [6]. Some relevant 

research can be seen at [7], [8], [9], [10], [11], [12], [13], [14]. These studies provide valuable insights into 

the scientific analysis of Resolving Efficient Dominating Set (REDS), exploring the minimum cardinality 

required to efficiently dominate points within a graph, thus contributing to the advancement of graph theory. 

𝛾𝑟𝑒(𝐺) represents the Resolving Efficient Dominating Number of graph 𝐺, which is the minimum cardinality 

required to efficiently monitor other points. Resolving efficient dominating set in this study will be linked to 

the analysis of Electronic Traffic Law Enforcement (ETLE). The objective of this analysis is to utilize the 

resolving efficient dominating set method in Electronic Traffic Law Enforcement (ETLE) to optimize the 

deployment of monitoring devices, thereby improving traffic management and law enforcement efficiency. 

To solve the ETLE problem in traffic using the concept of resolving efficient dominating set, the road network 

map will be represented as a graph. By using the resolving efficient dominating set algorithm, the ETLE 

system can determine an efficient dominating set that minimizes the number of monitoring devices required. 

The resolving efficient dominating set is applied to identify the most efficient and strategic locations 

where traffic control centers are placed to monitor data and manage the handling of traffic violations. By 

using the resolving efficient dominating set algorithm, the ETLE system can determine an efficient 

dominating set that minimizes the number of such control centers. Using the resolving efficient dominating 

set algorithm, the ETLE system can determine an efficient dominating set that minimizes the number of 

traffic control center devices needed. This placement will be based on the concept of a distinguishing efficient 

dominating set, where each point in a graph is dominated by exactly one member of the distinguishing 

efficient dominating set. A Graph Neural Network is utilized to classify each node in a graph and discern the 

meaning of each node [15]. STGNN is a neural network capable of processing spatial and temporal data, 

aiding in analyzing how systems or phenomena change over time represented in graph form. In this paper, a 

Spatial Temporal Graph Neural Network (STGNN) assisted with Python is used in solving Electronic Traffic 

Law Enforcement (ETLE) to determine the number of traffic violations that occur within a specific time 

frame. 

 

 

2. RESEARCH METHODS 

This research employs analytical and experimental methods. In the analytical study axiomatic 

deductive method, which employs pre-existing deductive principles in mathematical logic with existing 

axioms or theorems, is then applied to a problem related to resolving an efficient dominating set. In the 
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experimental method, we use STGNN (Spatial Temporal Graph Neural Network) which is a method that uses 

a special type of computer program to understand how things change over both space and time, helping us to 

better understand and predict patterns in data that evolve over both dimensions. 

In this paper, we will analyze traffic violations in Ponorogo City, East Java. There are five features 

utilized in the vertex embedding process, including the number of riders not wearing helmets, violating road 

markings, going against traffic flow, running red lights, and not turning on headlights. Subsequently, in the 

STGNN programming, the model is trained using the obtained data, tested, and ultimately used to predict 

traffic violations in Ponorogo City.  

We employ the following algorithm to study traffic violations using STGNN combined with a 

resolving efficient dominating set:  

1. Given a graph 𝐺(𝑉, 𝐸) of order 𝑛 and a feature matrix 𝐻𝑛×𝑚 of 𝑛 point and 𝑚 features, and given 

tolerance 𝜖; 
2. Determining the adjacency matrix 𝐴 of the graph 𝐺 and defining the matrix 𝐵 =  𝐴 +  𝐼, where 𝐼 is 

the identity matrix; 

3. Initialize the weight 𝑊𝑔, bias 𝛽, and learning rate 𝛼. (For simplicity, set 𝑊𝑔𝑚×1 = [𝑤1𝑤2…𝑤𝑚], 

where 0 ≤ 𝑤𝑗 ≤ 1, bias 𝛽 = 0, and 0 ≤ 𝛼 ≤ 1); 

4. Multiply the weight matrix by the point features, by defining the message function 

 𝑚𝑢
𝑙 = 𝑀𝑆𝐺𝑙(ℎ𝑢

𝑖−1). For the linear layer 𝑚𝑢
𝑙 = 𝑊𝑔𝑙(ℎ𝑢

𝑖−1). In the equation, 𝑙 refers to the layer 

index, 𝑢 denotes the node being processed, and 𝑖 represents the iteration or step; 

5. Sum the messages from neighboring points, using the function ℎ𝑥
𝑙 = 𝐴𝐺𝐺𝑙𝑚𝑢

𝑙−1, 𝑢 ∈ 𝑁(𝑣) and 

apply the sum(.) function, ℎ𝑥
𝑙 = 𝑠𝑢𝑚𝑙𝑚𝑢

𝑙−1, 𝑢 ∈ 𝑁(𝑣);  

6. Determine the error, where 𝑒𝑟𝑟𝑜𝑟𝑙 =
‖ℎ𝑥𝑖
𝑙 −ℎ𝑥𝑗

𝑙 ‖

|𝐸(𝐺)|2
, where 𝑣𝑖 , 𝑣𝑗 are two adjacent points; 

7. Observe whether the 𝑒𝑟𝑟𝑜𝑟 ≤  𝜖. yes, it means to stop; if not, proceed to step 8 to update the weight 

matrix W; 

8. Update the weight matrix with 𝑊𝑔𝑙+1 = 𝑊𝑗
𝑙 +  𝛼 × 𝑧𝑗 × 𝑒

𝑙 where 𝑧𝑗 is the sum of each column in 

𝐻𝑥𝑖
𝑙  divided by the number of nodes; 

9. Repeat steps 4-7 until 𝑒𝑟𝑟𝑜𝑟 ≤  𝜖; 
10. Obtain training, testing, and forecasting results, then stop. 

 
 

3. RESULTS AND DISCUSSION 

3.1 Research Findings on Resolving Efficient Dominating Set 

This research produces four theorems regarding the resolving efficient domination number. Below are 

the theorem results along with the proofs regarding the resolving efficient domination number in the graph 

𝑃𝑛⊙𝑃2, 𝑆𝑛⊙𝑃2, 𝐶𝑛⊙𝑃2, and 𝑆ℎ𝑎𝑐𝑘(𝐺, 𝑢𝑖, 𝑛).  The corona 𝐺1⊙𝐺2 of two graphs 𝐺1 (with 𝑛1 vertices 

and 𝑚1 edges) and 𝐺2 (with 𝑛2 vertices and 𝑚2 edges) is defined as the graph obtained by taking one copy 

of 𝐺1 and 𝑛1 copies of 𝐺2, and then joining the i-th vertex of 𝐺1 with an edge to every vertex in the i-th copy 

of 𝐺2. The notation 𝛾𝑟𝑒(𝐺) is used to determine the minimum number required to efficiently dominate the 

graph 𝐺. 

