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ABSTRACT 

Article History: 
In line with the Sustainable Development Goals (SDGs), the Infant Mortality Rate (AKB) is 

a very important health indicator, especially in neonatal and perinatal care. West Java 

Province consistently ranks third nationally in terms of infant mortality in 2020 and 2021. 

This study analyzes the factors influencing infant mortality in West Java in 2022 using 

secondary data from the 2022 West Java Provincial Health Profile. The response variable 

is the number of infant deaths, while the predictor variables include the percentage of K-4 

coverage (X1), high-risk pregnancy (X2), family with PHBS (X3), exclusive breastfeeding 

(X4), and complete immunization coverage (X5). Given the count-based nature of the data, 

Poisson regression was used, which assumes equidispersion where the variance is equal to 

the mean. However, the analysis found overdispersion, where the variance significantly 

exceeds the mean, making Poisson regression unsuitable. To address this, Generalized 

Poisson Regression (GPR) was applied, as GPR introduces a dispersion parameter that 

accounts for overdispersion, thus better fitting the data. The initial Poisson regression 

results showed that X1, X2, X4, and X5 significantly influenced infant mortality, while the 

GPR model showed that only X2 and X3 were significant factors, with a dispersion 

parameter of -3.116. The GPR model shows that every additional one high-risk pregnancy 

increases the infant mortality rate by 1.00006, while an increase of one unit of clean and 

healthy living practices reduces the mortality rate by 2.66%. Model evaluation using AIC, 

BIC, and RMSE confirmed that the GPR model better described the relationship between 

predictor variables and infant mortality rates compared to Poisson regression. These 

findings emphasize the need to use GPR to model cases with overdispersion in count data, 

so as to provide more reliable information for policy and intervention strategies. 
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1. INTRODUCTION 

Infant Mortality Rate (IMR) is one of the critical indicators in health service efforts, especially in 

neonatal and perinatal care. This matter is in line with the third point in the Sustainable Development Goals 

(SDGs): ensuring healthy lives and improving the well-being of people of all ages, where one of the targets 

is to reduce the neonatal mortality rate (AKN) to at least 12 per 1000 live births and the infant mortality rate 

(IMR) to 12 per 1000 live births by 2030 [1]. Regarding the Infant Mortality Rate, Indonesia is one of the 

highest-ranked countries in Southeast Asia [2]. 

On a national scale, based on data from Indonesia's Health Profile for two consecutive years, West 

Java Province ranks third highest in the number of infant deaths [3]. Therefore, local governments strive to 

suppress the reduction in infant mortality by analyzing the factors that influence it. Infant mortality is 

generally caused by congenital factors obtained from parents during pregnancy, such as genetics and 

nutritional status of pregnant women [4]. In addition to internal factors, infant mortality can also be triggered 

by various external factors. Several external factors affect infant mortality, including visits by health worker 

during pregnancy, lack of health services, and lack of knowledge and application of Clean and Healthy Living 

Behavior (PHBS) in the surrounding environment [5]. Thus, the analysis of the Infant Mortality Rate (IMR) 

and the factors that influence it can be helpful as a benchmark for the level of health development in a region 

or country and the quality of life of its people. Thus, analyzing the Infant Mortality Rate (IMR) and its 

influencing factors can serve as a benchmark for the level of health development in a region or country and 

the quality of life of its people.  

Poisson regression is one of the statistical analyses that can be used on discrete data (count), such as 

the number of infant deaths. According to McCullagh and Nelder in [6], in Poisson Regression, response data 

is assumed to be Poisson distributed by satisfying equidispersion characteristics, namely the similarity of 

mean values and population variance. However, finding such a qualified population is rare because the 

variance value is greater than the mean (overdispersion) or the variance value is smaller than the mean 

(underdispersion), so the conclusions are invalid. Several alternatives can be done if Poisson regression does 

not meet the equidispersion assumption, one of which is Generalized Poisson Regression (GPR). According 

to Wang and Famoye in [7], GPR is a regression analysis that can be an alternative when there are symptoms 

of underdispersion or overdispersion in Poisson regression with the addition of dispersion parameter, namely �. There are three conditions that can occur in GPR regarding the parameter �. If the value of � = 0, it means 

that the variance is equal to the mean, �����	|�	� = 
��	|�	�, so the addition of dispersion parameters is not 

necessary or the GPR model is similar to the conventional model in Poisson regression. The second condition, 

when the value of � > 0, means that the variance is greater than the mean, �����	|�	� > 
��	|�	�, so it is 

called an overdispersion condition. The last condition is underdispersion where the value of � < 0, meaning 

that the variance is smaller than the mean, �����	|�	� < 
��	|�	�. 

