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 ABSTRACT  

Article History: 
When using the Bayesian method for estimating parameters in a geographically weighted 

regression model, the choice of the prior distribution directly impacts the posterior 

distribution. The distribution known as the Jeffreys prior is an uninformative type of prior 

distribution and is invariant to reparameterization. In cases where information about the 

parameter is not available, the Jeffreys' prior is utilized. The data was fitted with an 

uninformative Jeffreys' prior distribution, which yielded a posterior distribution that was 

utilized for estimating parameters. This study aims to derive the prior and marginal 

posterior distributions of the Jeffreys' 𝜷(𝑠) and 𝜎2(𝑠) in Bayesian geographically weighted 

regression (BGWR). The marginal posterior distributions of 𝜷(𝑠) and 𝜎2(𝑠) can be 

obtained by integrating the other parameters of a common posterior distribution. Based on 

the results and discussion, the Jeffreys prior in BGWR with the likelihood function 

𝒀|𝜷(𝑠), 𝑿, 𝑾(𝑠), 𝜎2(𝑠) ~ 𝑀𝑉𝑁(𝑿𝜷(𝑠), 𝜎2(𝑠)𝑾−1(𝑠)) is 

|𝑿𝑇𝑾(𝑠)𝑿|1 2⁄ (𝜎2(𝑠))
−(𝑝+3) 2⁄

. On the other hand, the marginal posterior distribution of 

𝜷(𝑠) follows a normal multivariate distribution, that is, 

𝜷(𝑠)~𝑀𝑉𝑁(𝜷̂(𝑠), 𝜎2(𝑠)(𝑿𝑇𝑾(𝑠)𝑿)−1), while the marginal posterior distribution of 

𝜎2(𝑠) follows an inverse gamma distribution, that is,  𝜎2(𝑠)~𝐼𝐺 (
𝑛+1

2
,

𝒀𝑇𝑾(𝑠)𝒀−𝒀𝑇𝑯𝒀

2
). As 

further research, it is necessary to follow up on several limitations of the results of this 

research, namely numerical simulations and application to a particular case that related to 

the results of the analytical studies that we have carried out. 
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1. INTRODUCTION 

Bayes' theorem was discovered by Thomas Bayes, a cleric, statistician, and philosopher. In 1963, 

Richard Price, a Minister, philosopher, and mathematician, established the conceptual foundation of Bayesian 

statistics in the Royal Society. Sir Harold Jeffreys also wrote on Bayes' theorem in a book published in 1973.  

Thomas Bayes' ideas established the foundation for the notion of Bayesian analysis in estimating unknown 

model parameters, which developed rapidly and is today extensively employed in a variety of disciplines of 

research. The Bayesian analysis concept method is extensively used in a variety of industries since it offers 

several benefits over non-Bayesian approaches (classical / frequentist statistical approaches) for estimating 

unknown model parameters [1]. It should be noted that this theorem seeks to blend information from data 

modeled with information from parameters gained from previous occurrences (priors) in order to improve the 

validity of the model parameters to be estimated.  According to this, the optimal model with the highest 

posterior probability may be chosen, and a conclusion may be drawn regarding the average of the calculated 

model parameters [2].  

The effect of the data on the posterior distribution often increases with the number of observations.  

Stated differently, the posterior distribution will be more impacted by the data than by the previous 

distribution as the number of observations rises.  On the other hand, the posterior distribution is mostly 

determined by the prior distribution when there is a dearth of data.    The posterior distribution that is created 

will be mismatched if there is an error in the prior distribution of the parameters, which will lead to the wrong 

(invalid) estimation of the unknown parameters that should be known. Thus, in order to identify the most 

suitable and reliable parameter estimator, establishing the prior distribution for the unknown parameter is a 

crucial and essential component of the Bayesian method estimation idea [2]. 