Theorem 1. For the graph 𝑃𝑛⊙𝑃2 with 𝑛 ≥ 2,  𝛾𝑟𝑒 (𝑃𝑛⊙𝑃2 ) = 𝑛. 
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Figure 1. Resolving Efficient Dominating Set (𝑷𝟒⊙𝑷𝟐) 

Proof. The graph 𝑃𝑛⊙𝑃2 is a graph with the vertex set 𝑉(𝑃𝑛⊙𝑃2) = {𝑢𝑖; 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑢𝑖,𝑗; 1 ≤ 𝑖 ≤

𝑛, 1 ≤ 𝑗 ≤ 2} and the edge set 𝐸(𝑃𝑛⊙𝑃2 ) = {𝑢𝑖 𝑢𝑖+1; 1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑢𝑖 𝑢𝑖,𝑗; 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 2} ∪

{𝑢𝑖,1 𝑢𝑖,2; 1 ≤ 𝑖 ≤ 𝑛}. The cardinality of the vertex set and edge set of the graph 𝑃𝑛⊙𝑃2 𝑖𝑠 |𝑉(𝑃𝑛⊙𝑃2)| =

3𝑛 and |𝐸(𝑃𝑛⊙𝑃2 )| = 4𝑛 − 1. 

Based on Figure 1 it depicts the result of the corona operation of a path graph of order 4 (𝑃4) with a 

path graph of order 2 (𝑃2). In the 𝑃4 graph, the 𝑃2 graph is duplicated 4 times, and then the points in each 𝑃2 

graph is connected to every point in the 𝑃4 graph. 

We will prove that 𝛾𝑟𝑒 (𝑃𝑛⊙𝑃2) = 𝑛 by demonstrating the upper bound 𝛾𝑟𝑒 (𝑃𝑛⊙𝑃2) and the lower 

bound 𝛾𝑟𝑒 (𝑃𝑛⊙𝑃2). First, let's establish the upper bound for the resolving efficient domination number of 

𝑃𝑛⊙𝑃2. Assuming |𝐷1| = 𝑛 + 1, we obtain: 

(i) If 𝐷1 = {𝑢𝑖,1; 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑢𝑖}, there will be a point 𝑢𝑖,2 where |𝑁(𝑢𝑖,2) ∩ 𝐷1| ≠ 1. Thus, 𝐷1 is not 

an efficient dominating set; 

(ii) If 𝐷1 = {𝑢𝑖,2; 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑢𝑖}, there will be a point 𝑢𝑖,1 where |𝑁(𝑢𝑖,1) ∩ 𝐷1| ≠ 1. Thus, 𝐷1 is not 

an efficient dominating set. 

Secondly, we choose 𝐷2 = {𝑢𝑖,1;  1 ≤ 𝑖 ≤ 𝑛} in such a way that |𝐷2| = 𝑛. Then, to determine if the 

representation of each vertex with respect to 𝐷2 is distinct from each other, we can examine the distance 

function between two points in the graph 𝑃𝑛⊙𝑃2, which is: 

𝑑(𝑢𝑖𝑢𝑘,1) = |𝑖 − 𝑘| + 1 

𝑑(𝑢𝑖,1𝑢𝑘,1) =  {
|𝑖 − 𝑘| + 2,   𝑖 ≠ 𝑘
0                     𝑖 = 𝑘

 

𝑑(𝑢𝑖,1𝑢𝑘,1) =  {
|𝑖 − 𝑘| + 2,   𝑖 ≠ 𝑘
1                     𝑖 = 𝑘

 

𝐷2 is an efficient dominating set because every point 𝑢𝑖, 𝑢𝑖,𝑗 ∈ 𝑉(𝑃𝑛⊙𝑃2 ) − 𝐷2 is dominated by exactly 

one point 𝑢𝑖,1 ∈ 𝐷2, and 𝑁(𝑢𝑖) ∩ 𝐷2 = 𝑢𝑖,1, 𝑁(𝑢𝑖,2) ∩ 𝐷2 = 𝑢𝑖,1, ensuring that |𝑁(𝑢) ∩ 𝐷2| = 1. Therefore, 

𝐷2 is a resolving efficient dominating set. 

Third, we will prove the lower bound for 𝑃𝑛⊙𝑃2. Assuming |𝐷3| = 𝑛 − 1, we obtain: 

(i) If 𝐷3 = {𝑢𝑖,1;  1 ≤ 𝑖 ≤ 𝑛 − 1}, there are points 𝑢𝑖 and 𝑢𝑖𝑗 that are not dominated by 𝑢𝑖,1 in 𝐷3. Thus, 

𝐷3 is not an efficient dominating set; 

(ii) If 𝐷3 = {𝑢𝑖,2;  1 ≤ 𝑖 ≤ 𝑛 − 1}, there are points 𝑢𝑖 and 𝑢𝑖𝑗 that are not dominated by 𝑢𝑖,2 in 𝐷3. Thus, 

𝐷3 is not an efficient dominating set; 

(iii) If 𝐷3 = {𝑢𝑖;  1 ≤ 𝑖 ≤ 𝑛 − 1}, there are points 𝑢𝑖 where |𝑁(𝑢𝑖) ∩ 𝐷3 | ≠ 1. Thus, 𝐷3 is not an efficient 

dominating set. 

