
          https://doi.org/10.30598/barekengvol18iss2pp1147-1154 

June 2024     Volume 18 Issue 2 Page 1147–1154 

P-ISSN: 1978-7227   E-ISSN: 2615-3017 

 

BAREKENG: Journal of Mathematics and Its Applications 

   

1147 
      

 CRAMER’S RULE IN MIN-PLUS ALGEBRA 

Zakia Nur Ramadhani Putri 1, Siswanto2*, Vika Yugi Kurniawan3 

 
1,2,3 Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret  

Jln. Ir. Sutami No. 36a, Surakarta, 57126, Indonesia 

 

Corresponding author’s e-mail: * sis.mipa@staff.uns.ac.id 

 

 ABSTRACT  

Article History: 
Cramer’s rule is a method for solving a system of linear equations in conventional algebra. 

The system of linear equations 𝐴𝑥 = 𝑏 can be solved using Cramer’s rule if det(𝐴) ≠ 0. 

Max-plus algebra is a set ℝ𝑚𝑎𝑥 = {−∞} ∪ ℝ where ℝ is a set of real numbers, equipped 

with binary operations ⊕ and ⊗ where 𝑎 ⊕ 𝑏 = max(𝑎, 𝑏) and 𝑎 ⊗ 𝑏 = 𝑎 + 𝑏. Min-plus 

Algebra is a set ℝ𝑚𝑖𝑛 = ℝ ∪ {+∞} where ℝ is a set of real numbers, equipped with binary 

operations ⊕ ′ and ⊗ where 𝑎 ⊕′ 𝑏 = min(𝑎, 𝑏) and 𝑎 ⊗ 𝑏 = 𝑎 + 𝑏. In max-plus 

algebra, Cramer’s rule has been formulated to solve a system of linear equations. Because 

max-plus algebra is isomorphic to min-plus algebra, Cramer’s rule can be formulated into 

min-plus algebra. The purpose of this research is to determine the sufficient conditions for 

a system of linear equations can be solved using Cramer’s rule. The method used in this 

research is a literature study that reviews previous research related to min-plus algebra, 

max-plus algebra, and Cramer’s rule in max-plus algebra. By using the appropriate 

analogy in max-plus algebra, we can determine the sufficient conditions so that a system of 

linear equations in min-plus algebra can be solved using Cramer’s rule. Based on the 

research, the sufficient conditions for a system of linear equations can be solved using 

Cramer’s rule are 𝑠𝑖𝑔𝑛(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛) = 𝑠𝑖𝑔𝑛(𝐴) for 1 ≤ 𝑖 ≤ 𝑛 and 

𝑑𝑜𝑚(𝐴) < 𝜀′ with the Cramer’s rule is 𝑥𝑖 ⊗ 𝑑𝑜𝑚(𝐴) = 𝑑𝑜𝑚(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛). 
For an invertible matrix A, Cramer’s rule can be written as                                                                     

𝑥𝑖 ⊗ 𝑝𝑒𝑟𝑚(𝐴) = 𝑝𝑒𝑟𝑚(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛). 
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1. INTRODUCTION 

Cramer’s rule is one of the rules that can be used to solve a system of linear equations 𝐴𝑥 = 𝑏 where 

𝐴 ∈ ℝ𝑛×𝑛, 𝑥 ∈ ℝ𝑛×1, and 𝑏 ∈ ℝ𝑛×1 in conventional algebra. A system of linear equations 𝐴𝑥 = 𝑏 can be 

solved using Cramer’s rule when 𝐴 is a non-singular matrix, or we can say det(A) ≠ 0 [1], [2]. Max-plus 

algebra is a set ℝ𝑚𝑎𝑥 = {−∞} ∪ ℝ where ℝ is a set of real numbers, equipped with two binary operations ⊕ 

and ⊗ where 𝑥 ⊕ 𝑦 = 𝑚𝑎𝑥(𝑥, 𝑦) and 𝑥 ⊗ 𝑦 = 𝑥 + 𝑦 [3], [4]. The structure (ℝ𝑚𝑎𝑥 ,⊕,⊗) is a semifield 

with a multiplication identity element 𝑒 = 0 and an addition identity element 𝜀 = −∞ [𝟓], [𝟔], [𝟕]. In max-

plus algebra, the determinant of a matrix does not have a direct analogy to conventional algebra because of 

the absence of additive inverse. However, there are two approaches called dominant and permanent which 

defined as a determinant of a matrix over max-plus algebra [8]. In 1988, Cramer’s rule has been developed 

by Olsder and Ross [8], [9] that is 𝑥𝑖 ⊗ 𝑑𝑜𝑚(𝐴) = 𝑑𝑜𝑚(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛) for 1 ≤ 𝑖 ≤ 𝑛 where 𝑎𝑗 

is the 𝑗th column of matrix 𝐴. As in conventional algebra, the solution of a system of linear equations             

𝐴 ⊗ 𝑥 = 𝑏 in max-plus algebra where 𝐴 ∈ ℝ𝑚𝑎𝑥
𝑛×𝑛 , 𝑥 ∈ ℝ𝑚𝑎𝑥

𝑛×1 , and 𝑏 ∈ ℝ𝑚𝑎𝑥
𝑛×1  may not exist, even when 

𝑑𝑜𝑚(𝐴) > 𝜀. An additional condition is required so that the system of linear equations can be solved using 

Cramer’s rule, that is 𝑠𝑖𝑔𝑛(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛) = 𝑠𝑖𝑔𝑛(𝐴) for 1 ≤ 𝑖 ≤ 𝑛 where 𝑎𝑗 is the 𝑗th column 

of matrix 𝐴 [8]. When the solution exists, it is not necessarily unique. 

