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ABSTRACT 
Air quality is an essential factor in urban life, and its’ assessment often relies on the 

concentration of measurable air pollution parameters. One critical parameter is Particulate 

Matter (PM), particularly PM10, which comprises solid or liquid particles dispersed in the air 
from various sources. One of the methods employed for predicting stock index prices is 

ARFIMA. ARFIMA is used to model long memory data characterized by a slowly decreasing 

Autocorrelation Function (ACF) plot (hyperbolic) or a difference value in the fractional from. 

This method is widely used due to its ability to handle nonstationarity issues in time series. 
However, the time series data often contain heteroskedasticity problems. Data with 

heteroscedasticity are then further addressed using the GARCH model, because it can model 

volatility changes occurring over longer periods and capture the persistence of volatility. The 

ARFIMA-GARCH model can explain long-memory patterns in time series data and address 
heteroscedasticity issues. The data are sourced from the Jakarta open data web, which is 

integrated with DLH DKI Jakarta Province. The aim of this research was to forecast the PM10 

air quality index at the Bundaran HI Area in the Province of DKI Jakarta for the next 14 days, 
from January 1st to January 14th, 2021, using an ARFIMA model enhanced with GARCH. The 

analysis reveals that the best model is ARFIMA ([17], d, [1])-GARCH (1,1). Forecasting using 

this model resulted in a MAPE of 3.47%, indicating that the model is highly capable of 

forecasting several periods. 
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1. INTRODUCTION 

Clean air is a necessity for every living creature to survive. Humans engage in various activities and 

have a reciprocal relationship with the environment. Therefore, the existence of an index to monitor air 

pollution is fundamental, and the air pollution standard index is a number that decrees the ambient air quality 

condition at a specific location. The Air Pollution Standard Index (ISPU) is a unitless number that describes 

the ambient air quality condition at a specific location based on the impact on human health, aesthetic value, 

and other living creatures. According to the Minister of Environment Decree Number: KEP 45 / MENLH / 

1997 [1], Regarding the Air Pollution Standard Index, the decree is used to provide convenience to the public 

in obtaining information about ambient air quality at specific locations and times, among other things. In 

addition, it is also used as a basis for consideration in air pollution control efforts; therefore, it is necessary 

to prepare an Air Pollution Standard Index. 

Forecasting the PM10 air quality index is very important in the context of environmental sustainability 

and human health. In this phenomenon, time series modeling occurs with long memory data characterized by 

a slowly decreasing (hyperbolic) autocorrelation function (ACF) plot or fractional difference values. Long 

memory conditions arise in time series data when each observation significantly correlates with other 

observations, even though the distance between said observations is quite large. Autoregressive Fractional 

Integrated Moving Average (ARFIMA) modeling can model data with long memory properties [2]. This case 

can be addressed by integrating additional modeling, specifically using the ARCH (Autoregressive 

Conditional Heteroscedasticity) or GARCH (Generalized Auto-Regressive Conditional Heteroskedasticity) 

effect. Conditional heteroscedasticity implies that the residual value of the data depends on the previous 

residual value. The ARCH model evolved into the GARCH model, incorporating the influence of residuals 

from both the previous and prior periods [3]. Consequently, combining ARFIMA modeling with the 

ARCH/GARCH effect facilitates the prediction of long memory characteristics while accommodating data 

exhibiting signs of heteroscedasticity conditions. 

Lintang Furi Prihastari's research demonstrates that the ARIMA-GARCH method effectively forecasts 

Delta variant COVID-19 cases in Indonesia. By addressing the heteroscedasticity present in the positive 

cases, the study achieved a high level of forecasting accuracy, with a MAPE of 1.623428% [4]. Moreover, 

Krzysztof Burnecki and Grzegorz Sikora studied "Identification and validation of a stable ARFIMA process 

with application to UMTS (Universal Mobile Telekomunikasi System) data" [5] where the ARFIMA model 

can model UMTS data with long memory conditions in urban areas. 

The preceding research states that the ARFIMA model can be used to model long-term time series data 

and the GARCH model can be used to overcome heteroscedasticity. The ARFIMA-GARCH which combines 

ARFIMA's ability to model long-term dependencies with GARCH's capability to handle changing volatility, 

is well-suited for analyzing data like PM10, which exhibits long memory and variability due to external factors 

such as weather and industrial activity. Despite its potential, this method is rarely applied to environmental 

data, particularly the PM10 air index [6][7]. The author wants to further study the forecasting of PM10 air 

quality index related to the high mobility which is directly proportional to vehicle emissions at the Bundaran 

HI in DKI Jakarta Province. However, the application of this method to environmental data, especially the 

PM10 air index, is still rarely done. Therefore, this study aims to fill this knowledge gap and provide a better 

understanding of the patterns and dynamics of the PM10 air index at Bundaran HI Area in DKI Jakarta 

Province. 

 

2. RESEARCH METHODS 

The research methodology section provides detailed explanations of the research design, experimental 

settings, data sources, data collection techniques, and data analysis procedures employed in this study. 

2.1 Time Series Analysis 

Time series datasets were obtained in order according to time sequence over a certain period. The 

purpose of implementing time series analysis is to determine the pattern of past data that has been collected 

based on time sequence for further use in forecasting. Time series forecasting is based on past data behavior 
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to be projected into the future using mathematical and statistical equations [8]. One of the most important 

aspects of choosing a suitable forecasting method for time series data is identifying different data patterns. 