Based on these proofs, we can conclude that |𝐷2| is the minimum cardinality of the resolving efficient 

dominating set in the graph 𝑃𝑛⊙𝑃2, hence 𝛾𝑟𝑒 (𝑃𝑛⊙𝑃2 ) = 𝑛.       ■  

Theorem 2. For the star graph 𝑆𝑛 with 𝑛 ≥ 2, and the path graph 𝑃2, 𝛾𝑟𝑒 (𝑆𝑛⊙𝑃2 ) = 𝑛 + 1. 
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Figure 2. Resolving Efficient Dominating Set (𝑺𝟒⊙𝑷𝟐) 

Proof. The set of vertices and the set of edges in the graph 𝑆𝑛⊙𝑃2 are 𝑉(𝑆𝑛⊙𝑃2) = {𝐴} ∪
{𝑢𝑖; 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝐴𝑖; 1 ≤ 𝑖 ≤ 2} ∪ {𝑢𝑖,𝑗; 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛}, 𝐸(𝑆𝑛⊙𝑃2) = {𝐴𝑢𝑖; 1 ≤ 𝑗 ≤ 𝑛} ∪

{𝐴𝐴𝑖; 1 ≤ 𝑗 ≤ 2} ∪ {𝐴1𝐴2} ∪ {𝑢𝑖𝑢𝑖,𝑗; 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 2} ∪ {𝑢𝑖,1𝑢𝑖,2; 1 ≤ 𝑖 ≤ 𝑛}. The cardinality of the 

set of vertices and the set of edges of the graph 𝑆𝑛⊙𝑃2 is |𝑉(𝑆𝑛⊙𝑃2)| = 3𝑛 + 3 and |𝐸(𝑆𝑛⊙𝑃2)| =
4𝑛 + 3. 

 𝛾𝑟𝑒 (𝑆𝑛⊙𝑃2) = 𝑛 + 1 is proven by showing the upper bound 𝛾𝑟𝑒 (𝑆𝑛⊙𝑃2 ) ≤ 𝑛 + 1 and the lower 

bound 𝛾𝑟𝑒 (𝐶𝑛⊙𝑃2) ≥ 𝑛 + 1.  

First, we prove the upper bound of the resolving efficient domination number of 𝑆𝑛⊙𝑃2. Assuming 

|𝐷| = 𝑛 + 2, we obtain: 

(i) If 𝐷1 = {𝑢𝑖,1; 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝐴1} ∪ {𝐴}, then there will be a point 𝑢𝑖 such that |𝑁(𝑢𝑖) ∩ 𝐷1| ≠ 1 and a 

point 𝐴2 such that |𝑁(𝐴2) ∩ 𝐷1| ≠ 1  Thus, 𝐷1 is not an efficient dominating set; 

(ii) If 𝐷1 = {𝑢𝑖,1; 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝐴} ∪ {𝑢𝑖}, there will be a point 𝑢𝑖,1 where |𝑁(𝑢𝑖,1) ∩ 𝐷1| ≠ 1. Thus, 𝐷1 
is not an efficient dominating set. 

Second, we choose 𝐷2 = {𝑢𝑖1; 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝐴1} such that |𝐷2| = 𝑛 + 1. To determine whether the 

representation of each node with respect to 𝐷2 is distinct from one another, we can refer to Table 1. 𝐷2 is an 

efficient dominating set because each point 𝐴, 𝐴𝑖 , 𝑢𝑖, 𝑢𝑖𝑗 ∈  𝑉(𝑃𝑛⊙𝑃2) − 𝐷2 is dominated by exactly one 

point 𝑢𝑖,1, 𝐴1 ∈ 𝐷2, and 𝑁(𝑢𝑖) ∩ 𝐷2 = 𝑢𝑖,1, 𝑁(𝑢𝑖,2 ) ∩ 𝐷2 = 𝑢𝑖,1, 𝑁(𝐴) ∩ 𝐷2 = 𝐴1, 𝑁(𝐴2) ∩ 𝐷2 = 𝐴1, so 

|𝑁(𝑢) ∩ 𝐷2 = 1| and |𝑁(𝐴) ∩ 𝐷2 = 1|. Thus, 𝐷2 is a resolving efficient dominating set.  

Table 1. Representation Of Points 𝒖 And 𝑨 in 𝑽(𝑺𝒏⊙𝑷𝟐) With Respect To 𝑫𝟐 

𝒏 𝒓(𝒗|𝑫) Condition 

𝑢1 
(2,1, 3,… ,3⏟  

𝑛−1

) 𝑛 ≥ 2 

 

𝑢𝑖 
(2, 3, … ,3⏟  

𝑖−1

, 1, 3,… ,3⏟  
𝑛−1

) 𝑖 ≥ 2 

 

𝑢𝑛 (2, 3,… ,3⏟  
𝑛−1

) 𝑛 ≥ 2 

 

𝑢1,1 
(3,0, 4,… ,4⏟  

𝑛+2

) 𝑛 ≥ 2 

 

𝑢𝑖,𝑗  
(3, 4, … ,4⏟  

𝑖−1

, 0, 4,… ,4⏟  
𝑛−𝑖

) 𝑖 ≥ 2, 𝑗 = 1 

 

𝑢𝑛,𝑗  
(3, 4,… ,4⏟  

𝑛−1

, 0) 𝑛 ≥ 2, 𝑗 = 1 

 

𝑢1,2 
(3,1, 4, . . ,4⏟  

𝑛−1

) 𝑛 ≥ 2 
 

𝑢𝑖,𝑗 
(3, 4, … ,4⏟  

𝑖−1

, 1, 4,… ,4⏟  
𝑛−𝑖

) 𝑖 ≥ 2, 𝑗 = 2 
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𝒏 𝒓(𝒗|𝑫) Condition 

𝑢𝑛,𝑗  
(3, 4, . . ,4⏟  

𝑛−1

, 1) 𝑛 ≥ 2, 𝑗 = 2 

 

𝐴 (1, 2, . . ,2⏟  
𝑛

) 𝑛 ≥ 2 
 

𝐴1 
(0, 3, . . ,3⏟  

𝑛

) 𝑛 ≥ 2 
 

𝐴2 
(1, 3, . . ,3⏟  

𝑛

) 𝑛 ≥ 2 
 

Third, we will prove the lower bound of 𝛾𝑟𝑒 (𝑆𝑛⊙𝑃2). Assuming |𝐷3| = 𝑛, we obtain: 

(i) If 𝐷3 = {𝑢𝑖,1; 1 ≤ 𝑖 ≤ 𝑛}, then there exist points 𝐴 and 𝐴𝑖 that are not dominated by 𝑢𝑖,1 in 𝐷3. Thus, 

𝐷3 is not an efficient dominating set; 

(ii) If 𝐷3 = {𝑢𝑖,2; 1 ≤ 𝑖 ≤ 𝑛}, then there exist points 𝐴 and 𝐴𝑖 that are not dominated by 𝑢𝑖,2 in 𝐷3. Thus, 

𝐷3 is not an efficient dominating set. 