There is another structure that has a similar structure as max-plus algebra called min-plus algebra. 

Min-plus algebra is a set ℝmin = ℝ ∪ {+∞}, where ℝ is a set of real numbers, equipped with two binary 

operations ⊕′ and ⊗, where 𝑥 ⊕′ 𝑦 = 𝑚𝑖𝑛(𝑥, 𝑦) and 𝑥 ⊗ 𝑦 = 𝑥 + 𝑦 [3], [10]. The structure (ℝ𝑚𝑖𝑛,⊕′,⊗) 

is a semifield with a multiplication identity element 𝑒 = 0 and an addition identity element 𝜀′ = +∞ [5], 

[10]. In 2011 and 2013, Musthofa [11] and Rudito [12] researched a system of linear equations. Also, in 2021, 

Diena [13] discussed about solving a system of linear equation in min-plus algebra using a reduction and 

discrepancy matrix.  In the same year, Siswanto et al.[14] have researched about the determinant of a matrix 

over min-plus algebra. Similarly, in max-plus algebra, the determinant of a matrix over min-plus algebra has 

no direct analogy to conventional algebra. The determinant is defined in two approaches called dominant and 

permanent over min-plus algebra. Siswanto et al. also discussed the relation between those two approaches. 

The dominant and permanent have the same value if the corresponding matrix is invertible. Due to the 

structural similarity of max-plus and min-plus algebra, by using the appropriate analogy in max-plus algebra, 

Cramer’s rule can be formulated into min-plus algebra. The purpose of this research is to determine the 

sufficient conditions for a system of linear equations in min-plus algebra to be solved using Cramer’s rule. 

 

2. RESEARCH METHODS 

The method used in this research is a literature study that reviews previous research such as books, 

journals, or articles related to min-plus algebra, matrix over min-plus algebra, and system of linear equations 

in min-plus algebra. It also uses references related to max-plus algebra and Cramer’s rule in max-plus algebra. 

The steps carried out in this study are studying material related to Cramer’s rule in max-plus algebra. Then, 

determine Cramer’s rule in min-plus algebra with dominant and permanent matrix using the appropriate 

analogy in max-plus algebra. After that, determine the definition of the sign of a matrix over min-plus algebra. 

Then, determine the sufficient condition so that a system of linear equations 𝑨 ⊗ 𝒙 = 𝒃 in min-plus algebra 

can be solved using Cramer’s rule. Then, make a conclusion. 

  

3. RESULTS AND DISCUSSION 

In conventional algebra when a matrix 𝐴 ∈ ℝ𝑛×𝑛 is a non-singular matrix that is det(𝐴) ≠ 0, Cramer’s 

rule yields the solution of a system of linear equations 𝐴𝑥 = 𝑏. The solution given according to [1] and [2] 

is 

 

𝑥1 =
det(𝐴1)

det(𝐴)
, 𝑥2 =

det(𝐴2)

det(𝐴)
, … , 𝑥𝑛 =

det(𝐴𝑛)

det(𝐴)
 

where 𝐴𝑗 is a matrix obtained by replacing entries in the 𝑗th column of matrix 𝐴 with entries in the matrix  
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𝑏 = (

𝑏1

𝑏2

⋮
𝑏𝑛

). 

Cramer’s rule also has been developed in max-plus algebra by Olsder and Roos [9], that is  

𝑥𝑖 ⊗ 𝑑𝑜𝑚(𝐴) = 𝑑𝑜𝑚(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛) 

for 1 ≤ 𝑖 ≤ 𝑛 where 𝑎𝑗 is the 𝑗th column of matrix 𝐴. Unlike in conventional algebra, 𝑑𝑜𝑚(𝐴) > 𝜀 is not 

sufficient for Cramer’s rule to yield the solution. It requires an additional condition that is 

𝑠𝑖𝑔𝑛(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛) = 𝑠𝑖𝑔𝑛(𝐴) 

for 1 ≤ 𝑖 ≤ 𝑛 where 𝑎𝑗 is the 𝑗th column of matrix 𝐴.  

In min-plus algebra, the determinant of a matrix over min-plus algebra is defined in two approaches 

called dominant and permanent [14]. Dominant of 𝐴 ∈ ℝ𝑚𝑖𝑛
𝑛×𝑛 according to Siswanto[14] is 

 

𝑑𝑜𝑚(𝐴) = {
𝑙𝑜𝑤𝑒𝑠𝑡 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑛 det (𝑧𝐴), 𝑖𝑓 det (𝑧𝐴) ≠ 0

𝜀′, 𝑖𝑓 det (𝑧𝐴) = 0
 

 

where 𝑧𝐴 is the 𝑛 × 𝑛 matrix with the entries 𝑧𝑎𝑖𝑗 , where 𝑎𝑖𝑗 is entries of 𝐴 and 𝑧 is variable as follow.  

