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 ABSTRACT  

Article History: 
Tuberculosis is a contagious disease that infects humans. It is caused by the bacterium 

Mycobacterium tuberculosis (M.tb). It is the largest infectious disease in the world and has 

become a major global health problem. Therefore, efforts are being made to control the 

spread of tuberculosis disease through vaccination and case finding, with the aim of 

reducing the population of latently infected and actively infected individuals. This study 

discusses the mathematical model of tuberculosis disease spread, disease-free and endemic 

equilibrium points, and stability analysis around the equilibrium points. Then, using 

Pontryagin's minimum principle, the optimal control problem is solved numerically by the 

4th-order Runge-Kutta method. Based on the analysis and simulation results, the system is 

asymptotically stable around the disease-free and endemic equilibrium points. 

Furthermore, optimal control in the form of vaccination of susceptible individuals is 

required to further suppress the rate of change of susceptible individuals into latent 

individuals, while control in the form of case finding on latently infected individuals is 

required until the 9th year to minimize the population size, while on actively infected 

individuals, it is required until the 8th year to minimize the population size. Providing 

optimal control resulted in a 100% increase in the susceptible population and a 100% 

reduction in the latent and infected populations. 
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1. INTRODUCTION 

Tuberculosis (TB) is a contagious disease that infects humans and is caused by the bacteria 

Mycobacterium tuberculosis (M.tb). Infection occurs after a person inhales air or saliva droplets released by 

an actively infected patient. After inhalation, the bacteria enter the lungs and are engulfed by macrophages, 

multiplying and forming granulomas. At this point, the infection is able to damage body tissues and invade 

the lungs [1]. TB is one of the largest infectious diseases in the world and has become a significant global 

health problem. It is ranked second in the list of diseases causing the most deaths after COVID-19 [2]. Even 

this year, Indonesia is in second place with the highest number of cases in the world after India [3]. Control 

efforts continue to be made to reduce the number of cases of TB disease, one of which is optimal control. 

Optimal control is a model needed to assist in making decisions about achieving a goal while at the same 

time minimizing or maximizing several system performance criteria [4]. 

Modeling the spread of TB disease has been studied by several researchers, such as [5], who discussed 

mathematical models and efforts to mitigate TB disease in the Philippines. The compartments used are: 

Susceptible, individuals who are susceptible to disease; High-Risk Latent, individuals who are latently 

infected and at high risk of becoming infectious or actively infected; Infectious or Active TB, individuals 

who are infected with reduced immunity and may be at risk of transmission; and Low-Risk Latent, latently 

infected individuals who do not progress to an infectious state and individuals who recover naturally or due 

to treatment. This model provides four controls in the form of distance control or reducing direct contact, 

latent case finding, case management, and active case finding. Researchers considered eight scenarios when 

providing controls to determine the effectiveness of each control. Further, it became the foundational model 

in research on the dynamic model of the TB virus and the mathematical concept involved in [6] and [7]. In 

addition, other mathematical modeling was carried out by [8]. The compartments used are: Susceptible, 

individuals who are susceptible to the disease; Latent, latently infected individuals (asymptomatic, not 

contagious); Treatment infected latent, in the form of preventive treatment of individuals who are aware and 

receive treatment; Infected, infected individuals with a reduced immune system; Treatment infected active, 

in the form of curative treatment; and Recovered, individuals who recovered. The researcher formed a 

mathematical model of TBs disease spread by considering treatment as a new variable or compartment. This 

model also assumes that individuals in the system are aware of the existence of TB disease. Implementation 

of optimal control in TB models is important to research, such as [9], [10], [11], and [12].  

This study will discuss the analysis and optimal control of the mathematical model of the spread of TB 

disease by providing control in the form of vaccination and case finding. Vaccination is one of the methods 

used to prevent the transmission of TB. The vaccine used is the BCG (Bacillus Calmette-Guérin) vaccine. 