(iii) If 𝐷3 = {𝑢𝑖; 1 ≤ 𝑖 ≤ 𝑛}, then there exists a point 𝑢𝑖 where |𝑁(𝑢𝑖) ∩ 𝐷3 | ≠ 1. Thus, 𝐷3 is not an 

efficient dominating set; 

(iv) 𝐼𝑓 𝐷3 = {𝑢𝑖; 1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝐴}, then there exists a point 𝑢𝑖 where |𝑁(𝑢𝑖) ∩ 𝐷3 | ≠ 1, and there 

exist points 𝐴1 and 𝐴2 ∈ 𝑉(𝑆𝑛⊙𝑃2) such that 𝑟(𝐴1│𝐷3) = 𝑟(𝐴1│𝐷3) = (1,2, … ,2). Thus, 𝐷3 is not 

an efficient dominating set 

Based on these proofs, we can conclude that |𝐷2| is the minimum cardinality of a resolving efficient 

dominating set in the graph 𝑆𝑛⊙𝑃2 such that 𝛾𝑟𝑒 (𝑆𝑛⊙𝑃2) = 𝑛 + 1.      ■ 

Theorem 3. For the cycle graph 𝐶𝑛 and the path graph 𝑃2, 𝛾𝑟𝑒 (𝐶𝑛⊙𝑃2) = 𝑛, for 𝑛 ≥ 3.  

 
Figure 3. Resolving Efficient Dominating Set (𝑪𝟒⊙𝑷𝟐) 

Proof. The graph 𝐶𝑛⊙𝑃2 is the corona graph between the cycle graph Cn with 𝑛 ≥ 3 and the path graph of 

order 2 (𝑃2). The set of vertices of 𝐶𝑛⊙𝑃2 is denoted as 𝑉(𝐶𝑛⊙𝑃2) = {𝑢𝑖; 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑢𝑖,𝑗; 1 ≤

𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 2}, and the set of edges is denoted as 𝐸(𝐶𝑛⊙𝑃2) = {𝑢𝑖 𝑢𝑖+1; 1 ≤ 𝑖 ≤ 𝑛 − 1} ∪
{𝑢1 𝑢𝑛 } ∪ {𝑢𝑖 𝑢𝑖,𝑗; 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 2}  ∪ {𝑢𝑖,1 𝑢𝑖,2; 1 ≤ 𝑖 ≤ 𝑛}. The cardinality of the set of 

vertices and the set of edges of the graph 𝐶𝑛⊙𝑃2 are |𝑉(𝐶𝑛⊙𝑃2)| = 3𝑛 and |𝐸(𝐶𝑛⊙𝑃2)| = 4𝑛. 

The proof of 𝛾𝑟𝑒 (𝐶𝑛⊙𝑃2 ) = 𝑛 is demonstrated by establishing the upper bound 𝛾𝑟𝑒 (𝐶𝑛⊙𝑃2) ≤ 𝑛 

and the lower bound 𝛾𝑟𝑒 (𝐶𝑛⊙𝑃2 ) ≥ 𝑛. First, we prove the resolving efficient domination number bounds 

of 𝐶𝑛⊙𝑃2. Assuming |𝐷1| = 𝑛 + 1, we obtain: 

(i) If 𝐷1 = {𝑢𝑖,2; 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑢𝑖}, there will be a point 𝑢𝑖,1 where |𝑁(𝑢𝑖,1) ∩ 𝐷1| ≠ 1. Thus, 𝐷1 is not 

an efficient dominating set; 
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(ii) If 𝐷1 = {𝑢𝑖,1; 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑢𝑖}, there will be a point 𝑢𝑖,2 where |𝑁(𝑢𝑖,2) ∩ 𝐷1| ≠ 1. Thus, 𝐷1 is not 

an efficient dominating set. 

Secondly, we choose 𝐷2 = {𝑢𝑖,1; 1 ≤ 𝑖 ≤ 𝑛} such that |𝐷2 | = 𝑛. Each point 𝑢𝑖, 𝑢𝑖,𝑗 ∈ 𝑉(𝐶𝑛⊙𝑃2) −

𝐷2 is dominated by exactly one point 𝑢𝑖,1 ∈ 𝐷2, and 𝑁(𝑢𝑖) ∩ 𝐷2 = 𝑢𝑖,1, 𝑁(𝑢𝑖,2) ∩ 𝐷2 = 𝑢𝑖,1, so |𝑁(𝑢) ∩

𝐷2| = 1, thereby making 𝐷2 an efficient dominating set. Then, to determine whether the representation of 

each vertex with respect to 𝐷2 is distinct from one another, we can examine the distance function between 

two points in the graph 𝐶𝑛⊙𝑃2, namely: 

𝑑(𝑢𝑖𝑢𝑘,1) = |𝑖 − 𝑘| + 1 

𝑑(𝑢𝑖,1𝑢𝑘,1) = {
|𝑖 − 𝑘| + 3,   𝑖 ≠ 𝑘
0                     𝑖 = 𝑘

 

𝑑(𝑢𝑖,1𝑢𝑘,1) = {
|𝑖 − 𝑘| + 3,   𝑖 ≠ 𝑘
1                     𝑖 = 𝑘

 

So, 𝐷2 is a resolving efficient dominating set.  

Third, we will prove the lower bound of 𝛾𝑟𝑒 (𝐶𝑛⊙𝑃2). Assuming |𝐷3| = 𝑛 − 1, we obtain:  

(i) If 𝐷3 = {𝑢𝑖,1;  1 ≤ 𝑖 ≤ 𝑛 − 1}, there will be points 𝑢𝑖 and 𝑢𝑖𝑗 that are not dominated by 𝑢𝑖,1 in 𝐷3. 