𝑧𝐴 = [

𝑧𝑎11

𝑧𝑎21

𝑧𝑎12

⋱

⋯
⋯

𝑧𝑎1𝑛

⋮
⋮

𝑧𝑎𝑛1

⋯
⋯

⋱
⋯

⋮
𝑧𝑎𝑛𝑛

], 

we can calculate the det (𝑧𝐴) as in conventional algebra.  

For 𝐴 ∈ ℝ𝑚𝑖𝑛
𝑛×𝑛, permanent of 𝐴 is defined by 

𝑝𝑒𝑟𝑚(𝐴) = ⨁′

𝜎∈𝑃𝑛

⨂(𝑎𝑖𝜎(𝑖))

𝑛

𝑖=1

 

where 𝑃𝑛 is set of all permutation {1,2,… , 𝑛} [14].  

 

There are some relations between dominant and permanent. Before discussing it, we first discuss the 

invertible matrix over min-plus algebra. A matrix 𝐴 ∈ ℝ𝑚𝑖𝑛
𝑛×𝑛 is said to be invertible if and only if there exists 

a permutation 𝜎 and 𝜆𝑖 ∈ ℝ𝑚𝑖𝑛 where 𝜆𝑖 ≠ 𝜀′ for 𝑖 ∈ {1,2,… , 𝑛} such that 𝐴 = 𝑃𝜎 ⊗ 𝐷(𝜆𝑖) where 𝐷(𝜆𝑖) is 

a diagonal matrix  

𝐷(𝜆𝑖) =

[
 
 
 
 
𝜆1

𝜀
𝜀′

′
𝜀′

𝜆2

𝜀′

𝜀′ ⋯
𝜀′ ⋯
𝜆3 ⋯

𝜀′

𝜀′

𝜀′

⋮
𝜀′

⋯
𝜀′

⋯ ⋱

𝜀′ ⋯

⋮
𝜆𝑛]

 
 
 
 

 

[15]. Here are the relations between dominant and permanent [14]. 

(1) If 𝐴 ∈ ℝ𝑚𝑖𝑛
𝑛×𝑛 invertible then 𝑑𝑜𝑚(𝐴) ≠ 𝜀′ and 𝑝𝑒𝑟𝑚(𝐴) ≠ 𝜀′. 

(2) If 𝐴 ∈ ℝ𝑚𝑖𝑛
𝑛×𝑛 invertible then 𝑑𝑜𝑚(𝐴) = 𝑝𝑒𝑟𝑚(𝐴). 

In the same analogy as max-plus algebra, we can write Cramer’s rule in min-plus algebra as follows. 

𝑥𝑖 ⊗ 𝑑𝑜𝑚(𝐴) = 𝑑𝑜𝑚(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛), 
for 𝑖 = 1,2, … , 𝑛, where 𝑎𝑗 is the 𝑗th column of matrix 𝐴 and 𝑖 ≤ 𝑗 ≤ 𝑛.  Unlike in conventional algebra, in 

min-plus algebra 𝑑𝑜𝑚(𝐴) < 𝜀′ is not sufficient for the Cramer’s rule to yield a solution, an additional 

condition is required so that the Cramer’s rule yields the solution of a system of linear equations 𝐴 ⊗ 𝑥 = 𝑏 

where 𝐴 ∈ ℝ𝑚𝑖𝑛
𝑛×𝑛, 𝑥 ∈ ℝ𝑚𝑖𝑛

𝑛×1, and 𝑏 ∈ ℝ𝑚𝑖𝑛
𝑛×1. The additional condition is 

 𝑠𝑖𝑔𝑛(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛) = 𝑠𝑖𝑔𝑛(𝐴) (1) 

for 𝑖 = 1,2, … , 𝑛, where 𝑎𝑗 is the 𝑗th column of matrix 𝐴 and 𝑖 ≤ 𝑗 ≤ 𝑛. The definition of sign matrix in min-

plus algebra is given in Definition 1 below.  

Definition 1. Let 𝑃𝑛 a set of all permutations {1,2,… , 𝑛} and 𝑡1, 𝑡2, … , 𝑡𝐿 are all possible values such that   

𝑡𝑗 = ⨁ (𝑎𝑖𝜎(𝑖))
𝑛
𝑖=1  for a permutation 𝜎 ∈ 𝑃𝑛. Let  

𝑆𝑗 = {𝜎 ∈ 𝑃𝑛|𝑡𝑗 = ⨂ (𝑎𝑖𝜎(𝑖))
𝑛
𝑖=1 }, 
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𝑆𝑗𝑒 = {𝜎 ∈ 𝑆𝑗|𝜎 ∈ 𝑃_𝑛}, 

