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 ABSTRACT  

Article History: 
Human Immunodeficiency Virus (HIV) is a virus that affects the human immune system. HIV 

infection causes a decrease in the body's immunity because the virus attacks immune-

building cells, especially T-CD4 cells. Currently, there is no treatment that can cure or 

eliminate HIV, but antiretroviral therapy can be done. This study discusses the growth 

model of HIV in the body that is given control in an effort to maximize healthy T-CD4 cells. 

In this model, the infection-free and infected equilibrium points are also discussed, and their 

stability is analyzed. Then the optimal control is solved using the Pontryagin Maximum 

Principle method and solved numerically using the fourth-order Runge Kutta method. Based 

on the analysis and simulation results, the system is asymptotically stable around the 

infection-free equilibrium point and unstable around the infected equilibrium point. 

Simulation results show that with the control of antiretroviral therapy, the T-CD4 cell 

population grows significantly, which can improve the quality of life of patients. And the 

growth of HIV in the body can be inhibited until it cannot reproduce itself. 
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1. INTRODUCTION 

Human Immunodeficiency Virus (HIV) is a virus that damages the human immune system. HIV 

infection causes a decrease in the body's immunity because the virus attacks immune-building cells, 

especially T-CD4 cells, thus damaging or disrupting their function. In more advanced stages, HIV infection 

can lead to AIDS, which is characterized by a sharp decline in immunity, making the body more susceptible 

to various other comorbidities and opportunistic infections [1].  HIV is categorized as a Lentivirus genus in 

the Retroviridae family in the Orthoretrovirinae subfamily [2].To this day, no treatment that can treat or 

eliminate HIV, but antiretroviral therapy is possible. The introduction of highly effective antiretroviral 

therapy (ART) has transformed the treatment of people living with human immunodeficiency virus (PLWH). 

Combination ART has multiple benefits for individuals and society, mediated by achieving viral suppression, 

improving health-related quality of life, and preventing HIV transmission [3],[4]. Various classes of 

antiretroviral drugs with different mechanisms have been discovered. ART generally uses two drugs from 

one class along with a third drug from another class. The anti-HIV drug classes include Nucleoside reverse 

transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTI), which inhibit 

viral RNA transcription by suppressing reverse transcriptase. Protease inhibitors (PIs) inhibit the viral 

protease enzyme, stopping viral maturation, while integrase inhibitors block viral DNA integration into T-

CD4 cells [5]. 

The Ministry of Health reports that the number of HIV/AIDS cases in Indonesia is still relatively high. 

The Ministry of Health predicts that by September 2023, there will be more than 500,000 HIV cases recorded. 

Based on the number of estimated cases until September 2023, there were 515,455 people living with HIV 

(PLWH) in Indonesia. Of these, 454,723 people, or about 88 percent of them, have been infected with HIV 

or know their HIV status [6]. Based on this data, the number of housewives infected with HIV reached 35%. 

This figure is higher than HIV cases in other groups, such as husbands of sex workers and MSM (man sex 

with man) groups. Currently, HIV cases in children aged 1-14 years reach 14,150 cases. This number 

increases annually by about 700-1000 children with HIV [7]. 

Mathematical modeling is often used to explain biological phenomena such as the spread of disease. 

In this case, mathematical modeling is important to analyze HIV/AIDS infection. There have been many 

researches on mathematical modeling of the spread of HIV/AIDS. Zamzami et al. [8] have conducted 

mathematical modeling and stability analysis on the spread of HIV/AIDS with treatment. In this research, 

there are four compartments, such as the population of vulnerable individuals, the population of HIV-infected 

individuals, the population of AIDS-infected individuals, and the population of individuals undergoing 

treatment. Then Lamusu et al. [9] built a mathematical model of the spread of HIV/AIDS with three 

compartments i.e., Susceptible (S), Infected (I), and AIDS (A) applied to two cities. Rahayu et al. [10] built 

a mathematical model on the growth of the number of HIV viruses. In this research, there are three 

compartments such as healthy T-CD4 cells, infected T-CD4 cells and HIV. 