In connection with what has been described previously, on this occasion, the author uses the Bayesian 

Theorem or Bayesian method in the Geographically Weighted Regression (GWR) model. The GWR model 

can be succinctly described as a localized approach to spatial analysis, where weighting is determined by the 

proximity or distance between locations of observation. Regression parameters in the GWR model are 

assumed to vary spatially, so that different and valuable interpretations can be obtained for each location point 

under study.  This approach is based on spatial non-stationarity, which provides flexible parameter estimates, 

and any spatially nonstationary relationship cannot be represented by global statistics [3]. The application of 

this method has been widely used across various fields, such as climatology [4], geology [5], criminology 

[6], transportation analysis [7], house price modeling [8], and forestry [9]. However, the GWR model also 

has some limitations, namely, the potential for inappropriate distribution of model coefficient estimates, 

susceptibility to the influence of outliers, challenges related to weak data, and violations of the assumption 

of homogeneity of error variances.   

 To overcome these limitations, LeSage, in his article, proposed a Bayesian approach called Bayesian 

GWR (BGWR), which aims to estimate local coefficients [10]. The BGWR model incorporates the concept 

of parameter smoothing, which relates the regression of local coefficients from one location to those from 

other locations in the study area. In addition, this Bayesian approach provides more accurate results in terms 

of GWR parameter estimation [11]. Research related to the BGWR model can be seen in  [9]-[12]  using 

improper prior distribution based on [13], while others used conjugate priors [14]. Based on the results of the 

study conducted by these authors, it is concluded that the BGWR model is better than the GWR model. One 

of the factors supporting these results is that the Bayesian approach can directly identify and weight 

observations that may contain outliers, thereby reducing the impact of outliers on model parameter estimates. 

 The prior distribution in the context of BGWR is a probability distribution that describes the 

knowledge of the researcher or confidence in the model parameters. The prior distribution is combined with 

the likelihood function, which represents the probabilities of the observed data with the parameters present, 

to obtain the posterior distribution, which represents the updated probabilities of the parameters present with 

the information of prior and data. After that, the posterior distribution is utilized to make inferences about the 

parameters and generate predictions for new data [15]. 

 Improper, conjugate, and Jeffreys priors have been widely used in linear regression analysis, while 

the use in GWR has so far only used improper and conjugate priors. Each type of prior has its own advantages 

and disadvantages, depending on the research question and the data being analyzed. In general, some 

disadvantages of improper priors are the problem of lack of information and sensitivity to data while the 

disadvantages of conjugate priors are limited flexibility and applicability. Jeffreys priors are favored for their 

objectivity and invariance properties, making them a choice when there is limited knowledge about the data 
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or model and the primary aim is to prevent bias from affecting the model [16], [17], [18]. Furthermore, the 

Jeffreys prior was first published in 1946, and the main attraction of the Jeffreys prior is that it is invariant 

under coordinate transformation [19].  

Based on the description above, this study emphasizes the process of obtaining Jeffrey's prior 

distribution through the likelihood function based on [14], which then also obtained the posterior distribution 

and marginal posterior distribution and finally used for parameter estimation of the Bayesian GWR model. 

According to these motivations, the research gap that will be studied in this paper is the process of obtaining 

the Jeffrey prior distribution through studying the likelihood function. 

The rest of the paper is organized as follows: The research methods related to this work, such as the 

BGWR approach, including steps in estimating the parameters and how to obtain Jeffreys' uninformative 

prior and posterior in the BGWR model, are provided in Section 2. In Section 3, we provide results and 

discussion related to our work. Finally, some conclusions and recommendations for further study are 

discussed in Section 4. 

 

2. RESEARCH METHODS 

This study uses the BGWR approach, where the first thing to determine is the prior before using the 

Bayesian model. Next, a brief theory of GWR and Bayesian is presented as well as the research steps. 