In a case study of the number of infant deaths in East Java in 2014, the results of [5] research stated 

that the Negative Binomial Regression model is the best model with neonatal mortality predictor variables 

having smaller AIC and BIC values than the complete model. The study's weakness is that neonatal mortality 

is a constituent component of infant mortality, or infant mortality is the sum of neonatal and post-neonatal 

deaths, so these two variables should not be regressed to infant mortality. In addition to East Java, an analysis 

of infant deaths was carried out in Bandung City in 2019 by [8]. In the study, it was found that the factors 

that significantly influenced the number of infant deaths were the percentage of low birth weight (BBLR), 

the percentage of neonatal visits three times, and the percentage of babies who were exclusively breastfed. 

The study was conducted using Zero-Inflated Poisson regression to overcome overdispersion. However, 

Zero-Inflated Poisson regression is more appropriate for data containing many zero values. Categorical data 

analysis has also been carried out by [9]. In the study, it was found that BBLR, Neonatal Infection, Asphyxia, 

Congenital abnormalities, and hypothermia are associated with the incidence of infant mortality at Batara 

Siang Hospital, Pangkep Regency in 2020 using a cross-sectional approach and analyzed using the Chi-square 

test. The disadvantage of testing categorically is the limitation in information, resulting in the loss of 

information about data variance.  

In previous studies, such as in East Java in 2014 [5], Negative Binomial Regression was found to be 

the best model for analyzing neonatal mortality rates due to its lower AIC and BIC values. However, the 

study’s weakness lies in the fact that neonatal mortality is a constituent component of infant mortality, so 

these two variables should not be regressed together. Another analysis of infant deaths was conducted in 

Bandung City in 2019 by [8], which found that low birth weight (BBLR), the percentage of three neonatal 
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visits, and the percentage of exclusive breastfeeding significantly influenced infant mortality. That study used 

Zero-Inflated Poisson regression to overcome overdispersion, but this approach is better suited for data with 

many zero values. Categorical data analysis was also conducted by [9], which identified factors such as 

BBLR, neonatal infection, asphyxia, congenital abnormalities, and hypothermia as associated with infant 

mortality at Batara Siang Hospital, Pangkep Regency in 2020 using the Chi-square test. However, categorical 

testing has limitations, as it loses variance information. 

Unlike previous studies focusing on different regions or using outdated data, this research introduces 

several novelties. First, the study analyzes recent infant mortality data from 2022 in West Java, which 

represents the latest public health challenges in one of Indonesia's most populous provinces [10]. Secondly, 

this study adopts the Generalized Poisson Regression model as a primary approach to address overdispersion, 

which has been identified as a common limitation in previous studies that used conventional Poisson or 

Negative Binomial models. Moreover, unlike some earlier works that included neonatal mortality as a 

predictor variable, this study recognizes neonatal mortality as a component of infant mortality, thereby 

avoiding multicollinearity issues and providing a clearer understanding of external and demographic factors 

influencing infant mortality. Additionally, there are no zero values in the data, rendering zero-inflated Poisson 

regression unnecessary. 

This study uses the Poisson regression method to model the number of infant deaths as discrete data. 

However, when overdispersion occurs which indicates a mismatch in equity, this problem can be overcome 

by using the generalized Poisson regression method. Generalized Poisson Regression was developed by 

Famoye based on the Generalized Poisson distribution introduced by Consul and Jain. The method is able to 

handle discrete (count) data that experience overdispersion, underdispersion, and equidispersion [11]. 

Research by Joe and Zhu in [11] explained that the generalized Poisson regression model offers a flexible 

alternative to standard Poisson regression by incorporating additional dispersion parameters to account for 

overdispersion in count data. Joe and Zhu's research shows that the generalized Poisson distribution is a 

mixture of Poisson distributions, which highlights its distinctive probabilistic characteristics. In our study, 

the infant mortality data in West Java Province in 2022 showed signs of overdispersion, making the 

generalized Poisson regression model a more appropriate and accurate choice for our analysis. By using this 

model, we aim to provide more reliable estimates and insights into the factors affecting infant mortality, 

which can be a valuable reference for policy makers in crafting effective interventions. 

 

 

2. RESEARCH METHODS 

2.1 Infant Mortality 

Infant mortality is a term used to describe infant mortality from one day to year [12]. The incidence of 

infant mortality at less than four weeks of age, which is generally influenced by endogenous factors from 

birth, is called neonatal death. Based on age, neonatal mortality is divided into two, namely early neonatal 

death (0-6 days) and late neonatal death (7-28 days). If infant death occurs at the age of more than 28 days 

and has been influenced by exogenous factors, it is called post-neonatal mortality [13]. Factors that influence 

infant mortality are K4 coverage, high-risk pregnancies, PHBS households, exclusive breastfeeding, and 

complete primary immunization. 

 

2.2 Poisson Distribution 

According to Walpole and Myers in [14], experiments that produce values for the numerical random 

variable �, i.e., the number of successes over a specific time interval or in a particular area, are called Poisson 

experiments. The length of the time interval can be minutes, days, weeks, or years. The area in question can 

be a piece of line, a space, a content, or a part of the object. 