Optimal control is a science in mathematics that has been developed to find the best method of 

controlling dynamic systems [11]. The Pontryagin Maximum Principle is one of the optimal control methods 

for dynamic models, as shown by the following research [12],[13],[14],[15]. So in this research, the 

mathematical model of HIV growth was obtained from the mathematical model of Rahayu et al. [10], which 

was then developed with control in the form of a combination of antiretrovirals, i.e., Nucleoside Reverse 

Transcriptase Inhibitor (NRTI) and Protease Inhibitor (PI). And modify some parameters that are also taken 

from research by Dubey et al. [16]. 

 

2. RESEARCH METHODS 

The research steps on the HIV growth model in the body with antiretroviral therapy (ART) are as 

follows: 

1. Explain the model used in the HIV growth in the body. 

2. From the model that has been obtained, the equilibrium point of the HIV growth model in the body 

is determined. The equilibrium point can be obtained by taking the first derivative equal to zero. 

Definition [17]: 
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Given a first-order differential equation �̇�(𝑡) = 𝑓(𝑥(𝑡)) with 𝑥 ∈ ℝ𝑛, the solution with an initial 

state 𝑥(0) = 𝑥0 is denoted by 𝑥(𝑡, 𝑥0). The vector 𝑥 that satisfies 𝑓(𝑥 ) = 0 is called an equilibrium 

point. 

3. Analyzing the stability of the model around the equilibrium point.  To analyze the equilibrium 

point at a certain condition, a nonlinear system of differential equations can be linearized using the 

Jacobian matrix. 

If given a function 𝑓 = (𝑓1, 𝑓2, … , 𝑓𝑛)in a system �̇� = 𝑓(𝑥). Then, the Jacobian matrix: 

𝐽𝑓(𝑥∗) =

[
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑥1

(𝑥∗)
𝜕𝑓1
𝜕𝑥2

(𝑥∗) ⋯
𝜕𝑓1
𝜕𝑥𝑛

(𝑥∗)

𝜕𝑓2
𝜕𝑥1

(𝑥∗)
𝜕𝑓2
𝜕𝑥2

(𝑥∗) ⋯
𝜕𝑓2
𝜕𝑥𝑛

(𝑥∗)

⋮ ⋮ ⋮ ⋮
𝜕𝑓𝑛
𝜕𝑥1

(𝑥∗)
𝜕𝑓𝑛
𝜕𝑥2

(𝑥∗) …
𝜕𝑓𝑛
𝜕𝑥𝑛

(𝑥∗)
]
 
 
 
 
 
 
 

 

To make it easier to determine the eigenvalue of the characteristic equation, it can also be done 

using the Routh-Hurwitz criterion.  

4. The model of HIV growth in the body is developed with control in the form of antiretroviral 

therapy, NRTI, and PI therapy. 

5. Numerical simulation was carried out using the 4th-order Runge-Kutta method. After the 

simulation, the results were analyzed to determine the graph behavior of the HIV growth model in 

the body when before and after being given control. 

 

3. RESULTS AND DISCUSSION 

3.1 Mathematical Model 

The model that will be discussed in this research has three variables: healthy T-CD4 cell population 

(𝐻), infected T-CD4 cell population (𝐼), and HIV population (𝑉). Some assumptions used in the model of 

HIV growth in the body with antiretroviral therapy are as follows: 

1. The spread of HIV occurs internally, i.e., in the human body. 

2. There are no other viruses that attack other than HIV. 

3. The growth of HIV in the body only affects the population of T-CD4 cells and HIV. 

4. Control input is in the form of antiretroviral combination therapy, namely NRTI and PI. 

So from the assumptions mentioned above, a compartment diagram of the HIV growth model in the body is 

obtained as follows [10]: 

 
Figure 1. Model Diagram of the HIV Growth in the Body 

Figure 1 illustrates that the inbound arrow signifies an increase in the population of variables H, I, and 

V. Conversely, the outgoing arrow indicates a decrease in the population size of these variables. The dashed 

line from I to V indicates that the population of V will increase without decreasing the population of I. 
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Similarly, the dashed line from V to H indicates that V attacks H without reducing its population. Based on 

Figure 1, we obtain the following mathematical model in Equation (1): 