2.2 Stationarity 

A data is called stationarity if the data has not experienced a sharp decline or growth. In other words, the 

data should generally look horizontal along the time axis. However, it is necessary to differencing data that 

is still not stationarity to become stationarity. Stationarity data is data that does not contain root units. 

Stationary data is data that does not contain a unit root where only two-unit root test methods are used, 

namely: 

1. Stationarity in Variance 

It is said to be stationarity in the variance if the rounded value = 1, while a Box-Cox transformation can 

be carried out if it is nonstationarity in the data formulated as follows [9]: 

𝑇(𝑍𝑡) = {
𝑍𝑡

𝜆 − 1

𝜆
, 𝜆 ≠ 0

ln 𝑍𝑡 , 𝜆 = 0

(1) 

 
Description : 

𝑍𝑡 : Actual data of period 𝑡-th 

𝜆 : Parameters of the transformation 

 

2. Stationarity in Mean  

According to Rosadi [10], non-stationarity in the mean can be observed whether the time series data 

contains a unit root. One method is the ADF (Augmented Dickey-Fuller) test. The following are common 

forms of ADF: 

∆(𝑍𝑡) = 𝛽1 + 𝛽2𝑡 + 𝛿𝑍𝑡−1 + ∑ 𝛼𝑖∆𝑍𝑡−1

𝑛

𝑖=1
+ 𝑎𝑡 (2) 

Description : 

∆(𝑍𝑡)  : The first difference of the time series 𝑍 

𝛽1  : The constant value or intercept 

𝛽2  : The regression coefficient for the trend 
∑ 𝛼𝑖∆𝑍𝑡−𝑖

𝑛
𝑖=1   : The sum of lagged differences used to capture serial correlation in the data 

𝛿𝑍𝑡−1  : The regression coefficient for lag 𝑍 

𝛼𝑡  : The residual or random error 

indicated that 𝛿 is defined as 𝛿 = 𝜌 − 1, where 𝜌 is the coefficient of 𝑍𝑡−1. 
 

2.3 ARFIMA Model 

The ARFIMA (Autoregressive Fractionally Integrated Moving Average) model is a development of 

the ARIMA (Autoregressive Integrated Moving Average) model for modeling Long Memory data [11]. The 

ARFIMA model is a model that can explain time series data in the form of both short-term and long-term 

data with differencing (𝑑) fractional values. The general form of the ARFIMA model (𝑝, 𝑑, 𝑞) is as follows 

[9][12]: 

Φ𝑝(𝐵)(1 − 𝐵)𝑑𝑍𝑡 = 𝜃𝑞(𝐵)𝑎𝑡 (3) 

Description: 

𝑑 : Distinguishing parameters (fractional numbers) 

Φ𝑝(𝐵) : Polynomial autoregressive 𝑝-th.  

It can be written as: Φ𝑝(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝 

𝜃𝑞(𝐵) : Polynomial moving average 𝑞-th.  

It can be written as: 𝜃𝑞(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞 

𝐵 : Backshift operator 

𝑎𝑡  : Error or noise at time 𝑡, which is usually considered as white noise with zero mean and 

constant variance. 
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(1 − 𝐵)𝑑 as a fractional differentiator operator 

For a fractional value of 𝑑 value, the fractional differentiator operator (1 − 𝐵)𝑑 is defined as follows: 

(1 − 𝐵)𝑑 = 1 + ∑
Γ(−𝑑 + 𝑘)!

Γ(−d)(k)!
𝐵𝑘

∞

𝑘−1
(4) 

where Γ(𝑥) is the gamma function. 

According to Hosking [11] the main characteristics of an ARFIMA(𝑝, 𝑑, 𝑞) model are as follows: 

1. If |𝑑| ≥ 0,5 , then the long process is not stationarity.  

2. If 0 < 𝑑 < 0,5, the process correlates stationarity length with the presence of positive dependencies 

between far-apart observations indicated by positive autocorrelation and slow descent and has a 

representation of a moving average of infinite order. 

3. If −0,5 < 𝑑 < 0, then the process correlates stationarity length with having a negative dependence with 

negative autocorrelation and descending slowly and having an autoregressive representation of infinite 

order. 

4. If 𝑑 = 0, then the process shows the autocorrelation function drops exponentially with the ARMA 

process. 

 

2.4 Long Memory Scheme 

Long memory model identification can also use the Hurst Exponential (𝐻) value. This value can be 

obtained from the 𝑅/𝑆 (Rescaled Range Statistic) which is calculated by the following formula [11]: 

1. Calculating the mean (�̅�) 

�̅� =
1

𝑇
∑ 𝑍𝑡

𝑇

𝑡=1
,     𝑡 = 1,2, , … , 𝑇 (5) 

2. Calculating the adjusted mean 

𝑍𝑡
adj

= 𝑍𝑡 − �̅�,     𝑡 = 1,2, , … , 𝑇 (6) 

3. Calculate cumulative deviation 

𝑍𝑡
∗ = ∑ 𝑍𝑡

adj
𝑇

𝑡=1
 (7) 

4. Calculate the cumulative deviation range 

𝑅𝑡 = max(𝑍1
∗, 𝑍2

∗, … , 𝑍𝑡
∗) − min(𝑍1

∗, 𝑍2
∗, … , 𝑍𝑡

∗) ,   𝑡 = 1,2, … , 𝑛 (8) 

5. Calculating standard deviation 

the 𝑆𝑡 = √
1

𝑇
∑ (𝑍𝑡 − �̅�)2

𝑇

𝑡=1
 (9) 