A random variable � is considered Poisson-distributed if it has the following probability function in 

[14] denoted by Equation (1). ���, �� = ������! = exp�−�� exp�� ln ���!  �1� 

Where � is the average number of successes that occur in a given time interval or area where � =0,  1,  2,   …  ;  � > 0 and 
��� = ������ = �. 
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2.3 Poisson Regression 

Poisson regression is a non-linear analysis of the Poisson distribution used in discrete data types. 

Poisson regression assumes that the response variable � has a Poisson distribution, no symptoms of 

multicollinearity, and equidispersion [15]. Poisson regression can be expressed as follows in [16]. 

 $	 = ln��	� = %& + %(�	( + %)�	) + ⋯ + %+�	+ �2� 

Where $	 is the link function, �	 is mean value of the effect of the ,-th response, %& is a constant, %+ is 

regression coefficient of the-- predictor variable, and �	+ is value of the .-th predictor variable of the ,-th 

intensity. 

 

2.3.1 Parameter Estimation of Poisson Regression 

The method used to assess the parameters of the Poisson regression model is Maximum Likelihood 

Estimation (MLE). MLE is performed by maximizing the likelihood function [17].  

 01 2�3�  = 01 45 678 �−9:�9:;:;:!<
:=> ? �@� 

01 2�3� = − A  67:B3<
:=> + A ;:7:B3<

:=> − A 01�;:!�<
:=>  �C� 

With ;: is the i-th observation of the response variable D. While 3 is a Poinnson regression model which is 

a function of 7: as a predictor variable and 3 as a regression parameter to be estimated. 

The equation above is still implicit, so it is necessary to iterate Newton Raphson to perform numerical 

iterations with the following optimization algorithm.  

1. Determine the initial estimated value of a parameter F3G�H�I obtained by the Ordinary Least Square (OLS) 

method, namely: 3G�H� = FJBJI�>JBD �K� 

With  

J = L>>⋮>
7>>7N>⋮7<,>

⋯⋯⋯⋯
7>O7NO⋮7<,O

P Q1R D = SD> DN ⋯ D<TB 

 

 

2. Forms a gradient vector U, U�3� = − A �	 . �	 +V
	=( A �	�	 = A �	��	 − �	�V

	=(
V

	=(  �6� 

So, the vector UXF3�Y�I�+Z(�×( is as follows. 

 \]ln^�3�]%&  ]ln^�3�]%(  ]ln^�3�]%)  … ]ln^�3�]%+ _3=3G�Y� �7� 

Where k is the number of estimated parameters. 

 a�3� = − A �	 . �	X . �	 = − A μc. xc. xcd
e

c=(
V

	=(  �8� 
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aF3�Y�I�+Z(�×�+Z(� =
⎣⎢⎢
⎢⎢⎢
⎢⎡])ln^�%�]%&)

])ln^�%�]%&%( ⋯ ])ln^�%�]%&]%+])ln^�%�]%&]%(
])ln^�%�]%() ⋯ ])ln^�%�]%(]%+⋮ ⋮ ⋱ ⋮])ln^�%�]%&]%+
])ln^�%�]%(]%+ ⋯ ])ln^�%�]%+) ⎦⎥⎥

⎥⎥⎥
⎥⎤

n=n�o�

  

pqrF3GI = −
sa�>F3GIt �9� 

3. Input the value of 3G�H� into vector elements U and matrix a, so the vector that obtained is UF3G�H�I and 

matrix aF3G�H�I.  

4. Start from the value v = H iterating through the equation: 3G�vZ>� = 3G�v� − a�>F3�v�IUF3�v�I. The 

value of 3G�v� is a group of parameter assessors that converge on the m-iteration. 

5. The convergence of parameter estimators can be seen when the value w3G�vZ>� = 3G�v�w ≤ y where y is 

a very small number. So, there is almost no difference between 3G�vZ>� and 3G�v�. If no convergent 

parameter estimation has been obtained, then proceed again the next step until iteration to v = v + >. 

 

2.3.2 Parameter Testing of Poisson Regression 

To determine test statistics in testing Poisson regression model parameters is to use the Maximum 

Likelihood Ratio Test (MLRT) method with a hypothesis. 2FzGI is the likelihood value for the complete 

model involving predictor variables and 2�{| � is the likelihood value for a null model, which is a simple 

model without involving predictor variables [17]. }& ∶ %( = %) = ⋯ = %� = 0  }( ∶ at least there is one %� ≠ 0 ; . = 1, 2, … , -   

Test statistics for Poisson regression model qualification are as follows. 

�F3GI = −2ln \^�ω|�^FΩGI_ = 2 �ln �^FΩGI� − lnF^�ω|�I� �10� 

So, the decision to rejects aH if �F3GI > ��;�N  where v is the number of model parameters under the 

population minus the number of parameters below aH. Poisson regression model parameters that have been 

generated from estimates need to be tested on individual Poisson regression model parameters with the 

following hypothesis. }& ∶ %( = 0 (the effect of the .-th variable is not significant)  }( ∶ %� ≠ 0 (the effect of the .-th variable is significant)  

The test statistics that used is: 

� = %����F%��I (11) 

where ��F%��I is the standard error or error rate of parameter %�. ��F%��I is obtained from the �. + 1�th diagonal 

element of s−a�(F3GIt. It is decided to reject }& jika |�| > ��� where a is the significance level.  