 
𝑑𝐻

𝑑𝑡
= 𝑠 + 𝑟𝐻 (1 −

𝐻 + 𝐼

𝐻𝑚
) − 𝜇0𝐻 − 𝑘1𝑉𝐻 

𝑑𝐼

𝑑𝑡
= 𝑘1𝑉𝐻 − 𝜇1𝐼 

𝑑𝑉

𝑑𝑡
= (𝑁 + 𝑘2)𝐼 − 𝜇2𝑉 

(1) 

 
The parameters used are as follows: 

𝑠 : The production rate of healthy T-CD4 cells 

𝜇0 : The natural death rate of T-CD4 cells 

𝑟 : The growth rate of T-CD4 cells 

𝐻𝑚 : The maximal capacity of T-CD4 cells 

𝑘1 : The rate of infected T-CD4 cells 

𝜇1 : The death rate of infected T-CD4 cells 

𝑁  : Source of virus 

𝑘2 : The rate of HIV inside T-CD4 cells 

𝜇2 : HIV mortality rate 

 

3.2 Equilibrium Point 

The equilibrium point is obtained if the following conditions are satisfied, 

𝑑𝐻

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑉

𝑑𝑡
= 0 

The equilibrium point of the HIV growth model in the body has two equilibrium points, which are the 

infection-free equilibrium point and the infected equilibrium point. 

 

3.2.1. Infection-Free Equilibrium Point 

The infection-free equilibrium point is the condition when the body has not been infected, i.e., the 

condition when 𝐼 = 0 and V =  0. Then, the infection-free equilibrium point can be written with 𝐸0 =
(𝐻0, 0,0), where 𝐻0 is given by: 

𝐸0 = (
𝐻𝑚

2𝑟
[(𝑟 − 𝜇0) + √

4𝑠𝑟

𝐻𝑚
+ (𝑟 − 𝜇0)

2] , 0,0) 

 

3.2.2. Infection Equilibrium Point 

The infected equilibrium point is the equilibrium point where T-CD4 cells become infected. So that 

the infected equilibrium point can be written as 𝐸1 = (𝐻1, 𝐼1, 𝑉1), with 

𝐻1 =
𝜇2𝜇1

𝑘1𝑘2
 

𝐼1 =
𝑟𝜇1𝜇2𝐻𝑚𝑘1𝑘2 − 𝜇0𝜇1𝜇2𝐻𝑚𝑘1𝑘2 + 𝑠𝐻𝑚𝑘1

2𝑘2
2 − 𝑟𝜇1

2𝜇2
2

𝐻𝑚𝑘1
2𝑘2

2𝜇1

 

𝑉1 =
𝑟𝜇1𝜇2𝐻𝑚𝑘1𝑘2 − 𝜇0𝜇1𝜇2𝐻𝑚𝑘1𝑘2 + 𝑠𝐻𝑚𝑘1

2𝑘2
2 − 𝑟𝜇1

2𝜇2
2

𝐻𝑚𝑘1
2𝑘2𝜇1𝜇2
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3.3 Stability Analysis 

After obtaining the equilibrium point of the HIV growth model in the body, the next step is to analyze 

the stability of the system. Based on Equations (1), it can be seen that the mathematical model of HIV growth 

in the body is a nonlinear system of differential equations, so to get stability, linearization will be carried out 

using the Jacobi matrix. The Jacobian matrix is a linear approximation of the nonlinear system of the model. 

Equation (1) can be expressed as a function of the variables 𝐻, 𝐼, and 𝑉, so that the equation can be expressed 

generally as follows: 

𝑑𝐻

𝑑𝑡
= 𝑠 + 𝑟𝐻 (1 −

𝐻 + 𝐼

𝐻𝑚
) − 𝜇0𝐻 − 𝑘1𝑉𝐻 = 𝑓1(𝐻, 𝐼, 𝑉) 

𝑑𝐼

𝑑𝑡
= 𝑘1𝑉𝐻 − 𝜇1𝐼 = 𝑓2(𝐻, 𝐼, 𝑉) 

𝑑𝑉

𝑑𝑡
= (𝑁 + 𝑘2)𝐼 − 𝜇2𝑉 = 𝑓3(𝐻, 𝐼, 𝑉) 