6. Calculate rescaled range (𝑅/𝑆) 

(𝑅 𝑆⁄ )𝑡 = 𝑅𝑡 𝑆𝑡⁄  (10) 

7. Calculate log rescaled range statistics (𝑅/𝑆) values 

𝑌𝑡 = ln[(𝑅 𝑆⁄ )𝑡] (11) 

8. Calculate time logs from observations 

𝑋𝑡 = ln(𝑡) (12) 

9. Determining the Hurst value 

𝐻 =
∑ (𝑋𝑗 − �̅�)𝑇

𝑗=1 (𝑌𝑗 − �̅�)

∑ (𝑋𝑗 − �̅�)𝑇
𝑗=1

2  (13) 
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where 𝑋𝑗 = 𝑋1, 𝑋2, … , 𝑋𝑡 and 𝑌𝑗 = 𝑌1, 𝑌2, … , 𝑌𝑡 

If 𝐻 = 0.5 , then the time series is random 

If 0 < 𝐻 < 0.5 , then the short memory process occurs 

If 0.5 < 𝐻 < 1 , then the long memory process occurs 

 

2.5 GARCH Model 

The GARCH model was formed to reduce the number of orders that are high enough in the ARCH 

model because it corresponds to the principle of model selection which is simpler, therefore it will produce 

variances that are always positive. This parsimony principle also allows GARCH to achieve better predictions 

with fewer variables and avoid overfitting. General form of GARCH(𝑝, 𝑞)  [13] : 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2

𝑞

𝑖=1

+ ∑ 𝛽𝑗𝜎𝑡−j
2

𝑝

j=1

(14) 

 

In the GARCH model, the residual variance of 𝜎𝑡
2 is not only influenced by the residual of the past period 

(𝜀𝑡−𝑖
2 ), but also the residual variant of the past period (𝜎𝑡−𝑗

2 ) where: 

𝑝 ≥ 0; 𝑞 ≥ 0 

𝜔 > 0, 𝛼𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑞 

𝛽𝑗 ≥ 0, 𝑗 = 1,2, … , 𝑝 

 

Description: 

𝜎𝑡
2 : Variance of the residual at time 𝑡 

𝜔 : Constant components 

𝛼𝑖 : Parameter coefficient of ARCH order p 

𝛽𝑗 : Parameter coefficients of GARCH order q 

𝜀𝑡−𝑖
2  : Residual squares in the period 𝑡 − 𝑖 

 

2.6 Best Model Selection 

AIC (Akaike’s Information Criterion) posits that a model with a lower AIC value is better as it indicates 

a balance between model goodness and model complexity which suggests the model is more capable of 

generalizing to new data. In model selection, the computed AIC value is used [9]. 

𝐴𝐼𝐶 = 𝑛 ln �̂�𝑎
2 +

2𝑘

𝑛
. (15) 

Description: 

�̂�𝑎
2 : Maximum likelihood estimation of 𝜎𝑎

2 

𝑘 : The number of parameters in the model 

𝑛 : The number of observations 

 

2.7 Selection of the Best Forecasting Accurancy 

Selection of the best forecasting accuracy through measuring the level of accuracy using Mean 

Absolute Percentage Error (MAPE), where the smaller the MAPE value, the smaller the forecasting error, 

and the better the forecasting results will be closer to the actual value. MAPE can be calculated using the 

following formula [14] : 

MAPE = [
1

𝑛
∑

|𝑍𝑡 − �̂�𝑡|

𝑍𝑡

𝑛

𝑡=1

] × 100%. (16) 

Description: 

𝑛 : Number of forecasting periods 
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𝑍𝑡 : Actual data values in period t 

�̂�𝑡 : Forecast value in period t 

3. RESULTS AND DISCUSSION 

3.1 Missing Values 

The integrity of data analysis outcomes can be compromised by missing values, potentially leading to 

reduced accuracy stemming from non-sampling errors. To effectively address these concerns, it's crucial to 

categorize missing values into distinct classifications. Missing Completely at Random (MCAR) values share 

no relationship with other variables, while Missing at Random (MAR) values exhibit a connection to other 

variables, enabling estimation through examination of these relationships. In contrast, Missing Not at Random 

(MNAR) values demonstrate a relationship with other missing values, rendering estimation through existing 

variables infeasible. To mitigate the impact of missing data, linear interpolation represents a viable approach 

for filling in these gaps [15][16][17]. 

 

3.2 Linear Interpolation 

Linear interpolation is a polynomial of the first degree and through a straight line at every two successive 

input points where interpolating two points with a straight line using two pairs of points to obtain a range of 

values 𝑦 = 𝑓1(𝑥) if know 𝑥 is between 𝑥𝑜 and 𝑥1 [10][18] Application example: 

Table 1. Data That Contains Missing Value 

Date  PM10 

27/01/2019 24 

28/01/2019 - 

29/01/2019 - 

30/01/2019 52 

Data Source: https://data.jakarta.go.id/ 

 
Table 2. Data That Has Been Done Linear Interpolation 

Date  PM10 

27/01/2019 24 

28/01/2019 9.333 

29/01/2019 33.333 

30/01/2019 52 

Data Source: Rapidminer Software Program, 2023 

 

Step 1: find the value of m on 01/27/2019 

By assuming the date 27/01/2019 as 𝑥0 = 1 and the date 30/01/2019 as 𝑥1 = 4 

𝑚 =
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
=

52 − 24

4 − 1
=

28

3
= 9.333 

Step 2: search for missing values on 28/01/2019 

Suppose the date 28/01/2019 as 𝑥 = 2 

𝑓1(𝑥) − 𝑓(𝑥0) = 𝑚(𝑥 − 𝑥0) 

𝑓1(𝑥) =
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
(𝑥 − 𝑥0) 

𝑓1(𝑥) − 𝑓(𝑥0) = (9,333)(2 − 1) 

𝑓1(𝑥) = (9,333) + 𝑓(𝑥0) = (9,333) + 24 = 33.333 

Thus, for blank value dated 29/01/2019 

𝑓2(𝑥) = (9,333) + 𝑓1(𝑥) 

𝑓2(𝑥) = (9,333) + 33.333 = 42.666 ≈ 42.7 

https://data.jakarta.go.id/
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Therefore, the estimated approach figures for PM10 for 28/01/2019 =  33.3 and 29/10/2019 =  42.7 

as in Table 2. 