The GWR model can be expressed as follows from [14]: 

𝒚(𝒔) = 𝜷𝟏(𝒔)𝒙𝟏(𝒔) + ⋯ + 𝜷𝒑(𝒔)𝒙𝒑(𝒔) + 𝝐(𝒔), (1) 

where 𝒚(𝒔)  denotes the dependent variable at location 𝒔, 𝜷𝒊(𝒔), 𝒊 = 𝟏, ⋯ , 𝒑 are the coefficients of 

explainable variables at location 𝒔, and the random effect at location 𝒔, denoted by 𝝐(𝒔) is assumed to follow 

𝑵(𝟎, 𝝈𝟐). To calculate the weights of each observation, one can utilize a weighting function and determine 

the distance between every observation and 𝒔.The weighted least squares method can be used to estimate the 

coefficients at point 𝒔: 

𝜷̂(𝒔) = (𝑿𝑻𝑾(𝒔)𝑿)
−𝟏

𝑿𝑻𝑾(𝒔)𝒀, (2) 

where 𝑿 represents the covariate matrix with size 𝒏 × 𝒑, 𝒀 is the vector of responses with dimensions 𝒏 × 𝟏, 

and 𝑾(𝒔) is a diagonal matrix, denoted by  𝒅𝒊𝒂𝒈(𝒘𝟏(𝒔), ⋯ , 𝒘𝒏(𝒔)), which contains the weights, 

 

𝑾(𝒔) = [

𝒘𝟏(𝒔) ⋯ 𝟎

⋮ ⋱ ⋮
𝟎 ⋯ 𝒘𝒏(𝒔)

] 

(3) 

 

Equation (2) estimates the parameters of the GWR model by first adding a weighting factor to 

Equation (1) and then minimizing the weighted sum of squares error.  

Furthermore, Equation (2) may be expressed as a matrix along with its algebraic operations, as can be 

seen in Equation (4) below. 

𝝐𝑻𝑾(𝒔)𝝐 = 𝒀𝑻𝑾(𝒔)𝒀 − 𝟐𝜷𝑻(𝒔)𝑿𝑻𝑾(𝒔)𝒀 + 𝜷𝑻(𝒔)𝑿𝑻𝑾(𝒔)𝑿𝜷(𝒔). (4) 

  

To estimate the parameter of  𝜷̂(𝑠), use the Equation (4) as follows:  

𝝏𝝐𝑻𝑾(𝒔)𝝐

𝝏𝜷(𝒔)
= −𝟐𝑿𝑻𝑾(𝒔)𝒀 + 𝟐𝑿𝑻𝑾(𝒔)𝑿𝜷(𝒔). 

 

(5) 

By Equation (5) with zero, the parameter estimate for the GWR model is obtained: 

𝟐𝑿𝑻𝑾(𝒔)𝑿𝜷(𝒔) = 𝟐𝑿𝑻𝑾(𝒔)𝒀 

𝑿𝑻𝑾(𝒔)𝑿𝜷(𝒔) = 𝑿𝑻𝑾(𝒔)𝒀 

(𝑿𝑻𝑾(𝒔)𝑿)
−𝟏

𝑿𝑻𝑾(𝒔)𝑿𝜷(𝒔) = (𝑿𝑻𝑾(𝒔)𝑿)
−𝟏

𝑿𝑻𝑾(𝒔)𝒀 

 

 

(6) 
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𝜷̂(𝒔) = (𝑿𝑻𝑾(𝒔)𝑿)
−𝟏

𝑿𝑻𝑾(𝒔)𝒀 
 

In this study, we employ Bayesian methods for GWR, utilizing a likelihood-based approach as 

described in [14]. This model's likelihood function has the following form: 

𝒀|𝜷(𝒔), 𝑿, 𝑾(𝒔), 𝝈𝟐(𝒔) ~ 𝑴𝑽𝑵 (𝑿𝜷(𝒔), 𝝈𝟐(𝒔)𝑾−𝟏(𝒔)), (7) 

where the likelihood function has a multivariate normal distribution (MVN). 

The posterior distribution for which inference is 

𝒇(𝜷(𝒔), 𝝈𝟐(𝒔)|𝒀) =
𝒇 (𝜷(𝒔), 𝝈𝟐(𝒔)) 𝒇 (𝒀|𝜷(𝒔), 𝝈𝟐(𝒔))

𝒇(𝒀)
, 

 

(8) 

where 𝑓(𝒀) is the marginal distribution of the data and in general, 𝑓(𝒀) contains no parameters and is a 

constant value, then Equation (8) can be expressed in the equation  

𝒇(𝜷(𝒔), 𝝈𝟐(𝒔)|𝒀) ∝ 𝒇 (𝜷(𝒔), 𝝈𝟐(𝒔)) 𝒇 (𝒀|𝜷(𝒔), 𝝈𝟐(𝒔)).   (9) 

According to Equation (5), the posterior is directly proportional to the product of the prior of the model 

parameters and the likelihood [20], [21].  