(2) 

The Jacobian matrix of Equation (2) is as follows: 

𝐽 =

[
 
 
 
 
 
𝜕𝑓1
𝜕𝐻

𝜕𝑓1
𝜕𝐼

𝜕𝑓1
𝜕𝑉

𝜕𝑓2
𝜕𝐻

𝜕𝑓2
𝜕𝐼

𝜕𝑓2
𝜕𝑉

𝜕𝑓3
𝜕𝐻

𝜕𝑓3
𝜕𝐼

𝜕𝑓3
𝜕𝑉 ]

 
 
 
 
 

= [
−𝑗11 −

𝑟𝐻

𝐻𝑚
−𝑘1𝐻

𝑘1𝑉 −𝜇1 𝑘1𝐻
0 𝑁 + 𝑘2 −𝜇2

] 

where 𝑗11 = −𝑟 (1 −
2𝐻

𝐻𝑚
) + 𝜇0 + 𝑘1𝑉 

 

3.3.1. Infection-Free Equilibrium Point Stability 

To determine the stability of the infection-free equilibrium point 𝐸0, then substitute the value of the 

infection-free equilibrium point 𝐸0 = (
𝐻𝑚

2𝑟
[(𝑟 − 𝜇0) + √

4𝑠𝑟

𝐻𝑚
+ (𝑟 − 𝜇0)

2] , 0,0),  in the Jacobi Matrix so 

obtained: 

𝐽(𝐸0) = [
−𝑗11 −

𝑟𝐻0

𝐻𝑚
−𝑘1𝐻0

0 −𝜇1 𝑘1𝐻0

0 𝑁 + 𝑘2 −𝜇2

] 

where 𝑗11 = −𝑟 (1 −
2𝐻0

𝐻𝑚
) + 𝜇0 

The characteristic equation of the Jacobian matrix can be found by using |𝜆𝐼 − 𝐽(𝐸0)| = 0, so obtained: 

(𝜆 − 𝑗11)(𝜆
2 + 𝑏𝜆 + 𝑐) = 0 

where 𝑏 = 𝜇1 + 𝜇2 and 𝑐 = 𝜇1𝜇2 − 𝑁𝑘1𝐻0 − 𝑘2𝑘1𝐻0 

So that the eigenvalues of the matrix 𝐽(𝐸0) are obtained 𝜆1 = −𝑗11 and 𝜆2,3  is found using the ABC formula 

𝜆2,3 =
−(𝜇1 + 𝜇2) ± √(𝜇1 + 𝜇2)

2 − 4(𝜇1𝜇2 − 𝑁𝑘1𝐻0 − 𝑘2𝑘1𝐻0)

2
 

Since the parameter values are positive, it is obtained that 𝜆1 < 0 and ℜ(𝜆2),ℜ(𝜆3) < 0,, it can be concluded 

that the infection-free equilibrium point is asymptotically stable. 

 

3.3.2. Infection Equilibrium Point Stability 

To determine the stability of the infection-free equilibrium point  (𝐸0), then substitute the value of the 

infection-free equilibrium point 𝐸1 = (𝐻1, 𝐼1, 𝑉1) in the Jacobi Matrix so that it is obtained: 
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𝐽(𝐸1) = [
−𝑗11 −

𝑟𝐻0

𝐻𝑚
−𝑘1𝐻1

𝑘1𝑉1 −𝜇1 𝑘1𝐻1

0 𝑁 + 𝑘2 −𝜇2

] 

where 𝑗11 = −𝑟 (1 −
2𝐻

𝐻𝑚
) + 𝜇0 + 𝑘1𝑉 

The characteristic equation of the Jacobian matrix can be found by using |𝜆𝐼 − 𝐽(𝐸0)| = 0, so the 

following equation is obtained: 