𝑆𝑗𝑜 = {𝜎 ∈ 𝑆𝑗|𝜎 ∈ 𝑃𝑛
𝑜}, 

𝑘𝑗𝑒 = |𝑆𝑗𝑒|, 

𝑘𝑗𝑜 = |𝑆𝑗𝑜|, 

where 𝑃𝑛
𝑒 is set of even permutations of 𝑃𝑛 and 𝑃𝑛

𝑜 is set of odd permutations of 𝑃𝑛. For 𝑡𝑗 = 𝑑𝑜𝑚(𝐴) and 

1 ≤ 𝑗 ≤ 𝐿, defined  

𝑠𝑖𝑔𝑛(𝐴) = {
  1, 𝑖𝑓 𝑘𝑗𝑒 − 𝑘𝑗𝑜 > 0

−1, 𝑖𝑓 𝑘𝑗𝑒 − 𝑘𝑗𝑜 < 0,
 

if 𝑑𝑜𝑚(𝐴) = 𝜀′ then 𝑠𝑖𝑔𝑛(𝐴) = 𝜀′. 

The following is an example of determining the sign of a matrix. 

Example 1. Given a matrix 𝐴 ∈ ℝ𝑚𝑖𝑛
3×3  

𝐴 = (
6 1 3
3 7 2
1 2 4

), 

since 𝑛 = 3, then there are 3! = 6 permutations that shown in Table 1. 

Table 1. All Permutations of 𝒏 = 𝟑 and Values of 𝒕𝒋 

Permutation 𝝈𝒋 𝒕𝒋 =⊗𝒊=𝟏
𝟑 (𝒂𝒊𝝈𝒋(𝒊)

) 

𝜎1 = 1,2,3 𝑡1 = 6 ⊗ 7 ⊗ 4 = 17 

𝜎2 = 1,3,2 𝑡2 = 6 ⊗ 2 ⊗ 2 = 10 

𝜎3 = 2,1,3 𝑡3 = 1 ⊗ 3 ⊗ 4 = 8 

𝜎4 = 2,3,1 𝑡4 = 1 ⊗ 2 ⊗ 1 = 4 

𝜎5 = 3,1,2 𝑡5 = 3 ⊗ 3 ⊗ 2 = 8 

𝜎6 = 3,2,1 𝑡6 = 3 ⊗ 7 ⊗ 1 = 11 

Observing the dominant of matrix 𝐴,  

det(𝑧𝐴) = det(
𝑧6 𝑧1 𝑧3

𝑧3 𝑧7 𝑧2

𝑧1 𝑧2 𝑧4

) = 𝑧17 + 𝑧4 + 𝑧8 − (𝑧11 + 𝑧8 + 𝑧10), 

we obtained det(𝑧𝐴) = 𝑧4 − 𝑧10 − 𝑧11 + 𝑧17 and 𝑑𝑜𝑚(𝐴) = 4. From Table 1, we got that                

𝑑𝑜𝑚(𝐴) = 4 = 𝑡4, then obtained 𝑆4, 𝑆4𝑒 , 𝑆4𝑜, 𝑘4𝑒, and 𝑘4𝑜 as follows. 

𝑆4 = {𝜎𝑗 ∈ 𝑃3|𝑡4 =⊗𝑖=1
3 (𝑎𝑖𝜎𝑗(𝑖))} = {𝜎4}, 

𝑆4𝑒 = {𝜎𝑗 ∈ 𝑆4|𝜎𝑗 ∈ 𝑃3
𝑒} = {𝜎4}, 

𝑆4𝑜 = {𝜎𝑗 ∈ 𝑆4|𝜎𝑗 ∈ 𝑃3
𝑜} = {}, 

𝑘4𝑒 = |𝑆4𝑒| = 1, 

𝑘4𝑜 = |𝑆4𝑜| = 0, 

then we obtained 𝑘4𝑒 − 𝑘4𝑜 = 1 − 0 = 1 > 0 so that 𝑠𝑖𝑔𝑛(𝐴) = 1. 

The Theorem 1 below is about the sufficient conditions so that the system of linear equations               

𝐴 ⊗ 𝑥 = 𝑏 in min-plus algebra, where 𝐴 ∈ ℝ𝑚𝑖𝑛
𝑛×𝑛, 𝑥 ∈ ℝ𝑚𝑖𝑛

𝑛×1, and 𝑏 ∈ ℝ𝑚𝑖𝑛
𝑛×1, can be solved using Cramer’s 

rule. 

Theorem 1. If 𝑠𝑖𝑔𝑛(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛) = 𝑠𝑖𝑔𝑛(𝐴) for 1 ≤ 𝑖 ≤ 𝑛 and 𝑑𝑜𝑚(𝐴) < 𝜀′ then the 

solution of system of linear equations 𝐴 ⊗ 𝑥 = 𝑏 can be obtained from                                                                         

𝑥𝑖 ⊗ 𝑑𝑜𝑚(𝐴) = 𝑑𝑜𝑚(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛). 