Thus, 𝐷3 is not an efficient dominating set; 

(ii) If 𝐷3 = {𝑢𝑖,2;  1 ≤ 𝑖 ≤ 𝑛 − 1}, there will be points 𝑢𝑖 and 𝑢𝑖𝑗 that are not dominated by 𝑢𝑖,2 in 𝐷3. 

Thus, 𝐷3 is not an efficient dominating set; 

(iii) If 𝐷3 = {𝑢𝑖;  1 ≤ 𝑖 ≤ 𝑛 − 1}, there will be a point 𝑢𝑖 where |𝑁(𝑢𝑖) ∩ 𝐷3 | ≠ 1. Thus, 𝐷3 is not an 

efficient dominating set. 

Based on these proofs, we can conclude that |𝐷2| is the minimum cardinality of the resolving efficient 

dominating set in the graph 𝐶𝑛⊙𝑃2, hence 𝛾𝑟𝑒 (𝐶𝑛⊙𝑃2 ) = 𝑛.      ■ 

Theorem 4. If the 𝑆ℎ𝑎𝑐𝑘(𝐺, 𝑢𝑖, 𝑛) graph is a shackle operation graph with 𝑛 ≥ 2, then 𝛾𝑟𝑒 
(𝑆ℎ𝑎𝑐𝑘(𝐺, 𝑢𝑖, 𝑛)) = 2𝑛 + 1. 

 
Figure 4. Resolving Efficient Dominating Set (𝑺𝒉𝒂𝒄𝒌(𝑮,𝒖𝒊, 𝟐)) 

Proof. 𝐺 represents the graph representation of the road map of Ponorogo, with 𝑢𝑖  representing the points 

corresponding to intersections or critical points in Ponorogo. Subsequently, we can associate the shackle 

operation on this representation graph with duplication or replication 𝑛 times. The 𝑆ℎ𝑎𝑐𝑘(𝐺, 𝑢𝑖, 𝑛) graph is 

the shackle operation graph of the representation graph of the Ponorogo road map with order 8. The 

𝑆ℎ𝑎𝑐𝑘(𝐺, 𝑢𝑖, 𝑛) graph has 7𝑛 + 1 vertices, and |𝐷| = 2𝑛 + 1. 

It will be proven that 𝛾𝑟𝑒 (𝑆ℎ𝑎𝑐𝑘(𝐺, 𝑢𝑖, 𝑛)) = 2𝑛 + 1 by demonstrating the upper bound of 

𝛾𝑟𝑒 (𝑆ℎ𝑎𝑐𝑘(𝐺, 𝑢𝑖, 𝑛)) and the lower bound of 𝛾𝑟𝑒 (𝑆ℎ𝑎𝑐𝑘(𝐺, 𝑢𝑖, 𝑛)). First, we prove the upper bound of the 

resolving efficient domination number of 𝑆ℎ𝑎𝑐𝑘(𝐺, 𝑢𝑖, 𝑛). Assuming |𝐷1| = 2𝑛 + 2 we obtain if 𝐷1 =
{𝑢𝑖; 1 ≤ 𝑖 ≤ 2𝑛 + 2} then there exists a point 𝑢𝑖 where |𝑁(𝑢𝑖) ∩ 𝐷1| ≠ 1. Thus  𝐷1 is not an efficient 

dominating set. 

If 𝐷1 = {𝑢𝑖; 1 ≤ 𝑖 ≤ 2𝑛 + 2} then there exists a point 𝑢𝑖 where |𝑁(𝑢𝑖) ∩ 𝐷1| ≠ 1. Thus  𝐷1 is not an efficient 

dominating set; 

Second, assume |𝐷2| = 2𝑛 + 1. 𝐷2 is an efficient dominating set because each point 𝑢𝑖 ∈
𝑉(𝑆ℎ𝑎𝑐𝑘(𝐺, 𝑢𝑖, 𝑛)) − 𝐷2 is dominated by exactly one point 𝑢𝑖 ∈ 𝐷2. Furthermore, we will show that the 

chosen 𝐷2 also satisfies the characteristics of a resolving set. To determine whether the representation of each 
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node with respect to 𝐷2 is distinct from one another, we can examine the distance function between two nodes 

in the graph 𝑆ℎ𝑎𝑐𝑘(𝐺, 𝑢𝑖 , 𝑛): 

𝑑(𝑢𝑖𝑢𝑘) = {
|𝑖 − 𝑘|,   𝑖 = 𝑘

|𝑖 − 𝑘| + 1,   𝑖 ≠ 𝑘 
 

 So, 𝐷2 is a resolving efficient dominating set. 

Third, we will prove the lower bound of 𝑆ℎ𝑎𝑐𝑘(𝐺, 𝑢𝑖, 𝑛). Assume |𝐷3| = 𝑛 + 1 we obtain if 𝐷3 =
{𝑢𝑖; 1 ≤ 𝑖 ≤ 𝑛 + 1}, then there exists a point 𝑢𝑖 that is not dominated by any 𝑢𝑖 in 𝐷1. Thus, 𝐷3 is not an 

efficient dominating set. 

If 𝐷3 = {𝑢𝑖; 1 ≤ 𝑖 ≤ 𝑛 + 1}, then there exists a point 𝑢𝑖 that is not dominated by any 𝑢𝑖 in 𝐷1. Thus, 𝐷3 is 

not an efficient dominating set; 

Based on these proofs, we can conclude that |𝐷2| is the minimum cardinality of a resolving efficient 

dominating set in the graph 𝑆ℎ𝑎𝑐𝑘(𝐺, 𝑢𝑖 , 𝑛), hence 𝛾𝑟𝑒(𝑆ℎ𝑎𝑐𝑘(𝐺, 𝑢𝑖, 𝑛)) = 2𝑛 + 1.   ■ 

 

 

3.2. The Implementation of The Resolving Efficient Dominating Set in Solving Electronic Traffic 

Law Enforcement Problems Using STGNN 

The analysis of resolving an efficient dominating set in the electronic traffic law enforcement problem 

aims to enhance the efficiency of electronic traffic law enforcement. A road network is represented as a graph. 