(𝜆 + 𝑗11)[(𝜆 + 𝜇1)(𝜆 + 𝜇2) − (𝑁 + 𝑘2)(𝑘1𝐻1)] = 0 

𝐴0𝜆
3 + 𝐴1𝜆

2 + 𝐴2𝜆 + 𝐴3 = 0 (3) 

where, 

𝐴0 = 1   

𝐴1 = 𝑗11 + 𝜇1 + 𝜇2  

𝐴2 = 𝑗11𝜇1 + 𝑗11𝜇2 + 𝜇1𝜇2 − 𝐻1𝑘1𝑁 − 𝐻1𝑘1𝑘2  

𝐴3 = 𝑗11𝜇1𝜇2 − 𝑗11𝐻1𝑘1𝑘2 − 𝑗11𝐻1𝑘1𝑁 

 

To simplify the calculation in determining the eigenvalue of the characteristic equation, the Routh 

Hurwitz criterion is used to determine the stability properties of the system around the equilibrium point of 

infection, as follows: 

𝐴0𝜆
3 + 𝐴1𝜆

2 + 𝐴2𝜆 + 𝐴3 = 0 

𝜆3 𝐴0 𝐴2 

𝜆2 𝐴1 𝐴3 

𝜆1 𝑏1 0 

𝜆 𝑐1 0 

where 𝑏1 =
𝐴1𝐴2−𝐴3

𝐴1
 and 𝑐1 =

𝑏1𝐴3−𝐴10

𝑏1
= 𝐴3. Equation (3) will have negative characteristic roots if and 

only if 𝐴1, 𝑏1, 𝑐1 are positive, which means 𝐴1, 𝐴2, 𝐴3 > 0 and 𝐴1𝐴2 > 𝐴3. So, the model of HIV growth in 

the body around the equilibrium point of infection will be asymptotically stable if 𝐴1, 𝐴2, 𝐴3 > 0 and 𝐴1𝐴2 >

𝐴3. However, if the condition is taken that 𝐴1 < 0,  , then the model of HIV growth in the body around the 

equilibrium point of infection will be unstable. 

 

3.4 Optimal Control Solution 

In this research, optimal control aims to maximize the  healthyT-CD4 cells at the cost of implementing 

minimum 𝜃0 and 𝜃1 controls. The objective function of the HIV growth model in the body with antiretroviral 

therapy is as follows: 

𝐽(𝜃0, 𝜃1) = max ∫ [𝑎1𝐻 −
1

2
(𝑏1𝜃0

2(𝑡) + 𝑏2𝜃1
2(𝑡))] 𝑑𝑡

𝑡𝑓

𝑡0

 

where 

𝑎1 : population weight of healthy T-CD4 cells 

𝑏1 : cost weight on NRTI therapy control (𝜃0) 

𝑏2 : cost weight on PI therapy control (𝜃1) 

 

With the following constraints: 
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Figure 2. Model Diagram of HIV Growth in the Body with Antiretroviral Therapy Control 

Based on the compartment diagram in Figure 2, a mathematical model of the HIV growth in the body 

with controls can be formulated as follows: 

 
𝑑𝐻

𝑑𝑡
= 𝑠 + 𝑟𝐻 (1 −

𝐻 + 𝐼

𝐻𝑚
) − 𝜇0𝐻 − 𝑘1(1 − 𝜃0)𝑉𝐻 

𝑑𝐼

𝑑𝑡
= 𝑘1(1 − 𝜃0)𝑉𝐻 − 𝜇1𝐼 

𝑑𝑉

𝑑𝑡
= 𝑁𝐼 + 𝑘2(1 − 𝜃1)𝐼 − 𝜇2𝑉 

and 

0 ≤ 𝜃0(𝑡) ≤ 1, 0 ≤ 𝜃1(𝑡) ≤ 1, 

The steps used in solving the optimal control of the HIV growth model in the body using the Pontryagin 

Maximum Principle method are as follows [18]: 

1. Obtain the Pontryagin function form (Hamiltonian) 

ℋ = 𝑎1𝐻 −
1

2
(𝑏1𝜃0

2 + 𝑏2𝜃1
2) + 𝜆1 (𝑠 + 𝑟𝐻 (1 −

𝐻 + 𝐼

𝐻𝑚
) − 𝜇0𝐻 − 𝑘1(1 − 𝜃0)𝑉𝐻)

+ 𝜆2(𝑘1(1 − 𝜃0)𝑉𝐻 − 𝜇1𝐼) + 𝜆3(𝑁𝐼 + 𝑘2(1 − 𝜃1)𝐼 − 𝜇2𝑉) 

(4) 

 

2. Determine the optimal condition of the Hamiltonian function (ℋ) on the control 𝜃 

The optimal control equation can be obtained by deriving Equation (4) to each of the control variables 

𝜃0 and 𝜃1. 