 

3.3 Data Description 

The study analyzes 731 days of daily PM10 data from Jakarta (2019-2020), sourced from 

jakartaopendata and DLH DKI Jakarta Province, and visualized using R studio. The data, visualized in Figure 

1, shows PM10 movement before processing and analysis. 

 
Figure 1. Graph of PM10 Air Quality Index for the Period of January 1, 2019 - December 31, 2020 

3.4 Stationarity 

3.4.1 Stationarity in Variance 

Testing stationarity data in a variance using the Box-Cox test, if the data has been stationarity in the 

rounded variance value = 1. If the rounded value is not equal ≠ 1 , the data needs to be transformed. 

  
(a)        (b) 

Figure 2. Stationarity In Variance (a) Before Transformation; (b) After Transformation 

Based on Figure 2 (a) shows PM10 data is not stationarity in variance (𝜆 = 1.55), and Figure 2 (b) 

confirms the data has been stationarity in the variance because rounded value = 1. 

 3.4.2 Stationarity in Mean 

Two methods can be used to test stationarity data in the mean: visual and formal tests. Visual tests can be 

seen by observing the data plotted against time, and if the plot is not far from the mean value and does not 

show symptoms of a trend, then stationarity data is in the mean visually. 
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                                        (a)                                                                                                   (b) 

 Figure 3. Trend Time Series PM10 Air Quality Index Data (a) Plot, (b) ADF Test 

The transformed PM10 data, as shown in Figure 3 (a), indicates stationarity in the mean, characterized 

by consistent fluctuations around the mean without a unit root. The ADF test (Figure 3 (b)) yields a p-value 

of 0.0000 < 𝛼 = 0.05, confirming that the daily PM10 data is stationarity without requiring differencing. 

 

3.4.3 Correlogram Stationarity Test  

Data that had previously been known to be stationarity was then checked by the correlogram. Model 

identification is carried out by making an ACF plot to find out the q order of the MA(q) model and a PACF 

plot to find out the p order of the AR(p) model to find out the lag visually. 

  
Figure 4. ACF and PACF Correlogram Plot 

 

Based on Figure 4 on the ACF plot pattern shows that the ACF plot lag drops hyperbolically which 

means it contains a Long Memory effect. For this reason, it is necessary to identify the effect of Long 

Memory. If the data contains a Long Memory effect, the next step is differentiating using ARFIMA while if 

there is no Long Memory effect continued with the ARIMA method. 

3.5 Identify Long Memory Patterns 

Testing of the Long Memory effect is formally carried out by calculating the Hurst value obtained by 

logarithmic 𝑅/𝑆 statistics and estimating it by the Ordinary Least Square (OLS) method. Accordingly, the 

following results are obtained: 

1. Calculating the mean (�̅�) transformed PM10 air quality index data 

�̅� =
1

𝑇
∑ 𝑍𝑡

𝑇

𝑡=1
=

330243

731
= 451.768 

Date: 06/12/23   Time: 23:08

Sample: 1/01/2019 12/31/2020

Included observations: 731

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.644 0.644 304.35 0.000

2 0.562 0.251 536.23 0.000

3 0.506 0.134 724.90 0.000

4 0.459 0.076 880.21 0.000

5 0.459 0.122 1035.7 0.000

6 0.447 0.085 1183.0 0.000

7 0.436 0.069 1323.8 0.000

8 0.437 0.078 1465.2 0.000

9 0.402 0.008 1585.4 0.000

10 0.380 0.010 1692.8 0.000

11 0.347 -0.016 1782.5 0.000

12 0.357 0.057 1877.5 0.000

13 0.353 0.032 1970.3 0.000

14 0.372 0.073 2073.7 0.000

15 0.368 0.033 2174.9 0.000

16 0.334 -0.026 2258.3 0.000

17 0.352 0.064 2351.5 0.000

18 0.312 -0.035 2424.6 0.000

19 0.297 -0.008 2491.1 0.000

20 0.302 0.020 2560.0 0.000
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2. Calculating the adjusted mean of each PM10 data 