The effectiveness of this vaccine varies and still does not provide perfect protection, especially for pulmonary 

TB patients. Thus, the development of a more effective vaccine is also important in efforts to control the 

spread [13]. Meanwhile, case finding is an important effort in identifying individuals who are infected with 

TB but undiagnosed or asymptomatic. However, this effort also needs to be made for individuals who are 

actively infected or feel symptoms but do not have the awareness to take treatment. Thus, the control used in 

this study is used as a variable whose value is obtained through optimal control theory using Pontryagin’s 

Minimum Principle. This study also analyzed the stability and parameter estimation of the mathematical 

model of TB disease spread and performed numerical simulations using the 4th-order Runge-Kutta method. 

 

2. RESEARCH METHODS 

The steps taken in this research are, first, a literature study. This stage aims to collect reference 

information to support the formation of mathematical models of TB disease spread, Pontryagin’s Minimum 

Principle, and other matters related to this research. References are sought through several journals, research 

projects, and papers related to the research topic. The second step is data collection. The data was obtained 

from the Population and Civil Registration Service and Public Health Bureau in Surabaya City. The data was 

used to calculate parameters and initial values in the mathematical model of TB disease spread. Furthermore, 

the third step is model identification. This stage aims to identify the appropriate compartmental model to 

model the spread of TB disease. In this study, the SLIR model will be used, where the entire population is 

divided into four groups, namely: Susceptible (𝑆), Latent (𝐿), Infected (𝐼), and Recovered (𝑅). Susceptible 

(𝑆) population is a vulnerable population. The Latent (𝐿) population is a population that is latently infected, 
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meaning that they do not feel symptoms because the immune system successfully fights back. The Infected 

population (𝐼) is a population that is actively infected, meaning that it feels symptoms because the immune 

system cannot successfully fight back. Meanwhile, the Recovered (𝑅) population is the population that has 

recovered. After determining the compartment model used, the parameters used in the model will be used for 

the mathematical model construction of TB disease spread using the SLIR model. At this stage, a 

mathematical model of the spread of TB disease with the provision of control in the form of vaccination and 

case finding is also developed. 

The next stage is to find the equilibrium points of the mathematical model of the spread of TB disease, 

and will do the linearization around the equilibrium point. The next step will be analyzed and determined the 

stability of the equilibrium point obtained previously. At this stage, optimal control is also solved using 

Pontryagin's Minimum Principle. After analyzing the system, numerical simulations will be carried out using 

the 4th-Order Runge-Kutta Method. The simulation is carried out to compare the number of populations 

before and after being controlled. We describe the methods on Figure 1. 

 
Figure 1. Research Methods 

 

3. RESULTS AND DISCUSSION 

3.1 Mathematical Model 

Mathematical modeling is a discussion of mathematical concepts that present and explain real-world 

problems in mathematical statements. The model used in this research is SLIR (Susceptible, Latent, Infected, 

Recovered). The compartments are: 𝑆, which is a susceptible individual; 𝐿, which is a latently infected 

individual or does not feel symptoms; 𝐼, which is an actively infected individual; and 𝑅, which is a recovered 

individual. The population in this system is assumed to be closed, meaning that individuals from each 

compartment do not immigrate. Additionally, each population is assumed to have the same natural mortality 

rate, 𝜇. The relationship between the four compartments in the SLIR model is presented in the diagram in 

Figure 2. 
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Figure 2. Diagram of Mathematical Model of Tuberculosis Disease Spread 

Figure 2 shows the compartments in the mathematical model of TB disease spread. Thus, the 

mathematical model is as follows: 

{
 
 
 

 
 