To obtain the Jeffreys' uninformative prior and posterior in the Bayesian GWR model, the following 

process is carried out: 

i. Write down the likelihood function. In this case, the likelihood function is in Equation (7) 

ii. Compute the Fisher information matrix, which is formulated by 

𝐼(𝜷(𝑠), 𝜎2(𝑠)) = −𝐸 [
𝜕2 log 𝑓(𝒀|𝜷(𝑠),𝑿,𝑾(𝑠),𝜎2(𝑠))

𝜕(𝜷(𝑠),𝜎2(𝑠))
2 ]. 

iii. Calculate |𝐼(𝜷(𝑠), 𝜎2(𝑠))|. 

iv. Calculate the Jeffreys prior, which is expressed by 𝑓(𝜷(𝑠), 𝜎2(𝑠)) ∝ |𝐼(𝜷(𝑠), 𝜎2(𝑠))|
1 2⁄

 

v. Get the posterior distribution by multiplying the Jeffreys prior by the likelihood function. 

vi. Obtained from (v), the marginal posterior distribution of each parameter. 

 

3. RESULTS AND DISCUSSION 

1. The likelihood functions  

The likelihood function in Equation (7) is first determined as follows: 

𝑓(𝒀|𝜷(𝑠), 𝑿, 𝑾(𝑠), 𝜎2(𝑠))  

= (𝟐𝝅𝝈𝟐(𝒔))
−𝒏 𝟐⁄

|𝑾(𝒔)|𝟏 𝟐⁄ 𝐞𝐱𝐩 {− 
𝟏

𝟐𝝈𝟐(𝒔)
(𝒀 − 𝑿𝜷(𝒔))

𝑻
𝑾(𝒔)(𝒀 − 𝑿𝜷(𝒔))} 

(10) 

2. The uninformative Jeffreys prior distribution 

To calculate the Jeffreys’ prior in Bayesian GWR with the likelihood function in Equation (7), we 

need to follow these steps: 

i. Derive the first partial derivative of 𝜷 simultaneously using matrix calculus: 

𝝏𝐥𝐨𝐠 𝒇 (𝒀|𝜷(𝒔), 𝑿, 𝑾(𝒔), 𝝈𝟐(𝒔))

𝝏𝜷(𝒔)
 

 

=
𝜕

𝜕𝜷(𝑠)
(−

1

2𝜎2(𝑠)
(𝒀𝑇𝑾(𝑠)𝒀 − 2𝜷𝑇(𝑠)𝑿𝑇𝑾(𝑠)𝒀 + 𝜷𝑇𝑿𝑇𝑾(𝑠)𝑿𝜷(𝑠))) 
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=
1

2𝜎2(𝑠)

𝜕

𝜕𝜷(𝑠)
(2𝜷𝑇(𝑠)𝑿𝑇𝑾(𝑠)𝒀 − 𝜷𝑇(𝑠)𝑿𝑇𝑾(𝑠)𝑿𝜷(𝑠)) 

 

=
1

2𝜎2(𝑠)
(2𝑿𝑇𝑾(𝑠)𝒀 − 2𝑿𝑇𝑾(𝑠)𝑿𝜷(𝑠))  

= 𝟏

𝝈𝟐(𝒔)
(𝑿𝑻𝑾(𝒔)𝒀 − 𝑿𝑻𝑾(𝒔)𝑿𝜷(𝒔)).  (11) 

 

Now the second partial derivative: 

𝑓(𝒀|𝜷(𝑠), 𝑿, 𝑾(𝑠), 𝜎2(𝑠))

𝜕𝜷2(𝑠)
=

𝜕2

𝜕𝜷2(𝑠)
(

1

𝜎2(𝑿𝑇𝑾(𝑠)𝒀 − 𝑿𝑇𝑾(𝑠)𝑿𝜷(𝑠))) 
 