𝑍1
adj

= 𝑍1 − �̅� = 186,602 − 451,768 = −265.166 

𝑍2
adj

= 𝑍2 − �̅� = 139,088 − 451,768 = −312.680 

⋮ 

𝑍731
adj

= 𝑍731 − �̅� = 157,497 − 451,768 = −294.271 

3. Calculate the cumulative deviation or standard deviation 

𝑆1 = √
1

𝑇
∑ (𝑍1 − �̅�)2

𝑇

𝑡=1
= 265.166 

𝑆2 = √
1

𝑇
∑ (𝑍2 − �̅�)2

𝑇

𝑡=1
= 221.098 

⋮ 

𝑆731 = √
1

𝑇
∑ (𝑍𝑡 − �̅�)2

𝑇

𝑡=1
= 10.884 

4. Calculating cumulative deviation range PM10 data 

𝑍1
∗ = ∑ 𝑍𝑡

adj
𝑇

𝑡=1
= 𝑍1

adj
= −256.166 

𝑍2
∗ = ∑ 𝑍𝑡

adj
𝑇

𝑡=1
= 𝑍1

adj
+ 𝑍2

adj
= −577.846 

⋮ 

𝑍731
∗ = ∑ 𝑍𝑡

adj
𝑇

𝑡=1
= 𝑍1

adj
+ 𝑍2

adj
+ ⋯ + 𝑍731

adj
= 0 

5. Calculating standard deviation 

𝑅1 = max(𝑍1
∗) − min(𝑍1

∗) = −256,166 − (−256,166) = 0 

𝑅2 = max(𝑍1
∗, 𝑍2

∗) − min(𝑍1
∗, 𝑍2

∗) = −256,166 − (−577,846) = 312.680 

⋮ 
𝑅731 = max(𝑍1

∗, 𝑍2
∗, … , 𝑍731

∗ ) − min(𝑍1
∗, 𝑍2

∗, … , 𝑍731
∗ ) = 20855,689 

6. Calculate rescaled range (𝑅/𝑆) 
(𝑅 𝑆⁄ )1 = 𝑅1 𝑆1⁄ = 0 

(𝑅 𝑆⁄ )2 = 𝑅2 𝑆2⁄ = 1.414 

⋮ 
(𝑅 𝑆⁄ )731 = 𝑅731 𝑆731⁄ = 1916,177 

7. Calculate 𝑙𝑜𝑔 𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 𝑟𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 (𝑅/𝑆) values 

𝑌1 = ln[(𝑅 𝑆⁄ )1] = 1 

𝑌2 = ln[(𝑅 𝑆⁄ )2] = 0.347 

⋮ 
𝑌731 = ln[(𝑅 𝑆⁄ )3] = 7.558 

8. Calculate time logs from observations 

𝑋1 = ln(1) = 0 

𝑋2 = ln(2) = 0.693 

⋮ 
𝑋731 = ln(731) = 6.594 

9. Determine the value of Hurst. 

𝐻 =
∑ (𝑋𝑗 − �̅�)𝑇

𝑗=1 (𝑌𝑗 − �̅�)

∑ (𝑋𝑗 − �̅�)𝑇
𝑗=1

2 = 0.8844464 

Based on the Hurst Exponent (𝐻) value that has been done which is 0.8844464 because the Hurst Exponent 

value is located in the interval 0.5 < 𝐻 < 1, it can be concluded that there is long memory in the data. 
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3.6 ARFIMA Modeling 

3.6.1 Estimation of The Distinguishing Parameters (𝒅) 

Long Memory processes are marked with a differentiating value (𝑑) in fractional form. The method 

used to determine the value of the distinguishing parameter (𝑑) by the Geweke Porter-Hudak (GPH) estimator 

[11][19]. The estimated value of d obtained from R Studio software is 𝑑 =  0.4905795. 

 
Figure 5. Time Series Plot Data Diff(d) 

Hipotesis  

𝐻0: 𝛿 =  1 (Data is not stationarity or there is a unit root) 

𝐻1: 𝛿 <  1 (Stationarity data or no root unit) 

Figure 5 is PM10 air quality index data at Bundaran HI Area in DKI Jakarta Province after differencing 

with GPH estimates shows that the differencing data does not form an upward or downward trend and 

confirms the data is no unit root or has been stationarity in the mean (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.01;  𝛼 = 5%). 

 

3.6.2 ARFIMA Model Identification 

ARFIMA model identification can be determined based on ACF and PACF plots. ACF plots are used 

to identify MA models and PACF is used to use AR models. Based on the results of R studio, the following 

results are obtained: 

  

Figure 6. Plot PACF Data Diff(d) Figure 7. Plot ACF Data Diff(d) 

Figure 6 and Figure 7 show that the PACF and ACF plots have lag values in the PACF plot: AR(𝑝)  =
 1 and 17 and the ACF plot: MA(𝑞)  =  1, 17, and 24 where the lag values will form 11 models which will 

then be estimated the parameters and significance of the ARFIMA model. 

 

3.6.3 Parameter Estimation and Significance of ARFIMA Model 

The parameter significance test is useful to ensure that the resulting ARFIMA model has a significant 

contribution in explaining the variation of time series data. The hypothesis test in estimating ARFIMA model 

parameters is as follows: 

𝐻0: parameter = 0 (parameter is not significant to the model) 

𝐻1: parameter ≠ 0 (parameter significant to model) 

The significance level is alpha is 𝛼 = 0,05 

Test criteria : Reject 𝐻0 if |𝑡count| ≥
𝑡𝛼

2
; 𝑛 − 1 or if 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼; where 𝑛 = number of observations 

𝑡𝛼

2
=

𝛼

2
= 0.025; 𝑛 − 1 = 731 − 1 = 730 
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𝑡(0,025; 730) = 1.963219 

The estimation of the parameters and significance of the ARFIMA model there are 8 significant models 

from 11 ARFIMA models, as presented in Table 3. 