 
𝑑𝑆

𝑑𝑡
= 𝜃𝑁 − 𝛼𝛽𝑆𝐼 − 𝜇𝑆

𝑑𝐿

𝑑𝑡
= 𝛼𝛽(1 −𝑚)𝑆𝐼 − (𝛾 + 𝜇)𝐿

𝑑𝐼

𝑑𝑡
= 𝛼𝛽𝑚𝑆𝐼 + 𝛾ℎ𝐿 − (𝜂 + 𝜇 + 𝜎)𝐼

𝑑𝑅

𝑑𝑡
= 𝜂𝐼 + 𝛾(1 − ℎ)𝐿 − 𝜇𝑅

 (1) 

with initial conditions, 𝑆(0) = 𝑆0 , 𝐿(0) = 𝐿0, 𝐼(0) = 𝐼0 , 𝑅(0) = 𝑅0. The total population of individuals 

can be expressed as follows: 

𝑆(𝑡) + 𝐿(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑁 (2) 

where the parameters used are shown in Table 1. 

Table 1. Parameter Value of Mathematical Model of Tuberculosis Disease Spread 

Parameter Description Value 

𝜃 Growth rate of susceptible individuals 0.0215 

𝜇 Natural mortality rate 0.2959 

𝜎 Death rate due to tuberculosis disease 0.8275 

𝛼 Rate of individuals leaving the susceptible class 0.0007 

𝛽 
Rate of interaction of susceptible individuals with actively infected 

individuals 
0.0006 

𝑚 Proportion of susceptible individuals to actively infected individuals 0.00008 

ℎ 
Proportion of latently infected individuals to actively infected 

individuals 
0.0038 

𝛾 Rate of individuals leaving the latent class 0.0056 

𝜂 
The rate of change from actively infected individuals to recovered 

individuals 
0.0159 

Data source: Population and Civil Registration Service and Public Health Bureau in Surabaya City 

3.2 System Analysis 

3.2.1 Equilibrium Points 

Equilibrium point is a state where the population size remains constant over time [14]. The equilibrium 

point of the mathematical model of TB disease, as follows. 
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a. The disease-free equilibrium point occurs when there are no actively infected individuals in a 

population, or 𝐼 = 0.  In the absence of actively infected individuals, there is no spread of bacteria, 

causing latent and recovered individuals to also not exist or 𝐿 = 0 dan 𝑅 = 0. 

𝐸0 = (𝑆
0, 𝐿0, 𝐼0, 𝑅0) = (

𝜃𝑁

𝜇
, 0,0,0) 

b. The endemic equilibrium point occurs when there is a spread of the disease, 

𝐸1 = (𝑆
∗, 𝐿∗, 𝐼∗, 𝑅∗) 

where: 

𝑆∗ =
𝛾ℎ − 𝜂 − 𝜇 − 𝜎

𝛼𝛽𝑚
 

𝐿∗ =
(𝜃𝑁𝛼𝛽𝑚 + 𝛾ℎ𝜇 − 𝜂𝜇 − 𝜇2 − 𝜇𝜎)(1 − 𝑚)

𝛼𝛽𝑚(𝛾 + 𝜇)
 

𝐼∗ =
𝜃𝑁𝛼𝛽𝑚 + 𝛾ℎ𝜇 − 𝜂𝜇 − 𝜇2 − 𝜇𝜎

𝛼𝛽(𝜂 + 𝜇 + 𝜎 − 𝛾ℎ)
 

𝑅∗ =
(𝜃𝑁𝛼𝛽𝑚 + 𝛾ℎ𝜇 − 𝜂𝜇 − 𝜇2 − 𝜇𝜎)

𝛼𝛽𝑚(𝛾 + 𝜇)(𝛾ℎ − 𝜂 − 𝜇 − 𝜎)𝜇
(𝛾2ℎ2(𝑚 − 1) + 𝛾2ℎ(1 −𝑚) − 𝛾ℎ𝑚(𝜂 + 𝜇 + 𝜎)

+ 𝛾ℎ(𝜂 + 𝜇 + 𝜎) + 𝛾𝑚(𝜇 + 𝜎) − 𝜂𝑚𝜇 − 𝛾(𝜂 + 𝜇 + 𝜎)) 
 

3.2.2 Stability Analysis 

The mathematical model of the spread of TB in Equation (1) is a nonlinear differential system. 