Proof. Let 𝐴𝑥 = 𝑏 be a system of linear equations. Express the system in the form of 𝑧𝐴 and 𝑧𝑏, we get the 

following equation. 
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 𝑧𝐴𝜉 = 𝑧𝑏 (2) 

 

Since 𝑑𝑜𝑚(𝐴) < 𝜀′ then det(𝑧𝐴) ≠ 0 and (2) can be solved using Cramer’s rule which the solution is 

 
𝜉𝑖 =

det(𝑧𝑎1 , … , 𝑧𝑎𝑖−1 , 𝑧𝑏 , 𝑧𝑎𝑖+1 , … , 𝑧𝑎𝑛)

det(𝑧𝐴)
 (3) 

for 1 ≤ 𝑖 ≤ 𝑛.  

If 𝑧 → ∞ then the value of 𝜉𝑖 determined by the dominants of right-hand side matrices of (3). The value of 

det(𝑧𝑎1 , … , 𝑧𝑎𝑖−1 , 𝑧𝑏 , 𝑧𝑎𝑖+1 , … , 𝑧𝑎𝑛) will leads to the value of 𝑑𝑜𝑚(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛) in the form 

of 𝑧𝑑𝑜𝑚(𝑎1,…,𝑎𝑖−1,𝑏,𝑎𝑖+1,…,𝑎𝑛), likewise for det (𝑧𝐴). 

If we write  

𝑑𝑖 = 𝑑𝑜𝑚(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛) 

for 1 ≤ 𝑖 ≤ 𝑛 then obtained 

 
𝜉𝑖 ≈ 𝑐𝑖

𝑧𝑑𝑖

𝑧𝑑𝑜𝑚(𝐴)
≈ 𝑐𝑖𝑧

𝑑𝑖−𝑑𝑜𝑚(𝐴) (4) 

for 1 ≤ 𝑖 ≤ 𝑛 and some constants 𝑐𝑖. According to the assumption that Equation (1) holds, the constant 𝑐𝑖 is 

positive.  

Substituting Equation (4) into Equation (2) yields  

∑𝑐𝑗𝑧
𝑎𝑖𝑗+𝑑𝑗−𝑑𝑜𝑚(𝐴)

𝑛

𝑗=1

≈ 𝑧𝑏𝑖 

for 1 ≤ 𝑖 ≤ 𝑛, which means  

⨁′

𝑛

𝑗=1

(𝑎𝑖𝑗 + 𝑑𝑗 − 𝑑𝑜𝑚(𝐴)) = 𝑏𝑖 

for 1 ≤ 𝑖 ≤ 𝑛. So, if 𝑥𝑖 = 𝑑𝑖 − 𝑑𝑜𝑚(𝐴) for 1 ≤ 𝑖 ≤ 𝑛 then 𝑥𝑖 is the solution of 𝐴 ⊗ 𝑥 = 𝑏 or we can express 

it as 𝑥𝑖 ⊗ 𝑑𝑜𝑚(𝐴) = 𝑑𝑜𝑚(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛). Hence, the solution of a system of linear equations 

𝐴 ⊗ 𝑥 = 𝑏 can be obtained from 𝑥𝑖 ⊗ 𝑑𝑜𝑚(𝐴) = 𝑑𝑜𝑚(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛) is proven.                   □ 

It should be noted that even if the condition (1) is not met, Cramer’s rule sometimes still can yield a 

solution. Here is an example. 

Example 2. Given a system of linear equations 𝐴 ⊗ 𝑥 = 𝑏 

 
(
1 3 5
3 1 1
0 1 2

) ⊗ (

𝑥1

𝑥2

𝑥3

) = (
6
6
5
). (5) 

First, we observe that det(𝑧𝐴) = −𝑧3 + 2𝑧4 − 𝑧6 − 𝑧8 + 𝑧9 which gives us that 3 is the lowest exponent in 

det (𝑧𝐴). Therefore, 𝑑𝑜𝑚(𝐴) = 3 and 𝑠𝑖𝑔𝑛 (𝐴) = −1. Similarly, observe the 𝑑𝑜𝑚(𝐴𝑖) and 𝑠𝑖𝑔𝑛(𝐴𝑖) where 

𝐴𝑖 = (𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛) for 𝑖 ∈ {1,2,3} then, we get 𝑑𝑜𝑚(𝐴1) = 8, 𝑑𝑜𝑚(𝐴2) = 9, and 

𝑑𝑜𝑚(𝐴3) = 8. Also, we get 𝑠𝑖𝑔𝑛(𝐴1) = −1, 𝑠𝑖𝑔𝑛(𝐴2) = 1, and 𝑠𝑖𝑔𝑛(𝐴3) = −1. We can see that the sign 

values are not all the same, 𝑠𝑖𝑔𝑛(𝐴) = 𝑠𝑖𝑔𝑛(𝐴1) = 𝑠𝑖𝑔𝑛(𝐴3) = −1 and 𝑠𝑖𝑔𝑛(𝐴2) = 1. We try using 

Cramer’s rule it still gives us the solution of the system (5), that is  

𝑥 = (

𝑥1

𝑥2

𝑥3

) = (
5
6
5
). 

The solution generated by Cramer’s rule is not always unique, as in Example 3 below. 