Table 3. Parameter Estimation and Significance of ARFIMA Model 

Model 
Para

meter 

Coefficie

nt 

T-

statistic 
T-table p-value Decision Description 

ARFIMA ([1], d, 0) 𝜙1  -0.0968 -2.6230 1.9632 0.0087 Declined Significant 

ARFIMA ([17], d, 0) 𝜙17  0.0855 2.2623 1.9632 0.0237 Declined Significant 

ARFIMA (0, d, [1]) 𝜃1 -0.1047 -2.7318 1.9632 0.0063 Declined Significant 

ARFIMA (0, d, [17]) 𝜃17 0.07670 2.1548 1.9632 0.0312 Declined Significant 

ARFIMA (0, d, [24]) 𝜃24 0.0737 1.9929 1.9632 0.0463 Declined Significant 

ARFIMA ([1], d, [17]) 
𝜙1 -0.0950 -2.5725 1.9632 0.0101 Declined Significant 

𝜃17 0.0749 2.0916 1.9632 0.0365 Declined Significant 

ARFIMA ([1], d, [24]) 
𝜙1 -0.0975 -2.6409 1.9632 0.0083 Declined Significant 

𝜃24 0.0750 2.0166 1.9632 0.0437 Declined Significant 

ARFIMA ([17], d, [1]) 
𝜙17 0.0831 3.1982 1.9632 0.0279 Declined Significant 

𝜃1 -0.1030 -2.6771 1.9632 0.0074 Declined Significant 

Data Source: R Studio software program, 2023 

 

3.7 Diagnostic Tests 

3.7.1 Residual Independence Test 

The assumption of residual independence to measure the linear relationship between lag values in time 

series data. The residual independence test is also called the autorelation test or white noise test. The residual 

independence assumption is satisfied if the residual is white noise or there is no correlation between the 

residual lag [3][9]. The hypothesis: 

𝐻0 : There is no correlation between residual lag 

𝐻1 : There is a correlation between residual lag 

Test statistic: 𝐿𝐵 = 𝑛(𝑛 + 2) ∑ (
�̂�𝑘

2

𝑛−𝑘
)𝑚

𝑘=1 ; Test criteria: 𝐻0 reject if 𝐿𝐵 > 𝜒𝑎;2
2  or 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼 

The residual independence test confirms that all ARFIMA models have independent residuals, as 

supported by significant results at the 𝛼 = 5% level. 

Table 4. ARFIMA Residual Deficiency Assumption Test 

Model Lag  Q 𝒑 − 𝒗𝒂𝒍𝒖𝒆 Decision 

ARFIMA ([1]. d. 0) 

10   6.5230 0.7696 Accepted 

20 19.0002 0.5218 Accepted 

30 27.9790 0.5716 Accepted 

ARFIMA ([17]. d. 0) 

10 12.0560 0.2813 Accepted 

20 20.2251 0.4439 Accepted 

30 28.2558 0.5569 Accepted 

ARFIMA (0. d. [1]) 

10   6.1243 0.8047 Accepted 

20 18.6056 0.5476 Accepted 

30 27.7240 0.5851 Accepted 

ARFIMA (0. d. [17]) 

10 12.0947 0.2788 Accepted 

20 20.2081 0.4450 Accepted 

30 28.2061 0.5595 Accepted 

ARFIMA (0. d. [24]) 10 12.9865 0.2244 Accepted 

 20 26.3037 0.1560 Accepted 

 30 30.8367 0.4235 Accepted 

ARFIMA ([1]. d. [17]) 10   6.4643 0.7749 Accepted 

 20 15.0503 0.8204 Accepted 

 30 23.3848 0.7991 Accepted 
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Model Lag  Q 𝒑 − 𝒗𝒂𝒍𝒖𝒆 Decision 

ARFIMA ([1]. d. [24]) 10   6.8586 0.7387 Accepted 

 20 19.2772 0.5039 Accepted 

 30 24.7057 0.7392 Accepted 

ARFIMA ([17]. d. [1]) 10   6.0337 0.8124 Accepted 

 20 14.4378 0.8076 Accepted 

 30 23.1572 0.8087 Accepted 

Data Source: R Studio software program, 2023 

3.7.2 Residual Normality Test 

The normality test is carried out to see the normality of the residual data as a result of the 

transformation. Formally, a normal distribution assumption test was carried out using the Kolmogorov-

Smirnov test. The stages of the hypothesis are as follows: 

𝐻0: 𝐹(𝑥) = 𝐹0(𝑥) (Residual normally distributed data) 

𝐻1: 𝐹(𝑥) ≠ 𝐹0(𝑥) (Residual data is not normally distributed) 

The level of significance is 𝛼 = 0.05; Test statistic : 𝐷 = 𝑆𝑢𝑝|𝑆(𝑥) − 𝐹0(𝑥)|; Test criteria: 𝐻0 reject 

if 𝐷 > 𝐾(1−𝛼);𝑛 or 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼 

Table 5. Kolmogorov-Smirnov ARFIMA Test 

Model 𝒑 − 𝒗𝒂𝒍𝒖𝒆 Decision 

ARFIMA ([1], d, 0) 0.0006 Declined 

ARFIMA ([17], d, 0) 0.0007 Declined 

ARFIMA (0, d, [1]) 0.0006 Declined 

ARFIMA (0, d, [17]) 0.0006 Declined 

ARFIMA (0, d, [24]) 0.0002 Declined 

ARFIMA ([1], d, [17]) 0.0017 Declined 

ARFIMA ([1], d, [24]) 0.0006 Declined 

ARFIMA ([17], d, [1]) 0.0022 Declined 

Data Source: R Studio software program, 2023 

Based on Table 5 the ARFIMA models formed residual values are not normally distributed because 

all the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼 = 0.05. One of the assumptions that must be met in the model is that residuals of data 

are normally distributed. However, according to Rosadi [10], it is said that the assumption of normality is 

less important than the assumption of independence therefore, the assumption of normality can be ignored. 
 