Therefore, before carrying out stability analysis, it is necessary to carry out linearization. Linearization of the 

system can be done through Taylor expansion around the equilibrium point. By using this approach, the 

Jacobian Matrix of the system Equation (1), as follows 

𝐽 =

[
 
 
 
−𝛼𝛽𝐼 − 𝜇 0 −𝛼𝛽𝑆 0

𝛼𝛽(1 −𝑚)𝐼 −𝛾 − 𝜇 𝛼𝛽(1 −𝑚)𝑆 0
𝛼𝛽𝑚𝐼 𝛾ℎ 𝛼𝛽𝑚𝑆 − 𝜂 − 𝜇 − 𝜎 0

0 𝛾(1 − ℎ) 𝜂 −𝜇]
 
 
 

(𝑆0,𝐿0,𝐼0,𝑅0)

 

 

a. Linearization around the disease-free equilibrium point with Jacobian Matrix, i.e. 

𝐽𝐸0 =

[
 
 
 
 
 
 
 −𝜇 0 −

𝛼𝛽𝜃𝑁

𝜇
0

0 −𝛾 − 𝜇
𝛼𝛽(1 −𝑚)𝜃𝑁

𝜇
0

0 𝛾ℎ
𝛼𝛽𝑚𝑆𝜃𝑁

𝜇
− 𝜂 − 𝜇 − 𝜎 0

0 𝛾(1 − ℎ) 𝜂 −𝜇]
 
 
 
 
 
 
 

 

Based on the 𝐽𝐸0 matrix, the characteristic equation can be formed by using |𝐽𝐸0 − 𝜆𝐼| = 0, thus 

obtained  

(−𝜇 − 𝜆)2(𝐴0𝜆
2 + 𝐴1𝜆 + 𝐴2) = 0 

 

where 𝐴0 = 1, 𝐴1 = 𝛾 + 𝜇 −
𝛼𝛽𝑚𝑆𝜃𝑁

𝜇
 and 𝐴2 = −

𝛾𝛼𝛽𝑚𝑆𝜃𝑁

𝜇
+ 𝛾𝜂 + 𝛾𝜇 + 𝛾𝜎 −

𝜇𝛼𝛽𝑚𝑆𝜃𝑁

𝜇
+ 𝜇𝜂 +

𝜇2 + 𝜇𝜎 + 𝜂𝜆 + 𝜇𝜆 + 𝜎𝜆 −
𝛾ℎ𝛼𝛽(1−𝑚)𝜃𝑁

𝜇
. Based on the characteristic equation, the following 

eigenvalues are obtained, 𝜆1 = −𝜇, 𝜆2,3 =
−𝐴1±√𝐴1

2−4𝐴0𝐴2

2𝐴0
. Because the values of all parameters are 

positive, 𝜆1 is negative. The TB disease spread model around the disease-free equilibrium point is 

asymptotically stable if 𝑅𝑒(𝜆2) and 𝑅𝑒(𝜆3) are also negative by taking the value 𝐴1 > 0, because the 

values of all parameters are positive, 𝐴1 > 0 is verified. 
 

b. Linearization around the endemic equilibrium point with Jacobian Matrix, i.e. 
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𝐽𝐸1 = [

−𝑎1 − 𝜇 0 −𝑎7 0
𝑎2 𝑎4 𝑎8 0
𝑎3 𝑎5 𝑎9 0
0 𝑎6 𝑎10 −𝜇

] 

where: 

𝑎1 =
𝜃𝑁𝛼𝛽𝑚 + 𝛾h𝜇 − 𝜂𝜇 − 𝜇2 − 𝜇𝜎

(𝜂 + 𝜇 + 𝜎 − 𝛾h)
 

𝑎2 =
(𝜃𝑁𝛼𝛽𝑚 + 𝛾h𝜇 − 𝜂𝜇 − 𝜇2 − 𝜇𝜎)(1 − 𝑚)

(𝜂 + 𝜇 + 𝜎 − 𝛾h)
 