Subsequently, determining the dominator of the road map graph with the condition that each point in the 

graph is dominated by only one dominator and is not adjacent to each other. Then, determining the 

representation of each point with respect to the dominator, if the representation of each point is different, it 

meets the criteria of a resolving efficient dominating set. If there are two points with the same distance 

representation, the activity is repeated by searching for the dominator's location again. Resolving an efficient 

dominating set will be interpreted as an operator monitoring traffic violations in specific zones. The concept 

of resolving an efficient dominating set is applied to identify the most efficient and strategic locations where 

traffic surveillance operators or devices should be placed to monitor and control traffic efficiently. In other 

words, dominant nodes (dominators) in the road network graph are interpreted as optimal locations for traffic 

violation surveillance operators. 

 

 
Figure 5. REDS Represents the Graph Representation of the Road Network in Ponorogo 

The road map of Ponorogo depicts a network of roads traversing the city from north to south and from 

east to west, seamlessly connecting every corner of the city. Each road in the map becomes a node in the 

graph. The edges between these nodes represent the connections or roads linking two points. For instance, a 

highway between two intersections would be an edge in the graph. Figure 5 represents the basic graph in 

Theorem 4. Based on Figure 5 the result of the resolving efficient domination number is three. From this 

result, there are three optimal locations for ETLE traffic control centers to conduct surveillance effectively 

and respond to violations. This research utilizes simulated traffic violation data. The traffic violation data 

used consists of 5 features: driving without a helmet, violating lane markings, driving against traffic, running 

red lights, and driving without headlights. The study focuses on 8 road points in Ponorogo City and spans a 

duration of 60 days. The obtained data is initially non-normalized and is subsequently normalized. 



BAREKENG: J. Math. & App., vol. 18(3), pp. 1615- 1628, September, 2024. 1623 

 

The resolution of the electronic traffic law enforcement (ETLE) problem is carried out using graph 

neural network (GNN) techniques. Numerical calculations are performed first to demonstrate the execution 

of the graph neural network (GNN) algorithm. These numerical calculations are conducted when dealing with 

a small-sized dataset. Given a graph G with order 8, the set of vertices and edges of graph G are  
𝑉 (𝐺) =  {𝑥1, 𝑥2 , 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7 , 𝑥8} and 𝐸(𝐺)  =  {𝑥1𝑥2, 𝑥2𝑥3 , 𝑥2𝑥4, 𝑥3𝑥5, 𝑥4𝑥5, 𝑥3𝑥7, 𝑥5𝑥6, 𝑥6𝑥7, 𝑥7𝑥8}. 
Feature matrix 𝐻𝑛×𝑚 of 8 point and 5 features are given as follows: 

ℎ𝑣𝑖 =

[
 
 
 
 
 
 
 
0.446666667 0.333333333 0.333333333 0.1 0.291304348

0.1 0.9 0.9 0.569565217 0.465217391
0.9 0.6 0.6 0.9 0.62173913
0.54 0.45 0.45 0.447826087 0.9

0.633333333 0.766666667 0.766666667 0.760869565 0.795652174
0.9 0.55 0.55 0.552173913 0.569565217
0.62 0.1 0.1 0.308695652 0.1

0.366666667 0.233333333 0.233333333 0.239130435 0.204347826]
 
 
 
 
 
 
 

 

With the obtained graph, we can determine the adjacency matrix, identity matrix, and loop-adjacency 

matrix as follows: 

𝐴 =

[
 
 
 
 
 
 
 
0 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0
0 1 0 0 1 0 1 0
0 1 0 0 1 0 0 0
0 0 1 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0]

 
 
 
 
 
 
 

, 𝐼 =

[
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 

 

𝐵 = 𝐴 + 𝐼 =

[
 
 
 
 
 
 
 
1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0
0 1 1 0 1 0 1 0
0 1 0 1 1 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 0
0 0 1 0 0 1 1 1
0 0 0 0 0 0 1 1]

 
 
 
 
 
 
 

 

 

We initiate the technical calculations by initializing the learning weights from a matrix (5, 5), which 

means the number of hidden layers is five, and the number of neurons in each hidden layer is five. 

𝑊 =

[
 
 
 
 
0.02 0.05 0.03 0.1 0.04
0.01 0.06 0.08 0.02 0.05
0.03 0.07 0.02 0.09 0.06
0.04 0.01 0.07 0.05 0.02
0.08 0.05 0.04 0.03 0.06]

 
 
 
 

 

And 𝜖 =  0,001. The first iteration 𝑚𝑣𝑖
𝑙+1 = ℎ𝑣𝑖.  𝑊

𝑙 ,  𝑙 = 0,1,2,3,4,⋯ , 𝑛 can be explained as follows: 

𝑚𝑣𝑖
1 = ℎ𝑣𝑖

0 .  𝑊0 

𝑚1𝑣𝑖 =

[
 
 
 
 
 
 
 
0.04957101 0.08123188 0.06538551 0.09507246 0.07401159
0.098 0.15095652 0.15147826 0.15143478 0.14230435

0.12773913 0.16308696 0.17486957 0.21965217 0.15730435
0.11871304 0.13497826 0.12854783 0.1528913 0.13405652
0.13742029 0.17872464 0.18075362 0.20957971 0.17262319
0.10765217 0.1505 0.14343478 0.19519565 0.14171739
0.03674783 0.05208696 0.0542087 0.09143478 0.04797391
0.04257971 0.06127536 0.05924638 0.08042029 0.05737681]

 
 
 
 
 
 
 

 

Considering matrix 𝐵 and applying the sum(·) aggregation on the elements of matrix 𝑚𝑣𝑖
1 , we have: 
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ℎ𝑣1,1
1 =∑[0.04957101;  0.098] = 0.14757101 