Example 3. Given a system of linear equations 𝐴 ⊗ 𝑥 = 𝑏 

 
(
−6 0 5
9 2 7
1 −4 10

) ⊗ (

𝑥1

𝑥2

𝑥3

) = (
−3
7
1

). (6) 

Observe the det (𝑧𝐴) and det (𝑧𝐴𝑖) where 𝐴𝑖 = (𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛) for 𝑖 = {1,2,3}. Then we get 

𝑑𝑜𝑚(𝐴) = −3, 𝑑𝑜𝑚(𝐴1) = 0, 𝑑𝑜𝑚(𝐴2) = 2, and 𝑑𝑜𝑚(𝐴3) = 2, also we get 𝑠𝑖𝑔𝑛(𝐴) = 𝑠𝑖𝑔𝑛(𝐴1) =
𝑠𝑖𝑔𝑛(𝐴2) = 𝑠𝑖𝑔𝑛(𝐴3) = −1. Therefore, according to Theorem 1, system of linear equations (6) can be 

solved using Cramer’s rule. The Cramer’s rule yields the solution 
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𝑥 = (

𝑥1

𝑥2

𝑥3

) = (
3
5
3
). 

Moreover, there is also another solution that is  

𝑥 = (

𝑥1

𝑥2

𝑥3

) = (
3
5
7
). 

Here we can conclude that the solution generated by Cramer’s rule is not always unique.  

Instead of expressing in dominant, if the matrix 𝐴 ∈ ℝ𝑚𝑖𝑛 
𝑛×𝑛  is invertible then the solution of system 

of linear equation 𝐴 ⊗ 𝑥 = 𝑏 can be expressed in permanent as follow. 

 𝑥𝑖 ⊗ 𝑝𝑒𝑟𝑚(𝐴) = 𝑝𝑒𝑟𝑚(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛). (7) 

Corollary 1 below shows the sufficient conditions so that the system of linear equations 𝐴 ⊗ 𝑥 = 𝑏 in min-

plus algebra, where 𝐴 ∈ ℝ𝑚𝑖𝑛
𝑛×𝑛, 𝑥 ∈ ℝ𝑚𝑖𝑛

𝑛×1, 𝑏 ∈ ℝ𝑚𝑖𝑛
𝑛×1 and 𝐴 is invertible, can be solved using Cramer’s rule 

(7). 

Corollary 1. If a matrix 𝐴 ∈ ℝ𝑚𝑖𝑛
𝑛×𝑛 invertible and 𝑠𝑖𝑔𝑛(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛) = 𝑠𝑖𝑔𝑛(𝐴) for                

1 ≤ 𝑖 ≤ 𝑛 then the solution of system of linear equations 𝐴 ⊗ 𝑥 = 𝑏 can be obtained from                                 

𝑥𝑖 ⊗ 𝑝𝑒𝑟𝑚(𝐴) = 𝑝𝑒𝑟𝑚(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛). 

Proof. We have 𝐴 is invertible so that 𝑑𝑜𝑚(𝐴) = 𝑝𝑒𝑟𝑚(𝐴), as well 𝑑𝑜𝑚(𝐴) = 𝑝𝑒𝑟𝑚(𝐴) ≠ 𝜀′. According 

to Theorem 1, 𝑥𝑖 ⊗ 𝑝𝑒𝑟𝑚(𝐴) = 𝑝𝑒𝑟𝑚(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛) yields the solution of 𝐴 ⊗ 𝑥 = 𝑏.             

□ 

Here is an example of using Equation (7) for solving a system of linear equation. 

Example 4.  Given a system of linear equations 𝐴 ⊗ 𝑥 = 𝑏 where 𝐴 is an invertible matrix 

 

(

1 𝜀′

𝜀′ 𝜀′
𝜀′ 𝜀′

9 𝜀′

𝜀′ 3
𝜀′ 𝜀′

𝜀′ 𝜀′

𝜀′ 5

) ⊗ (

𝑥1

𝑥2
𝑥3

𝑥4

) = (

2
16
1
5

). (8) 

First, we show that 𝐴 is invertible. Matrix 𝐴 = (

1 𝜀′

𝜀′ 𝜀′
𝜀′ 𝜀′

9 𝜀′

𝜀′ 3
𝜀′ 𝜀′

𝜀′ 𝜀′

𝜀′ 5

) can be expressed as the product of 

permutation matrix 𝑃𝜎 and diagonal matrix 𝐷(𝜆𝑖) as follow. 

 𝐴 = 𝑃𝜎 ⊗ 𝐷(𝜆𝑖) 

= (

𝑒 𝜀′

𝜀′ 𝜀′
𝜀′ 𝜀′

𝑒 𝜀′

𝜀′ 𝑒
𝜀′ 𝜀′

𝜀′ 𝜀′

𝜀′ 𝑒

) ⊗ (

1 𝜀′

𝜀′ 3
𝜀′ 𝜀′

𝜀′ 𝜀′

𝜀′ 𝜀′

𝜀′ 𝜀′
9 𝜀′

𝜀′ 5

) 

= (

1 𝜀′

𝜀′ 𝜀′
𝜀′ 𝜀′

9 𝜀′

𝜀′ 3
𝜀′ 𝜀′

𝜀′ 𝜀′

𝜀′ 5

). 

(9) 

From Equation (7), we can conclude that 𝐴 is invertible. Now, observe the det (𝑧𝐴) and det (𝑧𝐴𝑖) where                        

𝐴𝑖 = (𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛) for 𝑖 = {1,2,3,4}. 