• Equation (ℋ) is derived to 𝜃0, obtained as follows, 

𝜃0
∗ =

(𝜆1 − 𝜆2)𝑘1𝑉𝐻

𝑏1
 

• Equation (ℋ) is derived to 𝜃1, obtained as follows, 

𝜃1
∗ =

𝜆3𝑘2𝐼

𝑏2
 

3. Get the optimal ℋ∗ value 

Substituting the optimal 𝜃0
∗ dan 𝜃1

∗ results into the Hamiltonian form, thus obtained: 

ℋ = 𝑎1𝐻 −
1

2
(𝑏1𝜃0

2 + 𝑏2𝜃1
2) + 𝜆1 (𝑠 + 𝑟𝐻 (1 −

𝐻 + 𝐼

𝐻𝑚
) − 𝜇0𝐻 − 𝑘1(1 − 𝜃0

∗)𝑉𝐻)

+ 𝜆2(𝑘1(1 − 𝜃0
∗)𝑉𝐻 − 𝜇1𝐼) + 𝜆3(𝑁𝐼 + 𝑘2(1 − 𝜃1

∗)𝐼 − 𝜇2𝑉) 

4. Get state and costate equations 

• State equation:  �̇�∗(𝑡) = +(
𝜕ℋ

𝜕𝝀
)
∗
 

Obtained by: 
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�̇�∗(𝑡) = +(
𝜕ℋ

𝜕𝜆1
)
∗

= 𝑠 + 𝑟𝐻 (1 −
𝐻 + 𝐼

𝐻𝑚
) − 𝜇0𝐻 − 𝑘1(1 − 𝜃0

∗)𝑉𝐻 

𝐼∗̇(𝑡) = +(
𝜕ℋ

𝜕𝜆2
)
∗

= 𝑘1(1 − 𝜃0
∗)𝑉𝐻 − 𝜇1𝐼 

𝑉∗(𝑡) = +(
𝜕ℋ

𝜕𝜆3
)
∗

= 𝑁𝐼 + 𝑘2(1 − 𝜃1
∗)𝐼 − 𝜇2𝑉 

(5) 

• Costate equation: �̇�∗(𝑡) = −(
𝜕ℋ

𝜕𝒙
)
∗
 

Obatined by: 

�̇�1
∗(𝑡) = −(

𝜕ℋ

𝜕𝐻
)
∗
 

= −[𝑎1 + 𝜆1 (𝑟 (1 −
2𝐻 + 𝐼

𝐻𝑚
) − 𝜇0 − 𝑘1(1 − 𝜃0

∗)𝑉) + 𝜆2(𝑘1(1 − 𝜃0
∗)𝑉)]  

�̇�2
∗ (𝑡) = −(

𝜕ℋ

𝜕𝐼
)
∗
= −[𝜆2(−𝜇1) + 𝜆3(𝑁 + 𝑘2(1 − 𝜃1

∗)] 

�̇�3
∗ (𝑡) = −(

𝜕ℋ

𝜕𝑉
)
∗
= −[𝜆1(−𝑘1(1 − 𝜃0

∗)𝐻) + 𝜆2(𝑘1(1 − 𝜃0
∗)𝐻) − 𝜆3𝜇2] 

(6) 

 

3.5 Analysis and Simulation Results 

In this discussion, the initial values given are 𝐻(0) = 30, 𝐼(0) = 3, 𝑉(0) = 5 and the parameter values 

given in Table 1. From the discussion of stability analysis for the infection-free equilibrium point by inputting 

parameter values, 𝜆1, 𝜆2, 𝜆3 < 0,  is obtained, the system around the infection-free equilibrium point is 

asymptotically stable. As for the infected equilibrium point, the Routh-Hurwitz table that needs to be 

considered is the component in the first column, namely 𝐴0,  𝐴1,  𝑏1,  𝑐1 and after submitting the parameter 

values, the values of 𝐴0,  𝐴1,  𝑏1,  𝑐1 are positive, so it can be concluded that the system around the infected 

equilibrium point is asymptotically stable. Then discussed the results of numerical simulations on the model 

equation of HIV growth in the body with antiretroviral therapy. Numerical simulations were carried out using 

the 4th-order Runge-Kutta method by inputting parameter values into the equation and comparing changes 

in population numbers before and after being given. 