ℎ𝑣2,1
1 =∑[0.04957101;  0.098;  0.12773913;  0.11871304] = 0.39402318 

ℎ𝑣3,1
1 =∑[0.098;  0.12773913;  0.13742029;  0.03674783] = 0.40090725 

ℎ𝑣4,1
1 =∑[0.098;  0.11871304;  0.13742029] = 0.35413333 

ℎ𝑣5,1
1 =∑[0.12773913;  0.11871304;  0.13742029;  0.10765217] = 0.49152463 

ℎ𝑣6,1
1 =∑[0.13742029;  0.10765217;  0.03674783] = 0.28182029 

ℎ𝑣7,1
1 =∑[0.12773913;  0.10765217;  0.03674783;\0.04257971] = 0.31471984 

ℎ𝑣8,1
1 =∑[0.03674783;  0.04257971] = 0.07932754 

ℎ𝑣1,2
1 =∑[0.08123188;  0.15095652] = 0.2321884 

ℎ𝑣2,2
1 =∑[0.08123188;  0.15095652;  0.16308696;  0.13497826] = 0.53025362 

ℎ𝑣3,2
1 =∑[0.15095652;  0.16308696;  0.17872464;  0.05208696] = 0.54485508 

ℎ𝑣4,2
1 =∑[0.15095652;  0.13497826;  0.17872464] = 0.46465942 

ℎ𝑣5,2
1 =∑[0.16308696;  0.13497826;  0.17872464;  0.1505] = 0.62729 

ℎ𝑣6,2
1 =∑[0.17872464;  0.1505;  0.05208696] = 0.3813116 

ℎ𝑣7,2
1 =∑[0.16308696;  0.1505;  0.05208696;  0.06127536] = 0.42694928 

ℎ𝑣8,2
1 =∑[0.05208696;  0.06127536] = 0.11336232 

ℎ𝑣1,3
1 =∑[0.06538551;  0.15147826] = 0.21686377 

ℎ𝑣2,3
1 =∑[0.06538551;  0.15147826;  0.17486957;  0.12854783] = 0.52028117 

ℎ𝑣3,3
1 =∑[0.15147826;  0.17486957;  0.18075362;  0.0542087] = 0.56131015 

ℎ𝑣4,3
1 =∑[0.15147826;  0.12854783;  0.18075362] = 0.46077971 

ℎ𝑣5,3
1 =∑[0.17486957;  0.12854783;  0.18075362;  0.14343478] = 0.6276058 

ℎ𝑣6,3
1 =∑[0.18075362;  0.14343478;  0.0542087] = 0.3783971 

ℎ𝑣7,3
1 =∑[0.17486957;  0.14343478;  0.0542087;  0.05924638] = 0.43175943 

ℎ𝑣8,3
1 =∑[0.0542087;  0.05924638] = 0.11345508 

ℎ𝑣1,4
1 =∑[0.09507246;  0.15143478] = 0.24650724 

ℎ𝑣2,4
1 =∑[0.09507246;  0.15143478;  0.21965217;  0.1528913] = 0.61905071 

ℎ𝑣3,4
1 =∑[0.15143478;  0.21965217;  0.20957971;  0.09143478] = 0.67210144 

ℎ𝑣4,4
1 =∑[0.15143478;  0.1528913;  0.20957971] = 0.51490579 

ℎ𝑣5,4
1 =∑[0.21965217;  0.1528913;  0.20957971;  0.19519565] = 0.77731883 

ℎ𝑣6,4
1 =∑[0.20957971;  0.19519565;  0.09143478] = 0.49621014 

ℎ𝑣7,4
1 =∑[0.21965217;  0.19519565;  0.09143478;  0.08042029] = 0.58670389 

ℎ𝑣8,4
1 =∑[0.09143478;  0.08042029] = 0.17185507 
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ℎ𝑣1,5
1 =∑[0.07401159;  0.14230435] = 0.21631594 

ℎ𝑣2,5
1 =∑[0.07401159;  0.14230435;  0.15730435;  0.13405652] = 0.50767681 

ℎ𝑣3,5
1 =∑[0.14230435;  0.15730435;  0.17262319;  0.04797391] = 0.5202058 

ℎ𝑣4,5
1 =∑[0.14230435;  0.13405652;  0.17262319] = 0.44898406 

ℎ𝑣5,5
1 =∑[0.15730435;  0.13405652;  0.17262319;  0.14171739] = 0.60570145 

ℎ𝑣6,5
1 =∑[0.17262319;  0.14171739;  0.04797391] = 0.36231449 

ℎ𝑣7,5
1 =∑[0.15730435;  0.14171739;  0.04797391;  0.05737681] = 0.40437246 

ℎ𝑣8,5
1 =∑[0.04797391;  0.05737681] = 0.10535072 

 

Therefore, the first iteration produces the following embedding vector: 

ℎ𝑣𝑖
1 =

[
 
 
 
 
 
 
 
0.14757101 0.2321884 0.21686377 0.24650724 0.21631594
0.39402318 0.53025362 0.52028117 0.61905071 0.50767681
0.40090725 0.54485508 0.56131015 0.67210144 0.5202058
0.35413333 0.46465942 0.46077971 0.51490579 0.60570145
0.49152463 0.62729 0.6276058 0.77731883 0.44898406
0.28182029 0.3813116 0.3783971 0.49621014 0.60570145
0.31471984 0.42694928 0.43175943 0.58670389 0.40437246
0.07932754 0.11336232 0.11345508 0.17185507 0.10535072]

 
 
 
 
 
 
 

 

With the 𝑒𝑟𝑟𝑜𝑟 (𝑒), it can be calculated as follows: 

𝑒𝑟𝑟𝑜𝑟𝑙 =

||ℎ𝑣𝑖
𝑙 − ℎ𝑣𝑗

𝑙 ||
𝑖𝑛𝑓

|𝐸(𝐺)|2
 where 𝑖, 𝑗 ∈ {1,2,3,4,5,6,7,8,9} 

𝑒𝑟𝑟𝑜𝑟0 =
||ℎ𝑣1
1 − ℎ𝑣2

1 || + ||ℎ𝑣2
1 − ℎ𝑣3

1 || + ||ℎ𝑣2
1 − ℎ𝑣4

1 || + ||ℎ𝑣3
1 − ℎ𝑣5

1 || + ||ℎ𝑣3
1 − ℎ𝑣7

1 || +

|𝐸(𝐺)|2
 

||ℎ𝑣4
1 − ℎ𝑣5

1 || + ||ℎ𝑣5
1 − ℎ𝑣6

1 || + ||ℎ𝑣6
1 − ℎ𝑣7

1 || + ||ℎ𝑣7
1 − ℎ𝑣8

1 ||

|𝐸(𝐺)|2
 

𝑒𝑟𝑟𝑜𝑟0 = 0.13804 

 