𝑧𝐴 =

(

 

𝑧1 𝑧𝜀′

𝑧𝜀′
 𝑧𝜀′

𝑧𝜀′
𝑧𝜀′

𝑧9 𝑧𝜀′

𝑧𝜀′
𝑧3

𝑧𝜀′
𝑧𝜀′

𝑧𝜀′
𝑧𝜀′

𝑧𝜀′
𝑧5 )

 , 

then we get det(𝑧𝐴) = −𝑧17, 𝑑𝑜𝑚(𝐴) = 17 and 𝑠𝑖𝑔𝑛(𝐴) = −1. 

𝐴1 = (

2 𝜀′

16 𝜀′
𝜀′ 𝜀′

9 𝜀′

1 3
5 𝜀′

𝜀′ 𝜀′

𝜀′ 5

) , 𝑧𝐴1 =

(

 

𝑧2 𝑧𝜀′

𝑧16 𝑧𝜀′
𝑧𝜀′

𝑧𝜀′

𝑧9 𝑧𝜀′

𝑧1 𝑧3

𝑧5 𝑧𝜀′
𝑧𝜀′

𝑧𝜀′

𝑧𝜀′
𝑧5 )

 , 
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then we get 𝑑𝑒𝑡(𝑧𝐴1) = −𝑧19, 𝑑𝑜𝑚(𝐴1) = 19 and 𝑠𝑖𝑔𝑛(𝐴1) = −1. 

𝐴2 = (

1 2
𝜀′ 16

𝜀′ 𝜀′

9 𝜀′

𝜀′ 1
𝜀′ 5

𝜀′ 𝜀′

𝜀′ 5

) , 𝑧𝐴2 =

(

 

𝑧1 𝑧2

𝑧𝜀′
𝑧16

𝑧𝜀′
𝑧𝜀′

𝑧9 𝑧𝜀′

𝑧𝜀′
𝑧1

𝑧𝜀′
𝑧5

𝑧𝜀′
𝑧𝜀′

𝑧𝜀′
𝑧5 )

 , 

then we get det(𝑧𝐴2) = −𝑧16, 𝑑𝑜𝑚(𝐴2) = 16 and 𝑠𝑖𝑔𝑛(𝐴2) = −1. 

By the same step for 𝑧𝐴3 and 𝑧𝐴4, we get 𝑠𝑖𝑔𝑛(𝐴) = 𝑠𝑖𝑔𝑛(𝐴1) = 𝑠𝑖𝑔𝑛(𝐴2) = 𝑠𝑖𝑔𝑛(𝐴3) = 𝑠𝑖𝑔𝑛(𝐴4) = −1. 

Based on Corollary 1, the solution of Equation (8) can be obtained from Equation (7). 

Next, find 𝑝𝑒𝑟𝑚(𝐴) and 𝑝𝑒𝑟𝑚(𝐴𝑖) where 𝐴𝑖 = (𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛) for 𝑖 ∈ {1,2,3,4}. We obtain 

𝑝𝑒𝑟𝑚(𝐴) = min(1 ⊗ 17, 𝜀′, 𝜀′, 𝜀′) = 18, 𝑝𝑒𝑟𝑚(𝐴1) = min(2 ⊗ 17, 𝜀′, 𝜀′, 𝜀′) = 19,                    

𝑝𝑒𝑟𝑚(𝐴2) = min(1 ⊗ 15, 𝜀′, 𝜀′, 𝜀′) = 16, 𝑝𝑒𝑟𝑚(𝐴3) = min(1 ⊗ 24, 𝜀′, 𝜀′, 𝜀′) = 25,                  

𝑝𝑒𝑟𝑚(𝐴4) = min(1 ⊗ 17, 𝜀′, 𝜀′, 𝜀′) = 18. By using Equation (7), we obtain the solution of Equation (8) 

is 

𝑥 = (

𝑥1

𝑥2
𝑥3

𝑥4

) = (

1
−2
7
0

). 

It should be noted that even if the system of linear equations does not fulfill the sufficient condition 

in Corollary 1, Cramer’s rule sometimes still can yield a solution. Here is an example. 

Example 5.  Given a system of linear equations 𝐴 ⊗ 𝑥 = 𝑏 where 𝐴 is an invertible matrix 

 
(
𝜀′ 𝜀′ 4
1 𝜀′ 𝜀′
𝜀′ 0 𝜀′

) ⊗ (

𝑥1

𝑥2

𝑥3

) = (
𝜀′
1
0

). (10) 

First, we show that 𝐴 is invertible. Matrix 𝐴 = (
𝜀′ 𝜀′ 4
1 𝜀′ 𝜀′
𝜀′ 0 𝜀′

) can be expressed as the product of permutation 

matrix 𝑃𝜎 and diagonal matrix 𝐷(𝜆𝑖) as follow. 