 

2.3.3 Equidispersion 

According to Darnah in [18] overdispersion is a condition where the response variable data shows a 

variance value greater than the average value or can be written pqr�D� > ��D�. Overdispersion or 

underdispersion will result in the deviant’s value of the model being very large so that the resulting model is 

less precise. [19] explained that when the Poisson model is applied to overdispersion data, it causes the 

standard error to be underestimated, so that some explanatory variables become insignificant. 
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There are two ways to detect overdispersion, namely with residual deviance and Pearson chi-square 

which is formulated as follows. 

1. Deviance Residual 

 �> = �N�� ; �N = N A �;:�< �;:9��� − �;: − 9����<
:=>  (12) 

with �� = < − O − > where k is the number of parameters, n is the number of observations, and D2 is 

the deviance residual values. 

2. Pearson-Chi Square �) = �)�� ; �) = A ��	 − �	�) ����	�V
	=(  (13) 

with �� = < − O − > where k is the number of parameters, n is the number of observations, and �N is 

the Pearson chi-square value. 

If �> and �N is more than 1, then there is overdispersion in the data. 

 

2.4 Generalized Poisson Regression 

Generalized Poisson Regression (GPR) is a development of Poisson regression that is used in 

overcoming overdispersion. The Generalized Poisson distribution function is as follows in [20]. 

���; �; �� = � �1 + ���� �1 + �����(�! exp ¡−��1 + ��1 + �� ¢ (14) 

The mean of the GPR model is 
��� = � and the variance is  ������ = ��1 + ���) 

If � = 0 then the GPR model will be an ordinary Poisson regression model, while if � > 0 then the GPR 

model represents count data containing overdispersion. The GPR model is shown in Equation (15) and 

Equation (16). ln��	� = 7:B3 = %& + %(�	( + %)�	) + ⋯ + %+�	+ (15) �	 = expF7:B3I, , = 1,2, … , £ (16) 

  

2.4.1 Parameter Estimation of Generalized Poisson Regression 

Parameter estimation of the Generalized Poisson Regression model is done using the Maximum 

Likelihood Estimation method. The likelihood function for the GPR model is as follows. 

 ^�3, �� = 5 ¤� �	1 + ��	��¥ �1 + ��	��¥�(�	! ��¦ ¡−�	�1 + ��1 + ��	 ¢§V
	=(  (17) 

^�3, �� = 5 � �	1 + ��	��	 45 �1 + ��	��¥�(�	!V
	=( ? ��¦ \−�	�1 + ��,�1 + ��	 _V

	=(  (18) 

Then, Equation (18) is converted into natural logarithm function as follows 

ln^�3, �� = A¨�	  ln��	� − �	  ln�1 + ��	� + ��	 − 1�ln�1 + ��	� + ∆ªV
	=(   

for  Δ = −ln��	!� − �¥�(Z¬�¥�(Z¬�¥  and �	 = expF7:B3I. So, it is obtained 
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ln^�3, �� = A ­ �	  ln �expF7:B3I� −�	  lnF1 + � expF7:B3II − ln��	!� + ∆∗¯ V
	=(  (19) 

with ∆∗= ��	 − 1�ln�1 + ��	� − expF7:B3I�1 + ��	�1 + � expF7:B3I   

Furthermore, the parameter estimate 3G is obtained by lowering the natural logarithm equation of the 

likelihood function to 3B while the parameter estimate � is obtained by lowering the natural logarithm 

equation of the likelihood function to � and equalized to zero. The decrease in the ln-likelihood function is 

carried out using the Newton-Raphson iteration method until a convergent parameter estimate is obtained. 

 

2.4.2 Parameter Testing of Generalized Poisson Regression 

In Generalized Poisson Regression, the parameter testing step is the Maximum Likelihood Ratio Test 

(MLRT) method with the following hypothesis [20].  }& ∶ %( = %) = ⋯ = %� = 0  }( ∶ there exists at least one %� ≠ 0 ; . = 1, 2, … , -  
The test statistic used is �F3GI in Equation (10). if �F3GI > �°;±)  then the decision taken is to reject H0 

with v stating the number of parameters under population minus the number of model parameters under }&. 

Rejection of H0 means that there is at least one %� ≠ 0 which indicates Xj has a significant effect on the model. 

With this conclusion, partial testing will be carried out using the following hypothesis. }& ∶ %( = 0 (the effect of the .-th variable is not significant) }( ∶ %� ≠ 0 (the effect of the .-th variable is significant) 

and }& ∶  � = 0 (there are no overdispersion case) }& ∶  � ≠ 0 (there is an overdispersion case) 

The test statistic used is the same as in Equation (11) with the }& rejection region if |�| > ��� . 