Due to the 𝑒𝑟𝑟𝑜𝑟 >  𝜖, we need to update the learning weights 𝑊. We update the learning weights 

using 𝑊𝑙+1 = 𝑊𝑙 + 𝛼 × 𝑒𝑟𝑟𝑜𝑟𝑙 × (ℎ𝑣𝑖
𝑙 )
𝑇
× ℎ𝑣𝑖

𝑙+1 until the 𝑒𝑟𝑟𝑜𝑟 ≤ 𝜖. With 𝛼 =  0.001, we can update the 

weights 𝑊 as follows:  

𝑊𝑙+1 = 𝑊𝑙 + α × 𝑒𝑟𝑟𝑜𝑟𝑙 × (ℎ𝑣𝑖
𝑙 )
𝑇
× ℎ𝑣𝑖

𝑙+1 

𝑊1 = 𝑊0 + α × 𝑒𝑟𝑟𝑜𝑟0 × (ℎ𝑣𝑖
0 )
𝑇
× ℎ𝑣𝑖

1  

𝑊𝑙 =

[
 
 
 
 
0.02001878 0.05002411 0.03002702 0.10003000 0.04002336
0.01002121 0.06002712 0.08003034 0.02003384 0.05002634
0.03001735 0.07002219 0.02002499 0.09002773 0.06002161
0.04002615 0.01003342 0.07003737 0.05004160 0.02003240
0.08001786 0.05002282 0.04002577 0.03002842 0.06002215]

 
 
 
 

 

 

Having the new learning weight matrix 𝑊1, we can proceed to the next iteration using the formula 

𝑚𝑣𝑖
𝑙+1 = ℎ𝑣𝑖

𝑙 · 𝑊𝑙 , where 𝑙 =  0,1,2,3, ⋯ , 𝑛 until the 𝑒𝑟𝑟𝑜𝑟 is ≤ 0.001. 

Next, a simulation of training, testing, and forecasting traffic violation anomaly data is conducted. The 

numerical simulation of the graph neural network is performed using Python software. 
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Figure 6. Loss vs. Epoch 

 

 
Figure 7. Graphic Loss vs. Epoch 

 

In the training stage illustrated in Figure 6 and Figure 7, we can observe the changes in epoch training 

loss. Initially, at epoch 0, the training loss has a value of 0.3315, indicating that the initial model struggled to 

generalize traffic violation patterns. As the training process progresses, the training loss gradually decreases 

with each epoch. By epoch 20, the training loss decreases to 0.0716, reflecting an improvement in the model's 

ability to understand and recognize violation patterns. This trend continues, and by epoch 100, the training 

loss reaches 0.0531, indicating that the model is approaching an accurate representation of traffic violation 

data. Furthermore, by the end of the training process (epoch 200), the training loss reaches 0.0247, depicting 

that the model has achieved a high level of precision in predicting and generalizing observed traffic violation 

patterns. During the 60-day observation period at 8 road points, the testing phase for traffic violations yields 

a Mean Squared Error (MSE) value of 0.0176. This figure reflects the model's prediction error, with 0.0176 

indicating excellent prediction quality. 

 

 
Figure 8. Comparison of Testing and Training Stage Outputs 

The results of forecasting traffic violations for the next 14 days have been generated from the analysis 

of traffic violation data at 8 road points over 60 days. This forecasting process integrates patterns identified 

by the model during previous training. The forecast results indicate trends and estimated traffic violations 
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that may occur at each road point during the upcoming 14-day period. This process provides valuable insights 

for anticipating and managing potential traffic violations, assisting authorities in taking more effective 

preventive measures. The 14-day forecast can be observed in Figure 9. 

 
Figure 9. The Results of The 14-Day Forecast 

 

4. CONCLUSIONS 

In our paper, we analyze the resolving efficient domination number of several graphs including 𝑃𝑛⊙
𝑃2, 𝑆𝑛⊙𝑃2, 𝐶𝑛⊙𝑃2, and 𝑆ℎ𝑎𝑐𝑘(𝐺, 𝑢𝑖, 𝑛). Based on this research, it is found that 𝛾𝑟𝑒 (𝑃𝑛⊙𝑃2 ) = 𝑛, 

𝛾𝑟𝑒 (𝑆𝑛⊙𝑃2 ) = 𝑛 + 1, 𝛾𝑟𝑒 (𝐶𝑛⊙𝑃2 ) = 𝑛, and 𝛾𝑟𝑒 (𝑆ℎ𝑎𝑐𝑘(𝐺, 𝑢𝑖 , 𝑛)) = 2𝑛 + 1. The resulting theorem 

aims to determine the number of traffic violation sensors required within a road map. Subsequently, traffic 

violation simulation data is collected from these road points to forecast violations. The STGNN algorithm is 

divided into three stages: training, testing, and forecasting. The generated outputs indicate that the final model 

performs exceptionally well in reducing prediction errors and producing estimates that closely approximate 

the original data with high accuracy. During the 60-day observation period at 8 road points, the testing phase 

for traffic violations resulted in a Mean Squared Error (MSE) value of 0.0176. This figure reflects the model's 

prediction error, with 0.0176 indicating excellent prediction quality. This process provides valuable insights 

into anticipating and managing potential traffic violations, as well as assisting authorities in taking more 

effective preventive measures. 

Based on the research on resolving efficient dominating set in determining the value of the resolving 

efficient domination number on 𝑃𝑛⊙𝑃2, the graph 𝑆𝑛⊙𝑃2, the graph 𝐶𝑛⊙𝑃2, and the 𝑆ℎ𝑎𝑐𝑘(𝐺, 𝑢𝑖, 𝑛) 
graph, the researchers suggest other researchers conduct studies on resolving efficient dominating set in 

graphs resulting from other operations. Additionally, the researchers also recommend other researchers to 

apply resolving efficient dominating set in other application schemes. 
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