=
1

𝜎2(𝑠)

𝜕2

𝜕𝜷2(𝑠)
(−𝑿𝑇𝑾(𝑠)𝑿𝜷(𝑠)) 

 

 = − 
1

𝜎2(𝑠)
(𝑿𝑇𝑾(𝑠)𝑿) (12) 

Now taking the negative expectation: 
 

−𝐸 [
𝜕2𝑓(𝒀|𝜷(𝑠), 𝑿, 𝑾(𝑠), 𝜎2(𝑠))

𝜕𝜷2(𝑠)
] =

1

𝜎2(𝑠)
(𝑿𝑇𝑾(𝑠)𝑿). 

(13) 

ii. Derive the first partial derivative of 𝜎2(𝑠) simultaneously:  
 

𝜕log 𝑓(𝒀|𝜷(𝑠), 𝑿, 𝑾(𝑠), 𝜎2(𝑠))

𝜕𝜎2(𝑠)
 

 

=
𝜕

𝜕𝜎2(𝑠)
(−

𝑛

2
log(𝜎2(𝑠)) −

1

2𝜎2(𝑠)
(𝒀 − 𝑿𝜷(𝑠))

𝑇
𝑾(𝑠)(𝒀 − 𝑿𝜷(𝑠))) 

 

= −
𝑛

2𝜎2(𝑠)
+

1

2(𝜎2(𝑠))
2 (𝒀 − 𝑿𝜷(𝑠))

𝑇
𝑾(𝑠)(𝒀 − 𝑿𝜷(𝑠)). (14) 

 

Now the second partial derivative: 

𝜕2log 𝑓(𝒀|𝜷(𝑠), 𝑿, 𝑾(𝑠), 𝜎2(𝑠))

𝜕(𝜎2(𝑠))2
 

 

=
𝜕2

𝜕(𝜎2(𝑠))2
(−

𝑛

2𝜎2(𝑠)
+

1

2(𝜎2(𝑠))
2 (𝒀 − 𝑿𝜷(𝑠))

𝑇
𝑾(𝑠)(𝒀 − 𝑿𝜷(𝑠))) 

 

=
𝑛

2(𝜎2(𝑠))
2 −

1

(𝜎2(𝑠))
3 (𝒀 − 𝑿𝜷(𝑠))

𝑇
𝑾(𝑠)(𝒀 − 𝑿𝜷(𝑠))  

=
𝑛𝜎2(𝑠) − 2(𝒀 − 𝑿𝜷(𝑠))

𝑇
𝑾(𝑠)(𝒀 − 𝑿𝜷(𝑠))

2(𝜎2(𝑠))
3 . 

(15) 

Now taking the negative expectation: 
 

−𝐸 [
𝜕2𝑓(𝒀|𝜷(𝑠), 𝑿, 𝑾(𝑠), 𝜎2(𝑠))

𝜕(𝜎2(𝑠))2
] = (

−𝑛𝜎2(𝑠) + 2𝑛𝜎2(𝑠)

2(𝜎2(𝑠))
3 ) =

𝑛

2(𝜎2(𝑠))
2 ∙ (16) 

iii. Derive cross products for 𝜷(𝑠) and 𝜎2(𝑠): 
 

−𝐸 [
𝜕2𝑓(𝒀|𝜷(𝑠), 𝑿, 𝑾(𝑠), 𝜎2(𝑠))

𝜕𝜷(𝑠)𝜕𝜎2(𝑠)
] = −𝐸 [−

2

𝜎3(𝑠)
(𝑿𝑻𝑊(𝑠)𝒀 − 𝑿𝑇𝑾(𝑠)𝑿𝜷(𝑠))]  

=
2

𝜎3(𝑠)
𝑿𝑻𝑾(𝑠)(𝑿𝜷(𝑠) − 𝑿𝜷(𝑠)) = 0. (17) 
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iv. The Fisher information matrix is:  
 

𝐼(𝜷(𝑠), 𝜎2(𝑠)) = −𝐸 [
𝜕2 log 𝑓(𝒀|𝜷(𝑠), 𝑿, 𝑾(𝑠), 𝜎2(𝑠))