 𝐴 = 𝑃𝜎 ⊗ 𝐷(𝜆𝑖) 

= (
𝜀′ 𝜀′ 𝑒
𝑒 𝜀′ 𝜀′
𝜀′ 𝑒 𝜀′

) ⊗ (
1 𝜀′ 𝜀′
𝜀′ 0 𝜀′
𝜀′ 𝜀′ 4

) 

= (
𝜀′ 𝜀′ 4
1 𝜀′ 𝜀′
𝜀′ 0 𝜀′

). 

(11) 

From Equation (11), we can conclude that 𝐴 in invertible. Now, by the same method as Example 4 we 

observe the det (𝑧𝐴) and det (𝑧𝐴𝑖) where 𝐴𝑖 = (𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛) for 𝑖 ∈ {1,2,3}.  

𝑧𝐴 = (
𝑧𝜀′

𝑧𝜀′
𝑧4

𝑧1 𝑧𝜀′
𝑧𝜀′

𝑧𝜀′
𝑧0 𝑧𝜀′

), 

then we get det(𝑧𝐴) = 𝑧5, 𝑑𝑜𝑚(𝐴) = 5 and 𝑠𝑖𝑔𝑛(𝐴) = +1. 

𝐴1 = (
𝜀′ 𝜀′ 4
1 𝜀′ 𝜀′
0 0 𝜀′

) , 𝑧𝐴1 = (
𝑧𝜀′

𝑧𝜀′
𝑧4

𝑧1 𝑧𝜀′
𝑧𝜀′

𝑧0 𝑧0 𝑧𝜀′

), 

then we get 𝑑𝑒𝑡(𝑧𝐴1) = 𝑧5, 𝑑𝑜𝑚(𝐴1) = 5 and 𝑠𝑖𝑔𝑛(𝐴1) = +1. 

𝐴2 = (
𝜀′ 𝜀′ 4
1 1 𝜀′
𝜀′ 0 𝜀′

) , 𝑧𝐴2 = (
𝑧𝜀′

𝑧𝜀′
𝑧4

𝑧1 𝑧1 𝑧𝜀′

𝑧0 𝑧0 𝑧𝜀′

), 
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then we get det(𝑧𝐴2) = 𝑧5, 𝑑𝑜𝑚(𝐴2) = 5 and 𝑠𝑖𝑔𝑛(𝐴2) = +1. 

𝐴3 = (
𝜀′ 𝜀′ 𝜀′
1 𝜀′ 1
𝜀′ 0 0

) , 𝑧𝐴3 = (
𝑧𝜀′

𝑧𝜀′
𝑧𝜀′

𝑧1 𝑧𝜀′
𝑧1

𝑧𝜀′
𝑧0 𝑧0

), 

then we get det(𝑧𝐴3) = 0, 𝑑𝑜𝑚(𝐴3) = 𝜀′ and 𝑠𝑖𝑔𝑛(𝐴3) = 𝜀′. We can see that the                                     

𝑠𝑖𝑔𝑛(𝐴) = 𝑠𝑖𝑔𝑛(𝐴1) = 𝑠𝑖𝑔𝑛(𝐴2) = +1 but 𝑠𝑖𝑔𝑛(𝐴3) = 𝜀′. We try using Equation (7) it still gives us the 

solution of the system (10). Calculate the permanents, we get 𝑝𝑒𝑟𝑚(𝐴) = min(𝜀′, 𝜀′, 5, 𝜀′, 𝜀′, 𝜀′) = 5, 

𝑝𝑒𝑟𝑚(𝐴1) = min(𝜀′, 𝜀′, 5, 𝜀′, 𝜀′, 𝜀′) = 5, 𝑝𝑒𝑟𝑚(𝐴2) = min(𝜀′, 𝜀′, 5, 𝜀′, 𝜀′, 𝜀′) = 5 and                  

𝑝𝑒𝑟𝑚(𝐴3) = min(𝜀′, 𝜀′, 𝜀′, 𝜀′, 𝜀′, 𝜀′) = 𝜀′. By using Equation (7), we obtain the solution of Equation (10) 

is 

𝑥 = (

𝑥1

𝑥2

𝑥3

) = (
𝜀′
1
0

). 

 

4. CONCLUSIONS 

Based on the result and discussion, the sufficient conditions so that the system of linear equations      

𝐴 ⊗ 𝑥 = 𝑏 has a solution in min-plus algebra, where 𝐴 ∈ ℝ𝑚𝑖𝑛
𝑛×𝑛, 𝑥 ∈ ℝ𝑚𝑖𝑛

𝑛×1 and 𝑏 ∈ ℝ𝑚𝑖𝑛
𝑛×1, is 

𝑠𝑖𝑔𝑛(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛) = 𝑠𝑖𝑔𝑛(𝐴) for 1 ≤ 𝑖 ≤ 𝑛 and 𝑑𝑜𝑚(𝐴) < 𝜀′, with the solution using 

Cramer’s rule is 𝑥𝑖 ⊗ 𝑑𝑜𝑚(𝐴) = 𝑑𝑜𝑚(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛). For an invertible matrix 𝐴, the solution 

can be expressed as 𝑥𝑖 ⊗ 𝑝𝑒𝑟𝑚(𝐴) = 𝑝𝑒𝑟𝑚(𝑎1, … , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, … , 𝑎𝑛). 
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