 

2.5 Multicollinearity 

Multicollinearity occurs when two or more predictor variables in a regression model are correlated 

with moderate to high correlated with each other. The accuracy of the estimation of the regression coefficient 

decreases as the predictor is added to the model. In addition, test the hypothesis for %+ = 0 is possible to 

generate different conclusions depending on which predictor variables are present in the model [21]. There 

are two ways to detect multicollinearity, namely Variance Inflation Factor (VIF) and Pearson correlation 

coefficient value (�	�) between predictor variables. Cases of multicollinearity can be identified through 

Variance Inflation Factor (VIF) with this formula. 

VIF� = 11 − µ�)  , . = 1,2, … , ¦ �20� 

where µ�) states the coefficient of determination between �� and other predictor variables. If the VIF 

value is more than 10, it indicates the presence of symptoms of multicollinearity among the predictor 

variables. The Pearson correlation coefficient between predictor variables denoted by �	�. If the value of the 

Pearson correlation coefficient between variables is more than 0.95, it can be overcome by removing the 

predictor variable that has a high correlation by re-progressing between the response variable and the 

remaining predictor variables. 
 

2.6 Poisson Distribution Fit Test 

The distribution fit test is a statistical hypothesis test used to determine whether �(, �), … , �V is the 

value of a random sample ¶(, ¶), … , ¶V derived from a distribution with a distribution function ·�. � [22]. 

The distribution fit test can be used to test hypotheses as follows:  }& : �(, �), … , �V is the value of distributed random sample with a distribution function ·�. �. }( : �(, �), … , �V is not the value of distributed random sample with a distribution function ·�. �. 
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One test that can be used to test distribution fit is to use the chi-squared fit test which can be used for 

both discrete and continuous data. Test statistics to test chi-squared fit are: 

�) = A � 	̧ − 
	�)
	
+
	=( �21� 

Where 	̧ is the number of observations in the category i, 
	 is calculated by £¦� for � = 0, 1, 2, … and ,= 1, 2, 3, … , -. 

 The critical value is calculated from the chi-squared distribution with degree of freedom - −¦ − 1, where k represents the number of categories while p is the number of parameter distribution. With the 

test criterion is to reject the null hypothesis if the chi-squared test statistics are greater than the quantile value 

of the chi-squared distribution at the real level of ½ and degree of freedom - − ¦ − 1 or �) ≥ �)�+�¿�(��(�±�. 
 

2.7 Regression Model Conformity  

In order to select the best model in regression analysis, one of the methods to be used is Akaike’s 

Information Criterion (AIC), Bayes Information Criterion (BIC) dan Root Mean Squared Error (RMSE). 

Here is the formula of AIC. 

 AIC = −2 ln ^F�ÂI + 2- �22� 

with ^F�ÃI is Maximum Likelihood Function and k is the number of parameters. 

The criteria for the merits of the model with the Bayesian or BIC approach are formulated as follows. 

 BIC = −2 ln ^F�ÂI + - ln�£� �23� 

where £ denotes the sample size. 

Root Mean Squared Error (RMSE) is one indicator of the model goodness in regression analysis. 

RMSE calculation is done by calculating the average difference between the predicted value or what is often 

called an error, sot that estimates of model accuracy can be known. The smaller the RMSE value is close to 

zero, the better the model is assumed because it can predict the true value more.  

If several n-sized samples of a model with errors are known Å to be calculated as �	 �, = 1, 2, … , £� 

and assumed set Å is unbiased, so that RMSE is calculated by the formula as follows [23].  

RMSE = Ê1£ A �	)V
	=( �24� 

 

2.8 Data Analysis Method 

This research is a descriptive study with a secondary data analysis approach obtained from the West 

Java Provincial Health Office through the 2022 West Java Provincial Health Profile report. This study focuses 

more on analyzing the factors that influence infant mortality. Data analysis was performed through 

descriptive statistics, Poisson regression analysis, and Generalized Poisson Regression (GPR) analysis to 

determine the relationship between predictor variables and infant mortality and determine the best model that 

explains the phenomenon. Here are the steps of analysis in this study. 

1. Describe the factors that influence infant mortality using descriptive statistical analysis. 

2. Obtain appropriate models for the number of infant mortality cases and factors affecting infant mortality 

by the Poisson regression method. Here are the steps on the Poisson regression method. 

a. Detect the presence of two or more predictor variables in a regression model correlated with each 

other. 

b. Stimulating the parameters of the Poisson regression model. 

c. Perform simultaneous and partial significance tests on Poisson regression model parameters. 
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d. Perform equidispersion assumption tests on Poisson regression models. 

e. Obtained Poisson regression models as well as AIC, BIC, and RMSE values. 

3. Getting a suitable model using Generalized Poisson Regression (GPR). Here are the steps of modelling 

with GPR. 

a. Stimulates the parameters of the Generalized Poisson Regression (GPR) model. 

b. Conduct simultaneous and partial significance tests on the parameters of the Generalized Poisson 

Regression (GPR) model. 