3.7.3 Residual Heteroscedasticity Test 

The residual heteroscedasticity assumption test is used to determine whether the ARFIMA model obtained 

has a constant error variant or not to get the ARCH / GARCH effect on residuals. Non-constant errors mean 

that the model has heteroskedasticity problems. Heteroskedasticity test on ARFIMA model using ARCH-LM 

method. 

Test statistic : 𝐿𝑀 =
𝑆𝑆𝑅0

𝑆𝑆𝑅1 (
𝑛−2𝑢−1

𝑢
)⁄
; with 𝑆𝑆𝑅0 = ∑ (𝑎𝑡

2 − �̅�𝑡
2)2𝑛

𝑡=𝑢+1 , �̅�𝑡
2 =

∑ 𝑎𝑡
2𝑛

𝑡=1

𝑛
, 𝑆𝑆𝑅1 = ∑ �̅�𝑡

2𝑛
𝑡=𝑢+1 𝑒𝑡

2. 

Indicated 𝑒𝑡
2 the smallest residual quarter of the equation and 𝑢 is specified by a positive integer.  

Based on Table 6 of the significant level of 𝛼 = 5%, it can be concluded that the ARFIMA models 

above have an ARCH/GARCH effect on residual data. 

Table 6. ARFIMA Residual Heteroscedasticity Test 

Model LM 𝒑 − 𝒗𝒂𝒍𝒖𝒆 Decision 

ARFIMA ([1], d, 0) 34.555 0.0005 Declined 

ARFIMA ([17], d, 0) 33.964 0.0007 Declined 

ARFIMA (0, d, [1]) 34.179 0.0006 Declined 

ARFIMA (0, d, [17]) 34.41 0.0006 Declined 

ARFIMA (0, d, [24]) 37.892 0.0002 Declined 

ARFIMA ([1], d, [17]) 31.46 0.0017 Declined 

ARFIMA ([1], d, [24]) 34.535 0.0006 Declined 

ARFIMA ([17], d, [1]) 30.691 0.0022 Declined 

Data Source: R Studio software program, 2023 
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3.8 Best Model Selection 

The best model selection among eight model is ARFIMA ([17], d, [1]) with an AIC values of 9019.857 

where the ARFIMA model equation ([17], d, [1]) is as follows: 

Φ𝑝(𝐵)(1 − 𝐵)𝑑𝑍𝑡 = 𝜃𝑞(𝐵)𝑎𝑡 

(1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙17𝐵17)(1 − 𝐵)𝑑𝑍𝑡 = (1 − 𝜃1𝐵)𝑎𝑡 

(1 − 𝜙1𝐵)(1 − 𝐵)𝑑𝑍𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 

(1 − 0.083143𝐵)(1 − 𝐵)0.4905795𝑍𝑡 = 𝑎𝑡 + 0.10303𝑎𝑡−1 

 

3.9 GARCH Modeling 

3.9.1 Parameter Estimation and Significance Test 

Hypothesis testing of parameter estimates for the ARFIMA-GARCH models showed significant results 

at the α = 0.05 level for four specific model configurations. Notably, all parameters within these four models 

demonstrated statistical significance, underlining their relevance to the overall model structure. 

Table 7. Results of Parameter Estimation and ARFIMA-GARCH Significant Test 

Model 
Para-

meter 

Parameter 

Estimation 
T -Statistic T-table 𝑷 − 𝒗𝒂𝒍𝒖𝒆 Decision Description 

ARFIMA ([17], 0, d, 

[1])-GARCH(0,1) 
𝛽1 0.9848 1.73× 10−2 1.9632 0 Declined Significant 

ARFIMA ([17], 0, d, 

[1])-GARCH(1,0) 
𝛼1 0.5021 5.9 × 10−3 1.9632 0 

Declined Significant 

ARFIMA ([17], 0, d, 

[1])-GARCH(2,0) 
𝛼2 0.6921 3119.1 1.9632 0 

Declined Significant 

ARFIMA ([17], 0, d, 

[1])-GARCH(1,1) 

𝛼1 0.0352 3.299883 1.9632 0.0010 Declined Significant 

𝛽1 0.9508 71.17763 1.9632 0 Declined Significant 

Data Source: R Studio software program, 2023 

3.9.2 Best Model Selection 

The smallest value of the four ARFIMA-GARCH models is found in the ARFIMA ([17], d, [1])-

GARCH(1,1) model with an AIC value of 12.273 therefore the test will continue using the models. 

Table 8. Best Model Selection 

Model AIC 

ARFIMA ([17], 0, d, [1])-GARCH(0,1) 12.315 

ARFIMA ([17], 0, d, [1])-GARCH(1,0) 74.281 

ARFIMA ([17], 0, d, [1])-GARCH(2,0) 14.258 

ARFIMA ([17], 0, d, [1])-GARCH(1,1) 12.273 

Data Source: R Studio software program, 2023 

3.9.3 Sign and Size Bias Test GARCH Model 

The ARFIMA model ([17], d, [1])-GARCH(1,1) was then tested for sign and size bias to determine 

whether the effect model was asymmetric. The sign and size bias test consists of three tests, namely the sign 

of bias test, the positive bias size test and the negative bias size test expressed in the regression equation 

which is carried out simultaneously called the joint effect [20]. The stages of the hypothesis are as follows: 

𝐻𝑜: 𝑏𝑗 = 0 (Residuals are symmetric) 

𝐻1: 𝑏𝑗 ≠ 0 (Residuals are not symmetrical 

The level of significance is 𝛼 = 0.05. Test statistic: 𝑡 =
𝑏𝑗̅̅ ̅

𝑠𝑒(𝑏𝑗̅̅ ̅)
; );  𝑗 = 1,2,3. 