𝜕(𝜷(𝑠), 𝜎2(𝑠))
2 ], (18) 

where 𝑓(𝒀|𝜷(𝑠), 𝑿, 𝑾(𝑠), 𝜎2(𝑠)) is the likelihood function. For the given likelihood function, the 

Fisher information matrix is: 

𝐼(𝜷(𝑠), 𝜎2(𝑠)) = [

𝑿𝑇𝑾(𝑠)𝑿

𝜎2(𝑠)
0

0
𝑛

2(𝜎2(𝑠))
2

], 

 

(19) 

where n is the number of observations. 

v. Let 𝑝 is the number of parameters. The determinant of the Fisher information matrix is: 
 

|𝐼(𝜷(𝑠), 𝜎2(𝑠))| = (𝜎2(𝑠))
−(𝑝+1)

|𝑿𝑇𝑾(𝑠)𝑿|
𝑛

2
(𝜎2(𝑠))

−2
  

=
𝑛

2
|𝑿𝑇𝑾(𝑠)𝑿|(𝜎2(𝑠))

−(𝑝+3)
, (20) 

Taking the square root of the determinant in Equation (20), we have: 

|𝑿𝑇𝑾(𝑠)𝑿|1 2⁄ (𝜎2(𝑠))
−(𝑝+3) 2⁄

. (21) 

vi. The Jeffreys prior is then given by: 

𝒇 (𝜷(𝒔), 𝝈𝟐(𝒔)) ∝ |𝑿𝑻𝑾(𝒔)𝑿| 𝟏 𝟐⁄ (𝝈𝟐(𝒔))
−(𝒑+𝟑) 𝟐⁄

 
 

∝ |𝑿𝑻𝑾(𝒔)𝑿|
𝟏 𝟐⁄

(𝝈𝟐(𝒔))
−(𝒑+𝟏

𝟐
+𝟏)

. 
(22) 

 

3. The posterior distribution from Jeffreys prior 

By using Equation (9), Equation (10) and Equation (22), the posterior distribution can be written as: 

𝑓(𝜷(𝑠), 𝜎2(𝑠)|𝒀)  

∝ |𝑿𝑻𝑾(𝒔)𝑿|
𝟏 𝟐⁄

(𝝈𝟐(𝒔))
−(𝒑+𝟏

𝟐
+𝟏)

∗ (𝝈𝟐(𝒔))
−𝒏 𝟐⁄

|𝑾(𝒔)|𝟏 𝟐⁄ 𝐞𝐱𝐩 

{− 
𝟏

𝟐𝝈𝟐(𝒔)
(𝒀 − 𝑿𝜷(𝒔))

𝑻
𝑾(𝒔)(𝒀 − 𝑿𝜷(𝒔))} 

(23) 

∝ |𝑿𝑇𝑾(𝑠)𝑿|1 2⁄ (𝜎2(𝑠))
−(

𝑝+1
2

+1)
∗ (𝜎2(𝑠))

−𝑛 2⁄
|𝑾(𝑠)|1 2⁄  

 

exp {− 
1

2𝜎2(𝑠)
(𝒀𝑇𝑾(𝑠)𝒀 − 𝒀𝑇𝑿(𝑿𝑇𝑾(𝑠)𝑿)−1𝑿𝑇𝒀

+ (𝜷(𝑠) − 𝜷̂(𝑠))
𝑇

𝑿𝑇𝑾(𝑠)𝑿 (𝜷(𝑠) − 𝜷̂(𝑠)))} 
(24) 

∝ |𝑿𝑇𝑾(𝑠)𝑿|1 2⁄ exp {−
1

2𝜎2 (𝜷(𝑠) − 𝜷̂(𝑠))
𝑇

𝑿𝑇𝑾(𝑠)𝑿 (𝜷(𝑠) − 𝜷̂(𝑠))} ∗  
 

 (𝜎2(𝑠))
−(

𝑛+𝑝+1
2 )−1

exp {−
1

2𝜎2
(𝒀𝑇𝑾(𝑠)𝒀 − 𝒀𝑇𝑯𝒀)} (25) 