4. Validate model conformance using AIC, BIC, and RMSE. 

 

3. RESULTS AND DISCUSSION 

3.1 Description of The Infant Deaths in West Java 2022 

To see the characteristics of each variable, descriptive statistics will be displayed in the table as follows. 

 
Table 1. Descriptive Statistics 

Variable Mean StDev Minimum Median Maximum 

Number of Infant Mortality (Y) 109.6 70.2 23 93 300 

K4-Coverage Percentage (X1) 97.22 7.25 87.7 97.7 125.3 

Number of High-Risk Pregnant Women (X2) 6501 5641 116 4822 24422 

Percentage of Families with PHBS (X3) 63.63 10.78 43.88 64.24 81.59 

Percentage of Exclusively Breastfeeding (X4) 70.5 9.43 51.7 72.1 86.3 

Immunization Percentage (X5) 103.26 11.05 85 99.7 132.5 

Based on Table 1, it is found that the number of infant deaths in West Java in 2022 is an average of 

109.6 infants for each district. The lowest number of deaths was 23 infant deaths in Bekasi Regency and the 

highest number was Garut Regency with 300 deaths. In addition, the difference in the number of high infant 

deaths is also due to a high variance of 4921.9. This high variance illustrates the uneven distribution of infant 

mortality in West Java and is concentrated in certain areas where the three districts with the highest number 

of infant deaths are in adjacent areas, namely in Garut Regency, Bandung Regency, and Sumedang Regency. 

While the lowest number was in Bekasi Regency with 23 infant deaths.  

The highest variance value for the predictor variable that is thought to affect the number of infant 

deaths in West Java is variable X2, namely the number of pregnant women (high risk pregnant women) has 

an average of 6501 people for each district with the highest rates being in Bogor Regency, Bekasi Regency, 

and Bandung Regency. In addition, other variables are the percentage of K4 coverage for each district on 

average reaching 97.22%; the percentage of families with PHBS reached 63.63%; the percentage of exclusive 

breastfeeding reaches 70.5%; The percentage of immunization is 103.26%. 

 

3.2 Poisson Regression 

3.2.1 Poisson Distribution Assumption Test 

Before Poisson regression analysis is carried out, it is necessary to test the suitability of the Poisson 

distribution on the response variable (Y), namely the number of infant deaths. The test was carried out using 

a null hypothesis, namely data on the number of infant deaths in West Java Province in 2022 distributed by 

Poisson. Table 2 below is the result of calculating observation values and expectations for testing conformity 

with the Chi-Square test. 
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Table 2. Value of Expectation and Observation of Response Data  

Number of 

Infant 

Mortality 

Poisson 

Distribution 

Probability 

Number of 

Observables 

Number of 

Expectation 

Chi-Square 

Contribution ≤ >>H 0.540810 15 14.6019 0.01086 

111 0.037499 0 1.0125 1.01246 

112 – 114 0.106489 0 2.8752 2.87520 

115 – 117 0.092253 3 2.4908 0.10408 ≥ >>Ì 0.222949 9 6.0196 1.47562 

3 (60.00%) of total expectations less than 5 

The critical area of testing rejects H0 if p − value < α. By using software, a p-value of the test is 0.14 

so that p-value < α �5%�. Therefore, the decision taken is to fail to reject H0 or it can be concluded that the 

data on the number of infant deaths in West Java Province in 2022 is Poisson distributed so that Poisson 

regression analysis can be continued. 

3.2.2 Multicollinearity Test 

Multicollinearity examination is performed to determine the relationship between predictor variables. 

The criterion that can be used to identify the presence of cases of multicollinearity is the correlation between 

predictor variables. The variables that have a high correlation are the variables ¶( with ¶Ó (0.514); ¶( with ¶) (0.407); and ¶) with ¶Ó (0.271). Another criterion that can be used to identify cases of multicollinearity 

is the Variance Inflated Factor (VIF) value. The VIF values for each predictor variable can be seen in the 

following Table 3. From the results, it can be concluded that there are no cases of multicollinearity between 

predictor variables that have a VIF value of > 10. So, all these variables were used in modeling the number 

of infant mortality cases in West Java. 

Table 3. VIF Value of Predictor Variables 

Variable VIF Value �( 1.43 �) 1.33 �Ô 1.03 �Õ 1.07 �Ó 1.29 

 

3.2.3 Parameters Estimation of Poisson Regression 

Data on the number of infant mortality cases are discrete data that follows the Poisson distribution. To 

determine the factors that affect the number of infant mortality cases in West Java, Poisson regression analysis 

was carried out. The estimation of Poisson regression parameters is shown in Table 4 below. 