𝑎3 =  
(𝜃𝑁𝛼𝛽𝑚 + 𝛾h𝜇 − 𝜂𝜇 − 𝜇2 − 𝜇𝜎)𝑚

(𝜂 + 𝜇 + 𝜎 − 𝛾h)
 

𝑎4 = −𝛾 − 𝜇 

𝑎5 = 𝛾h 

𝑎6 = 𝛾(1 − h) 

𝑎7 =
𝛾h − 𝜂 − 𝜇 − 𝜎

𝑚
 

𝑎8 =
(𝛾h − 𝜂 − 𝜇 − 𝜎)(1 − 𝑚)

𝑚
 

𝑎9 = 𝛾h − 2𝜂 − 2𝜇 − 2𝜎 

𝑎10 = 𝜂 

 

Based on the 𝐽𝐸1 matrix, the characteristic equation can be formed by using |𝐽𝐸1 − 𝜆𝐼| = 0, thus 

obtained  

𝐴0𝜆
4 + 𝐴1𝜆

3 + 𝐴2𝜆
2 + 𝐴3𝜆 + 𝐴4 = 0 

where: 

𝐴0 = 1 

𝐴1 = 2𝜇 + 𝑎1 − 𝑎4 − 𝑎9 
𝐴2 = 𝜇

2 + 𝑎1𝜇 − 2𝑎4𝜇 − 2𝑎9𝜇 − 𝑎1𝑎4 − 𝑎1𝑎9 + 𝑎3𝑎7 + 𝑎4𝑎9 − 𝑎5𝑎8 

𝐴3 = (−𝑎4 − 𝑎9)𝜇
2 + (−𝑎1𝑎4 − 𝑎1𝑎9 + 𝑎3𝑎7 + 2𝑎4𝑎9 − 2𝑎5𝑎8)𝜇 

+(𝑎1𝑎4𝑎9 − 𝑎1𝑎5𝑎8 + 𝑎2𝑎5𝑎7 − 𝑎3𝑎4𝑎7) 
𝐴4 = (𝑎4𝑎9 − 𝑎5𝑎8)𝜇

2 + (𝑎1𝑎4𝑎9 − 𝑎1𝑎5𝑎8 + 𝑎2𝑎5𝑎7 − 𝑎3𝑎4𝑎7)𝜇 

 

Using the Routh-Hurwitz criterion, the characteristic equation has negative characteristic roots if and 

only if 𝐴1, 𝑏1, 𝑐1, 𝑑1 are positive. That is, 𝐴1, 𝐴2, 𝐴3, 𝐴4 > 0, 𝐴1𝐴2 > 𝐴3 and (𝐴1𝐴2 − 𝐴3)𝐴3 > 𝐴1
2𝐴4. 

Therefore, the TB disease spread model around the endemic equilibrium point is asymptotically stable 

by fulfilling the three conditions above, i.e., 𝐴1, 𝐴2, 𝐴3, 𝐴4 > 0, 𝐴1𝐴2 > 𝐴3 and (𝐴1𝐴2 − 𝐴3)𝐴3 >
𝐴1
2𝐴4. 

 

3.3 The Optimal Control Conditions 

Optimal control is a model required to assist in making decisions about obtaining a goal [15]. The 

objective to be obtained from this study is to minimize the number of latent and infected individuals and 

operational costs in the control efforts used. The objective function is defined as follows: 

𝐽(𝑢1, 𝑢2) = min ∫ [𝑎1𝑆 + 𝑎2𝐿 + 𝑎3𝐼 +
1

2
(𝑏1𝑢1

2(𝑡) + 𝑏2𝑢2
2(𝑡) + 𝑏3𝑢3

2(𝑡))] 𝑑𝑡

𝑡𝑓

𝑡0

 