 
Table 1. Parameter Value of HIV Growth Model in the Body with Antiretroviral Therapy 

Parameter Description Values Source 

s The production rate of healthy T-CD4 cells 10/𝑚𝑚3 hari [10] 

𝜇0 The natural death rate of T-CD4 cells 0.02/hari [10] 

𝑟 The growth rate of T-CD4 cells 0.3/hari [16] 

𝐻𝑚 The maximal capacity of T-CD4 cells 1000/𝑚𝑚3 [10] 

𝑘1 The rate of infected T-CD4 cells 0.002/𝑚𝑚3 hari [16] 

𝜇1 The death rate of infected T-CD4 cells 0.26/hari [10] 

𝑁 Source of virus 100 Assumed 

𝑘2 The rate of HIV inside T-CD4 cells 0.0024/𝑚𝑚3 hari Assumed 

𝜇2 The death rate of  HIV  3/hari [16] 

 

The following are the results of the numerical simulation comparison of the HIV growth model in the 

body with and without control: 
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(a) (b) 

Figure 3. Comparison Graph of Changes in the Number of (a) Healthy T-CD4 Cell Population (b) Infected T-

CD4 Cell Population 

 
Figure 3 (a) shows that there is a difference in the healthy T-CD4 cell population before and after 

control. The total population of T-CD4 cells before control continued to decrease and then stabilized at 3,8. 

However, after the control, the T-CD4 cell population increased steadily until the 50th day at 7,6. This can 

happen because of the control in the form of NRTI therapy, which prevents the viral reverse transcriptase 

enzyme from copying RNA into DNA. So that without DNA, HIV and AIDS cannot reproduce themselves. 

In Figure 3, (b) it is obtained that the population of infected T-CD4 cells, after being given control, decreased 

when compared to before control. The population of infected T-CD4 cells, after being controlled, decreased 

to 0,0000068. However, if no control was given, then the population of infected T-CD4 cells increased to 

29,5. This happened because of the control in the form of NRTI therapy. 

 

  
(a) (b)  

Figure 4. (a) Comparison Graph of Changes in the Number of HIV, (b) Graph of Changes in the Treatment of 

𝜽𝟎 and 𝜽𝟏 Controls 

 
Figure 4 (a) shows that there is a difference in the HIV before and after control. Before the control, 

the HIV population continued to increase to 984 on day 50. While after being given control, the HIV 

population decreased to 0,002. This shows that PI therapy can reduce the number of HIV that infect more 

healthy cells. Figure 4 (b) shows the amount of control 𝜃0 and 𝜃1.  The control 𝜃0 reaches a maximum of 1 

until the 45th day. Then it decreases until it reaches a minimum of 0 on day 50. This shows that given the 

control, the population of healthy T-CD4 cells decreases because the virus is no longer detected in the viral 

load test for HIV. While in the control 𝜃2 until day 50 reaches a maximum of 1. This happens so that the HIV 

in the body cannot reproduce itself.  
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4. CONCLUSIONS 

A mathematical model for the growth of HIV in the body has been developed with a control in the form 

of a combination of antiretroviral therapy, i.e., NRTI and PI.  Based on the stability analysis of the equilibrium 

point, it is known that the disease-free equilibrium point is asymptotically stable. As for the infected 

equilibrium point, it can be concluded that the system around the infected equilibrium point is asymptotically 

stable. Then, numerical simulations were carried out using the 4th-order Runge Kutta method.  The results 

of numerical simulations show that with the control of antiretroviral therapy, the population of T-CD4 cells 

grows significantly, which can improve the quality of life of patients. And the growth of HIV in the body can 

be inhibited so that it cannot reproduce itself. 
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