Table 4. Estimation Parameter Model Poisson Regression  

Parameter Estimation Standard Error %& 6.948 0.3764 %( -0.02801 0.003447 %) 0.00002219 0.000003464 %Ô -0.01758 0.001832 %Õ -0.003644 0.002016 %Ó 0.01593 0.002018 

 

3.2.4 Parameters Significance Test of Poisson Regression 

Furthermore, the significance of each parameter of the Poisson regression model was tested with the 

following hypothesis. }& ∶ %� = 0 for . = 1, 2, … , 5 }( ∶ %� ≠ 0 for . = 1, 2, … , 5 

Critical region: Reject H0 if p-value < ½ �5%� or |Ö| > Ö��  
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Parameter significance testing was initially carried out on the five predictor variables, but there was an 

insignificant variable, namely X4 with a p-value of 0.0707. These variables are then eliminated from the model 

and re-estimated for the remaining parameters as shown in Table 5 below: 

Table 5. Poisson Regression Model Partial Parameters Significance Test  

Parameter Estimation Z-Score P-Value %& 6.676 19.299 0.0000 %( -0.02830 -8.23871907 0.0000 %) 0.00002344 6.9472436277 0.0000 %Ô -0.01787 -9.5961 0.0000 %Ó 0.01645 7.8940 0.0000 

 

3.2.5 Simultaneous Significance Test of Poisson Regression 

In addition to testing parameters partially, parameter tests will be carried out simultaneously with the 

following hypotheses. }& ∶ %( = %) = %Ô = %Ó = 0  }( ∶ At least there is one %� ≠ 0 ; . = 1, 2, 3, 5 

Test statistics �F3GI are calculated by the following formula. �F3GI = 2 �Û£ �^FΩGI� − Û£F^�ω|�I� �F3GI = 2 S−463.2777 − �−630.9285�T �F3GI = 2 S167.6508T �F3GI = 335.3016 

For a significance level of 5% or 0.05 then the �½��Õ;&,&Ó)  value is 0.710723 so the value is �F3GI much 

greater than �Õ;&,&Ó) . Thus, the decision taken is to reject H0 or it can be concluded that there is at least one 

predictor variable that has a significant effect on the Poisson regression model with selected variables. 

 

3.2.6 Equidispersion Assumption Test 

The assumption used in Poisson regression is that there is a similarity between the mean value and 

variance (equidispersion). Identification of cases of overdispersion was done with statistical deviance residual 

and Pearson chi-square. Here are the results of the calculation of both test statistics with the software. 

Tabel 6. Poisson Regression Model Partial Parameter Significance Test  

Goodness of fit  Statistics Degree of Freedom �) 755.4273 22 ¶) 774.3029 22 

 

According to the Equation (12) and Equation (13), the value of �( = 34.3376 and �) = 35.19559, 

while is obtained so that both are far above 1. Thus, it can be concluded that there is overdispersion in the 

estimation results of the Poisson regression model. 

 

3.3 Generalized Poisson Regression 

3.3.1 Parameters Estimation of Generalized Poisson Regression 

After it is known that there is overdispersion in the Poisson regression model, the way to overcome it 

is to use Generalized Poisson Regression. The results of parameter estimation in the regression model are 

shown in Table 7 as follows. 

 
Table 7. Estimation Parameter Model Generalized Poisson Regression 

Parameter Estimation Standard Error  %& 6.257 1.753 
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Parameter Estimation Standard Error � -3.213 0.1770 %( -0.02414 0.01728 %) 0.00005489 0.00002234 %Ô -0.02193 0.009654 %Õ -0.006547 0.01140 %Ó 0.02161 0.01094 

 
3.3.2 Parameter Significance Test of Generalized Poisson Regression 

Furthermore, the significance of each parameter of the Generalized Poisson regression model was 

tested with the following hypothesis.  }& ∶ %� = 0 ; . = 1, 2, … , 5 }( ∶ %� ≠ 0 ; . = 1, 2, … , 5 

and testing of the significance of dispersion parameters is carried out with the following hypotheses. }& ∶  � = 0  }& ∶  � ≠ 0  

Critical region: Reject H0 if p-value < ½ �5%� or |Ö| > Ö��  

Parameter significance testing was initially carried out on the five predictor variables, but there was an 

insignificant variable, namely X4 with a p-value of 0.0707 and X5 with a p-value of 0.135263. These variables 

are then eliminated from the model and re-estimated for the remaining parameters as shown in Table 8 below.  

 Table 8. Generalized Poisson Regression Model Partial Parameter Significance Test 

Parameter Estimation Z-Score P-value  %& 5.942 3.578 0.00000 � -3.116 -17.94931 0.00000 %) 0.00005981 3.095903 0.00869 %Ô -0.02622 -2.661364 0.01020 

 
Based on Table 8, then the decision is to reject H0 or it can be concluded that the dispersion parameter 

has an effect in the model. This can be interpreted that the addition of dispersion parameters to Generalized 

Poisson regression needs to be done to overcome the occurrence of overdispersion in the Poisson regression 

model �� ≠ 0�. 