with constraints: 
𝑑𝑆

𝑑𝑡
= 𝜃𝑁 − 𝛼𝛽𝑆𝐼 − 𝜇𝑆 + 𝑢1𝑆 

𝑑𝐸

𝑑𝑡
= 𝛼𝛽(1 −𝑚)𝑆𝐼 − (𝛾 + 𝜇 + 𝑢2)𝐿 

𝑑𝐼

𝑑𝑡
= 𝛼𝛽𝑚𝑆𝐼 + 𝛾ℎ𝐿 − (𝜂 + 𝜇 + 𝜎 + 𝑢3)𝐼 

𝑑𝑅

𝑑𝑡
= 𝜂𝐼 + 𝛾(1 − ℎ)𝐿 + 𝑢2𝐿 + 𝑢3𝐼 − 𝜇𝑅 

with the description as shown in Table 2. 
  



BAREKENG: J. Math. & App., vol. 18(2), pp. 1189- 1200, June, 2024.     1195 

 

Table 2. Control Parameter 

Parameter Description 

𝑢1 Control for the presence of vaccination 

𝑢2 Control for latent case finding 

𝑢3 Control in the form of infected case finding 

𝑎1 Weight on susceptible individuals 

𝑎2 Weight on latent individual 

𝑎3 Weight on infected individual 

𝑏1 Weight on vaccination control 

𝑏2 Weight on latent case finding control 

𝑏3 Weight on infected case finding control 

 

𝑎𝑖 and 𝑏𝑖 is the parameter weight coefficient to minimize the population of Latent and Infected individuals 

based on the costs incurred in each control effort, where 𝑎𝑖, 𝑏𝑖 > 0 for each 𝑖 = 1,2,3. 𝑡0 and 𝑡𝑓 are the start 

time and end time. 

The steps used in solving optimal control of the spread of TB using the Pontryagin Minimum Principle 

are as follows [16]: 

Step 1: Form the Hamiltonian function, such as 

𝐻 = 𝑎1𝑆 + 𝑎2𝐿 + 𝑎3𝐼 +
1

2
(𝑏1𝑢1

2(𝑡) + 𝑏2𝑢2
2(𝑡) + 𝑏3𝑢3

2(𝑡))

+ 𝜆1[𝜃𝑁 − 𝛼𝛽𝑆𝐼 − 𝜇𝑆 + 𝑢1𝑆]
+ 𝜆2[𝛼𝛽(1 −𝑚)𝑆𝐼 − (𝛾 + 𝜇 + 𝑢2)𝐿]
+ 𝜆3[𝛼𝛽𝑚𝑆𝐼 + 𝛾ℎ𝐿 − (𝜂 + 𝜇 + 𝜎 + 𝑢3)𝐼] + 𝜆4[𝜂𝐼 + 𝛾(1 − ℎ)𝐿
+ 𝑢2𝐿 + 𝑢3𝐼 − 𝜇𝑅] 

(3) 

Step 2: Compute the Hamiltonian function (𝐻) over all controls 𝑢, 

Stationary conditions can be obtained by lowering Equation (3) to each control variable 𝑢1, 𝑢2 and 𝑢3. 

• Equation 𝐻 is derived against 𝑢1, is obtained 

𝑢1
∗(𝑡) =

𝜆1
𝑏1
𝑆 

• Equation 𝐻 is derived against 𝑢2, is obtained 

𝑢2
∗(𝑡) =

(𝜆2 − 𝜆4)

𝑏2
𝐿 

• Equation 𝐻 is derived against 𝑢3, is obtained 

𝑢3
∗(𝑡) =

(𝜆3 − 𝜆4)

𝑏3
𝐼 

 

Step 3: Form the optimal Hamiltonian function (𝐻∗) by substituting 𝑢∗(𝑡) into the Hamiltonian function 

(𝐻), 

𝐻∗ = 𝑎1𝑆 + 𝑎2𝐿 + 𝑎3𝐼 +
1

2
(−

𝜆1
𝑏1
𝑆2 +

(𝜆2 − 𝜆4)
2

𝑏2
𝐿2 +

(𝜆3 − 𝜆4)
2

𝑏3
𝐼2) + 𝜆1 [𝜃𝑁 − 𝛼𝛽𝑆𝐼 − 𝜇𝑆 −

𝜆1
𝑏1
𝑆2]