∝ ( (𝜎2)−(
𝑝
2

)|𝑿𝑇𝑾(𝑠)𝑿|1 2⁄ exp {−
1

2𝜎2(𝑠)
(𝜷(𝑠) − 𝜷̂(𝑠))

𝑇
𝑿𝑇𝑾(𝑠)𝑿 (𝜷(𝑠) − 𝜷̂(𝑠))}) ∗ 

 

( (𝜎2(𝑠))
−(𝑛+1

2 )−1
exp {−

1

2𝜎2(𝑠)
(𝒀𝑇𝑾(𝑠)𝒀 − 𝒀𝑇𝑯𝒀)}), (26) 

 

where:  𝑯 = 𝑿(𝑿𝑇𝑾(𝑠)𝑿)−1𝑿𝑇. 
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Therefore, using Equation (26) as a starting point and assuming that the two distributions are independent 

of one another, the output of the posterior distribution can be represented as the multiplication of the two 

distributions [22], i.e., the marginal posterior distribution of 𝜷(𝑠) is 𝑀𝑉𝑁(𝜷̂(𝑠), 𝜎2(𝑠)(𝑿𝑇𝑾(𝑠)𝑿)−1), 

while the marginal posterior distribution of 𝜎2(𝑠) is 𝐼𝐺 (
𝑛+1

2
,

𝒀𝑇𝑾(𝑠)𝒀−𝒀𝑇𝑯𝒀

2
). 

4. The marginal posterior distribution of 𝜷(𝑠)  

Based on equation (26), we obtain that 𝜷(𝑠) is 𝑀𝑉𝑁(𝜷̂(𝑠), 𝜎2(𝑠)(𝑿𝑇𝑾(𝑠)𝑿)−1): 

𝑓(𝜷(𝑠)|𝒀) ∝  (𝜎2)−(
𝑝
2)|𝑿𝑇𝑾(𝑠)𝑿|1 2⁄ exp {−

1

2𝜎2(𝑠)
(𝜷(𝑠) − 𝜷̂(𝑠))

𝑇
𝑿𝑇𝑾(𝑠)𝑿 (𝜷(𝑠) − 𝜷̂(𝑠))}.  

5. The marginal posterior distribution of  𝜎2(𝑠) 

Based on Equation (26), the marginal posterior distribution of 𝜎2(𝑠) is  𝐼𝐺 (
𝑛+1

2
,

𝒀𝑇𝑾(𝑠)𝒀−𝒀𝑇𝑯𝒀

2
): 

𝑓(𝜎2(𝑠)|𝒀) ∝  (𝜎2(𝑠))
−(𝑛+1

2 )−1
exp {−

1

2𝜎2(𝑠)
(𝒀𝑇𝑾(𝑠)𝒀 − 𝒀𝑇𝑯𝒀)}. 

 

4. CONCLUSIONS 

Based on the results, Jeffreys' uninformative prior has been obtained, which is  

|𝑿𝑇𝑾(𝑠)𝑿|1 2⁄ (𝜎2(𝑠))
−(𝑝+3) 2⁄

. Using the result, we have obtained a marginal posterior distribution for the 

𝜷(𝑠), which follows a normal multivariate distribution, that is,  𝜷(𝑠)~𝑀𝑉𝑁(𝜷̂(𝑠), 𝜎2(𝑠)(𝑿𝑇𝑾(𝑠)𝑿)−1), 

whereas the marginal posterior distribution for 𝜎2 follows an inverse gamma distribution, that is,  

𝜎2(𝑠)~𝐼𝐺 (
𝑛+1

2
,

𝒀𝑇𝑾(𝑠)𝒀−𝒀𝑇𝑯𝒀

2
). 

As further research, it is necessary to follow up on some of the limitations of the results of this research, 

namely numerical simulations for several parameter conditions in the marginal posterior distributions of 𝜷(𝑠) 

and 𝜎2(𝑠). Furthermore, to help readers better understand our work, it is necessary to provide an application 

in real cases, such as the Human Development Index (HDI) problem, which has several rigid assumptions in 

solving the model. 
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