 

3.3.3 Simultaneous Significance Test of Generalized Poisson Regression 

The next stage is testing the significance of the model with test statistics �F3GI as well as the following 

test hypotheses. }& ∶ %) = %Ô = 0  }( ∶ %) ≠ %Ô  
Test statistics �F3GI are calculated by the following formula. �F3GI = 2 �Û£ �^FΩGI� − Û£F^�ω|�I� �F3GI = 2 S−143.2607 − �−147.8982�T �F3GI = 2 S4.6375T �F3GI = 9.275 

For a significance level of 5% or 0.05 then the value �½��);&,&Ó)  is 0.102587 so the value is �F3GI greater 

than �);&,&Ó) . Thus, the decision taken is to reject H0 or it can be concluded that there is at least one predictor 

variable that has a significant effect on the Generalized Poisson regression model with selected variables. 
 



BAREKENG: J. Math. & App., vol. 19(1), pp. 0035- 0050, March, 2025.     47 

 

3.3.4 Model Interpretation of Generalized Poisson Regression 

The increase or decrease in the number of infant deaths in West Java in 2022 depends on the coefficient 
of each variable. So, the Generalized Poisson Regression model is as follows. 

 �̂ =  exp�5.942 + 0.00005981¶) − 0.02622¶Ô� �25� 

Based on this model on Equation (25), it can be interpreted that when the number of pregnant women 

increases by one unit, the average number of infant deaths in West Java in 2022 will increase by exp�0.00005981� = 1.00006 times provided that other variables are constant. This is in line with the fact 

that high-risk pregnancies can lead to an increased chance of infant death due to complications. If the 

percentage of families with PHBS increases by one unit, the average number of infant deaths in West Java in 

2022 decreases by exp�0.02622� = 1.026567 times or 2.6567% provided that other variables are constant. 

These results are in accordance with the theory, namely if more families run a clean and healthy lifestyle, it 

is expected to reduce the risk of exposure to diseases in infants who tend to be vulnerable and result in death. 

So, it can be concluded in the results of the Generalized Poisson Regression model that the number of infant 

deaths in West Java in 2022 will increase by one case for every increase in each predictor variable that has a 

significant effect of one unit assuming the value of other variables is fixed. 

 

3.4 Regression Model Conformity 

Criteria on model merit can use AIC, BIC and RMSE values. With the help of software, here are the 

results of a comparison of the virtues of Poisson regression model and Generalized Poisson Regression. 

Table 9. Comparison of Poisson Regression and Generalized Poisson Regression 

Model AIC BIC RMSE 

Poisson Regression 936.555 943.035 60.058 

Generalized Poisson 

Regression 
294.521 299.705 0.742 

 

This study assessed the performance of Poisson Regression and Generalized Poisson Regression 

models using criteria such as AIC, BIC, and RMSE values to determine their suitability for modelling infant 

mortality data in West Java in 2022. As presented in Table 9, the Generalized Posson Regression model 

demonstrated substantially lower values of AIC (294.521), BIC (299.705), and RMSE (0.742) compared to 

the Poisson model (AIC: 936.555, BIC: 943.035, RMSE: 60.058). These results suggest that the Generalized 

Poisson Regression model fits the data more accurately and provides more efficient estimates and better 

predictive accuracy.  

A review of these results indicates significant improvements in model performance by adopting the 

Generalized Poisson Regression approach. Lower AIC and BIC values typically signify a model with a better 

fit that maintains simplicity. At the same time, a reduced RMSE points to fewer errors on average, which is 

crucial for predictive accuracy and reliability in public health. 

These findings align with those of [17], who found that Generalized Poisson Regression outperforms 

ordinary Poisson models in handling overdispersion in count data, such as the number of infant mortalities. 

Overall, the superior performance of the Generalized Poisson Regression model in this study underscores its 

potential for enhancing the accuracy and reliability of infant mortality predictions in demographic studies. 

Future research could explore the integration of additional predictive variables and apply these findings to 

other regions and different demographic datasets to validate the model's generalizability. 

 

 

4. CONCLUSIONS 

Based on the discussion above, it can be concluded that the average number of infant deaths in West 

Java in 2022 reached 109.6 infants per district. The Poisson regression model indicates that the number of 

infant deaths will increase by one case for every one unit increase in each significant predictor variable (X1, 

X2, X3, X4, X5), assuming other variables remain constant. However, the presence of overdispersion in the 

model estimates suggests that Poisson regression may not fully explain the variability in the data. To address 

this issue, a Generalized Poisson Regression model, which includes additional dispersion parameters, is used. 

This model provides a more accurate picture of the data distribution, indicating that a one-unit increase in the 
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number of pregnant women will result in a 1.00006-fold increase in the average number of infant deaths, 

while a one-unit increase in the percentage of families practicing clean and healthy living behaviors (PHBS) 

will reduce the average number of infant deaths by 1.026567 or 2.66%, assuming other variables are constant. 

The model fit was evaluated using AIC, BIC, and RMSE, with the results showing that the Generalized 

Poisson Regression model provides a better fit for the infant mortality data in West Java, especially in 

handling overdispersion that cannot be addressed well by the standard Poisson regression model. 
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