+ 𝜆2 [𝛼𝛽(1 −𝑚)𝑆𝐼 − (𝛾 + 𝜇 +
(𝜆2 − 𝜆4)

𝑏2
𝐿) 𝐿]

+ 𝜆3 [𝛼𝛽𝑚𝑆𝐼 + 𝛾ℎ𝐿 − (𝜂 + 𝜇 + 𝜎 +
(𝜆3 − 𝜆4)

𝑏3
𝐼) 𝐼] + 𝜆4[𝜂𝐼 + 𝛾(1 − ℎ)𝐿 +

(𝜆2 − 𝜆4)

𝑏2
𝐿2

+
(𝜆3 − 𝜆4)

𝑏3
𝐼2 − 𝜇𝑅] 

Step 4: Determining the state �̇�∗(𝑡) and costate equation 𝜆∗(𝑡), 
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• The state equation under optimal conditions is obtained by deriving the optimized Hamiltonian function 

with regard to 𝜆, 

�̇�∗(𝑡) = +(
𝜕𝐻

𝜕𝝀
)
∗
 

is obtained 

�̇�∗(𝑡) =
𝜕𝐻∗

𝜕𝜆1
= 𝑢1

∗𝑆 + 𝜃𝑁 − 𝛼𝛽𝑆𝐼 − 𝜇𝑆 

�̇�∗(𝑡) =
𝜕𝐻∗

𝜕𝜆2
= −𝑢2

∗𝐿 + 𝛼𝛽(1 −𝑚)𝑆𝐼 − (𝛾 + 𝜇)𝐿 

𝐼∗̇(𝑡) =
𝜕𝐻∗

𝜕𝜆3
= −𝑢3

∗𝐼 + 𝛼𝛽𝑚𝑆𝐼 + 𝛾ℎ𝐿 − (𝜂 + 𝜇 + 𝜎)𝐼 

�̇�∗(𝑡) =
𝜕𝐻∗

𝜕𝜆4
= 𝑢2

∗𝐿 + 𝑢3
∗𝐼 + 𝜂𝐼 + 𝛾(1 − ℎ)𝐿 − 𝜇𝑅 

 

• The costate equation under optimal conditions is obtained by deriving the optimized Hamiltonian 

function for each state variable, 

�̇�∗(𝑡) = −(
𝜕𝐻

𝜕𝒙
)
∗
 

is obtained 

�̇�1
∗(𝑡) = −𝑎1 − 𝜆1[−𝛼𝛽𝐼 − 𝜇 + 𝑢1

∗] − 𝜆2𝛼𝛽(1 − 𝑚)𝐼 − 𝜆3𝛼𝛽𝑚𝐼 

�̇�2
∗(𝑡) = −𝑎2 − 𝜆2(𝛾 + 𝜇 + 𝑢2

∗) − 𝜆3𝛾ℎ − 𝜆4(𝛾(1 − ℎ) + 𝑢2
∗) 

�̇�3
∗(𝑡) = −𝑎3 − 𝜆1𝛼𝛽𝑆 − 𝜆2𝛼𝛽(1 −𝑚)𝑆 − 𝜆3[𝛼𝛽𝑚𝑆 − (𝜂 + 𝜇 + 𝜎 + 𝑢3

∗)] − 𝜆4[𝜂 + 𝑢3
∗] 

�̇�4
∗(𝑡) = 𝜇𝜆4 

 

Step 5: Using the previous state and costate solutions, the optimal control 𝑢∗(𝑡) is obtained from step 2. 
 