The outcomes for the ARFIMA([17], d, [1])-GARCH(1,1) model, as generated using R Studio software 

[19], are comprehensively presented in Table 9 where it has a calculated 𝑡 value smaller than the T-table and 

a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 more than 0.05. Then it can be decided that the residuals of the model are symmetrical. 
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Table 9. Sign and Size Bias Test Results of ARIMA-GARCH Model 

Test T-count T-table 𝒑 − 𝒗𝒂𝒍𝒖𝒆 Decision  Description  

Sign Bias 0.9720 1.9632 0.3314 𝐻𝑜 Accepted Symmetrical Residuals 

Negative Sign Bias 0.5806 1.9632 0.5617 𝐻𝑜 Accepted Symmetrical Residuals 

Positive Sign Bias 0.7580 1.9632 0.7821 𝐻𝑜 Accepted Symmetrical Residuals 

Joint Effect 1.0792 1.9632 0.0782 𝐻𝑜 Accepted Symmetrical Residuals 

Data Source: R Studio software program, 2023 

 

3.9.4 Non Heteroskedasticity Test 

It can be concluded that the ARFIMA model ([17], d, [1])-GARCH(1,1) has fulfilled the assumption of 

independence and there is no heteroscedasticity effect because it has a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 1 greater than 0.05. 

Therefore, obtained the final model of ARFIMA ([17], d, [1])-GARCH(1,1) with the following equation: 

Φ𝑝(𝐵)(1 − 𝐵)𝑑𝑍𝑡 = 𝜃𝑞(𝐵)𝑎𝑡 

(1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙17𝐵17)(1 − 𝐵)𝑑𝑍𝑡 = (1 − 𝜃1𝐵)𝑎𝑡 

(1 − 𝜙1𝐵)(1 − 𝐵)𝑑𝑍𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 

(1 − 0.045759𝐵)(1 − 𝐵)0.4905795𝑍𝑡 = 𝑎𝑡 + 0.245419𝑎𝑡−1, 
with 

𝑎𝑡~𝑁(0, 𝜎𝑡
2), 

and its’ variant models 

𝜎𝑡
2 = 161.079924 + 0.035192𝜀𝑡−1

2 + 0.950813𝜎𝑡−1
2 . 

 

3.10 Prediction Results 

The prediction result of the best model ARFIMA ([17], d, [1])-GARCH(1,1), for the next 14 days 

(January 1st - January 14th, 2021) because air quality index data can change at any time. 

Table 10. ARFIMA-GARCH Forecasting Results and Out Sample Data 

Period Date 

Predict Data 

Before 

Retransformation 

Predict Data After 

Transformation 

Out 

Sample 

Data 

1 01/01/2021 153.7 25.7 38 

2 02/01/2021 151.7 25.5 27 

3 03/01/2021 152.6 25.6 44 

4 04/01/2021 145.3 24.8 30 

5 05/01/2021 145.7 24.9 38 

6 06/01/2021 160.1 26.4 41 

7 07/01/2021 165.8 27.0 35 

8 08/01/2021 156.2 26.0 37 

9 09/01/2021 155 25.9 47 

10 10/01/2021 160.8 26.5 23 

11 11/01/2021 154.6 25.8 38 

12 12/01/2021 150 25.3 29 

13 13/01/2021 145.3 24.8 34 

14 14/01/2021 147.2 25.0 36 

Data Source: R Studio software program, 2023 

 

To assess the forecasting accuracy in Table 10, using the MAPE function measures the percentage 

error between the out sample data and the forecasted data in the ARFIMA ([17], d, [1])- GARCH (1,1) model 

which involves comparing the absolute difference between the actual value and the predicted value, then 

averaging these values and expressing the result as a percentage of the actual value. To help determine the 

model's performance in predicting future data points, providing insight into its reliability and accuracy. 
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𝑀𝐴𝑃𝐸 = [
1

𝑛
∑

|𝑍𝑡 − �̂�𝑡|

𝑍𝑡

𝑛

𝑡=1

] × 100% 

=
1

14
(|

38 − 25.7

38
| + |

27 − 25.5

27
| + ⋯ + |

36 − 25

36
|) × 100% = 0.2724% 

The MAPE value obtained shows that the ARFIMA ([17], d, [1])-GARCH(1,1) model has quite good 

forecasting capabilities. 

 
 

4. CONCLUSIONS 

The analysis of PM10 air quality data at the Bundara HI, DKI Jakarta Province using the 

ARFIMA([17], d, [1])-GARCH(1,1) model has shown quite good results. This is particularly relevant since 

the training data covers the period from early 2019 to the end of 2020, including both the pre-pandemic phase 

and the pandemic period, when there was a significant decrease in vehicle volume due to COVID-19 

restrictions in Indonesia. However, this model could be improved by including external variables such as the 

impact of the COVID-19 pandemic, changes in mobility policies, the level of public compliance with 

restrictions, and changes in transportation patterns that directly affect vehicle emissions and air quality. 

Additionally, considering alternative models like ARMAX-GARCH, VARMA-GARCH, SARIMA, or 

LSTM might be beneficial. 
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