3.4 Numerical Simulation 

In this discussion, the initial conditions of each population are given, such as 𝑆(0) =
2.818.595, 𝐿(0) = 56.675, 𝐼(0) = 6.391, 𝑅(0) = 3.054. The initial values of the variables were obtained 

from the Public Health Bureau in Surabaya City. The parameter values used to simulate the optimal control 

problem in an effort to reduce the spread of TB disease by controlling the operational costs of providing 

control in the form of vaccination, latent and infected case findings are obtained from the calculation of data 

obtained from the population development profile of Population and Civil Registration Service and Public 

Health Bureau in Surabaya City in 2018-2022. Furthermore, simulations were carried out using the 4th-order 

Runge Kutta Method so that the following results like the explanation on the next paragraph. 

In Figure 3(a), the simulation results of Susceptible individuals without and with control are obtained. 

It is known that Susceptible individuals, after being given control, increased when compared to before being 

controlled with an increase of 3.316.465.420 people. This happens because the provision of control in the 

form of vaccination (𝑢1) can suppress the rate of Susceptible population to Latent. In Figure 3(b), the 

simulation results of Latent individuals without and with control are obtained. It is known that Latent 

individuals after being given control, decreased when compared to before control. The Latent population 

before control amounted to 3.115 people in the 10th year. However, after the control, in 9th year and before 

4th year there will be no Latent individuals. This happens because the provision of control in the form of latent 

case finding (𝑢2) can suppress the Latent population rate. 
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(a)  (b) 

Figure 3. Comparison of Changes in Population Size without and with Control 

(a) Susceptible Individual, (b) Latent Individual 

   
(a) (b) 

Figure 4. Comparison of Changes in Population Size without and with Control 

(a) Infected Individual, (b) Recovered Individual 

The simulation results of Infected individuals without and with control are described in Figure 4(𝑎). 
It is known that in the 10th year before and after being given control, there are no Infected individuals in the 
system. However, after giving control in the form of infected case finding (𝑢3), it can increase the rate of 
change of Infected individuals to Recovered individuals. Before being controlled, the system will have no 
Infected individuals in the 8th year of 6th month. After being given control, the system will not have any 
Infected individuals in the 4th year of 5th month. This shows that after being controlled the rate of change of 
Infected individuals into Recovered individuals is faster than before being controlled. In Figure 4(𝑏), the 
simulation results of Recovered individuals without and with control are obtained. It is known that Recovered 
individuals after being given control increased when compared to before being controlled with an increase of 
5,964 people. This happens because the provision of control in the form of latent case finding (𝑢2) on Latent 

individuals and infected case finding (𝑢3) on Infected individuals can increase the population of Recovered 
individuals. 
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Figure 5. Change Graph of Providing Control 

The amount of control 𝑢1, 𝑢2 and 𝑢3 with the weighted cost of each control is 0,33. It can be seen in 

Figure 5 that at 𝑢1 when 𝑡 = 0 to  𝑡 = 10 the maximum is 1 because the Susceptible population must continue 

to be vaccinated to prevent the spread of TB. In the control 𝑢2 when 𝑡 = 0 to 𝑡 = 9,3 the maximum is 1, 

because there is still a Latent population. While starting from 𝑡 = 9,3 the minimum control is 0 where at this 

time 𝑢2 control is no longer needed because the Latent population is minimal. Similarly, in 𝑢3 control when 

𝑡 = 0 to 𝑡 = 8,5 the maximum is 1, because there is still an Infected population. While starting from 𝑡 = 8,5 

the minimum control is 0 where at this time control 𝑢3 is no longer needed because the Individual population 

is minimal. 

 

4. CONCLUSIONS 

Based on the simulation results that have been conducted, it shows the effectiveness of the control in 

controlling the spread of TB disease in Surabaya City so that it can increase the number of Susceptible 

individuals or retired individuals by 100%. In addition, it can reduce the number of Latent infected individuals 

by 100% and the number of actively infected or Infected individuals by 100%. This is done with minimum 

control operational costs with a cost weight on each control of 0,33. Optimal control aims to minimize the 

latent and active infected population, as well as the weight of the control process. Finally, numerical 

simulations show that optimal control has been performed to suppress the spread of TB disease, and this is in 

line with the regulated objective function. 
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