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 ABSTRACT  

Article History: 
Image classification is a complex process influenced by various factors, one of which is 

the amount of image data. In the context of cabbage pest classification, data often exhibits 

a significant class imbalance, where certain pests are more prevalent than others. This 

imbalance can pose challenges during model training and evaluation, potentially leading 

to biases in favor of the majority of pests and reduced accuracy in identifying and 

classifying the less common ones. This research aims to enhance the classification 

performance for multiclass data specific to cabbage pests. We propose an ensemble 

learning approach that combines Convolutional Neural Network (CNN), Support Vector 

Machine (SVM), and Bagging methods. To address the imbalance issue inherent in 

cabbage pest data, we employ the Adaptive Synthetic Sampling (ADASYN) resampling 

technique. The CNN acts as the primary image identifier and classifier for various 

cabbage pests. Subsequently, the CNN model is integrated into SVM and Bagging models 

to mitigate the challenges of imbalanced data in pest classification. The research 

outcomes demonstrate that our ensemble approach, in conjunction with the ADASYN 

resampling technique, achieves an impressive accuracy rate of 97%, signifying its 

potential for improved cabbage pest detection and classification. 
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1. INTRODUCTION 

Cabbage (Brassica oleracea var. capita L.) plays a crucial role in Indonesia's agricultural landscape, 

sustaining the livelihoods of numerous farmers. Nevertheless, these agriculturalists confront an enduring 

challenge: the relentless onslaught of pests and diseases that imperil their crops and well-being [1]. 

According to Abidin, there are symptoms caused by pests and diseases that attack cabbage plants. These 

symptoms typically appear on cabbage leaves in the form of changes in the color or shape of the leaves [2]. 

To address this, early detection of pests attacking cabbage can be carried out by identifying the symptoms 

that appear on the outer parts of the cabbage [3]. However, the true complexity lies in addressing the 

diversity of diseases and pests affecting cabbage plants, necessitating a multiclass classification approach 

[2]. One effective means of classifying these disease symptoms involves employing advanced detection 

tools, such as Convolutional Neural Networks (CNN), on image data. In cabbage fields, the occurrence of 

severe diseases like rot and clubroot is relatively rare, whereas diseases instigated by insects, such as 

caterpillars, are frequently encountered. This scenario results in imbalanced data, where one class contains 

fewer samples (the minority) compared to the other classes that constitute the majority [4].  

Previous studies in the field of image classification have primarily concentrated on binary 

classification tasks, such as distinguishing between crop and non-crop cabbage. For instance, in a study 

referenced as [4], an ensemble model was introduced, combining bagging and boosting techniques. The 

primary objective of this study was to differentiate between crop and non-crop cabbage categories. This 

research encountered the challenge of imbalanced data, comprising 105 images of cropped cabbage and just 

25 images of non-cropped cabbage, ultimately achieving a stable accuracy rate of 89%. However, these 

previous studies predominantly centered around binary classification, which addressed only a fraction of 

the broader challenges associated with pests and diseases affecting cabbage plants. 

The diverse nature of these issues necessitates a more nuanced approach in the form of multiclass 

classification. The unstructured quality of image data, complicated by the intricate manifestations of pests 

and diseases in cabbage plants, poses a formidable challenge. Building on the success of prior research, as 

exemplified by reference [5], which employed a hybrid method to integrate Support Vector Machine 

(SVM) and CNN for handwritten character recognition, our study recognizes the pivotal role of CNN. 

In our research, we leverage the advantages of CNN's accuracy for disease and pest detection in 

cabbage images, as demonstrated in previous research as demonstrated in previous research [6] [7]. The 

challenge we confront is imbalanced data, as noted in research conducted by [8]. Despite the excellent 

results achieved by deep neural networks like CNN on imbalanced data, challenges persist in handling 

minority data. Prior research addressing CNN on imbalanced data has suggested the use of resampling 

techniques and the combination of methods to enhance classification performance on such data [8]. 

Moreover, previous studies [5] have adapted SVM to handle multiclass classification using methods like 

'one vs one' and 'Directed Acyclic Graph' (DAG).  

In our research, we use Multiclass SVM with the 'one vs one' technique as a high-dimensional feature 

extractor to identify pests and diseases in cabbage plants. What sets our research apart is the inclusion of 

hyperparameter optimization, particularly grid search [16], to fine-tune the process. Moreover, we embrace 

bagging as an ensemble technique, distinguishing it from its previous application in research [4]. While 

previous studies have used bagging as an ensemble technique, our innovative use of bootstrapped 

resampling enhances the stability and predictive accuracy of our models. This enhancement ensures the 

dependability of our results when classifying disease symptoms in affected cabbage plants. Employing 

bagging proves valuable in aiding both CNN and SVM models by mitigating data overfitting. It will 

effectively handle issues of variance and bias inherent in CNN [9]. 

These methods will be combined using ensemble methods and resampling techniques to address 

imbalanced data [8][9]. Each method has advantages and disadvantages in its application. In cases of 

imbalanced data, minority class data is more likely to be overlooked by CNN methods, which is why 

resampling methods are needed to address this issue [10]. ADASYN is a resampling technique used to 

generate synthetic data, and its advantage lies in its focus on the minority class, which can effectively 

address issues related to imbalanced data. [11]. 

In conclusion, our research aims to create a model that combines CNN, SVM, and bagging to classify 

cabbage plants afflicted by a range of pests and diseases. The unique aspect of our approach lies in the 

synergy of these methods, artfully addressing data imbalances and enhancing classification accuracy. We 
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aspire to support Indonesian cabbage farmers by providing them with improved tools and strategies to 

protect their crops and livelihoods. Additionally, we employ a technique called ADASYN to handle data 

imbalances, building upon the successful methods used in prior studies. The primary distinction in our 

research lies in the ensemble model and the utilization of primary data, including images of cabbage plants 

afflicted by various pests. 

 

2. RESEARCH METHODS   

2.1 Data  

The data used in this research is a cabbage image and the data was collected in Poncokusumo, 

Malang, with cabbage specimens ranging from 70 to 80 days old, approaching the harvest period. The 

cabbage specimens used were those affected by pests. These pests exhibit specific characteristics, but the 

pests to be used are chosen based on their visible external features. There are a total of 242 image data, and 

the images were randomly captured using a 24.2 MP EOS M100 mirrorless camera. Information regarding 

cabbage diseases and pests is based on the Abidin journal and research [2]. Five types of pests and diseases 

that are classified are presented in Table 1.  

Table 1. Data Information 

Type of Pests Symbol Data 

Insect Pests P3 170 

Leaf spot disease P6 35 

Black rot disease P7 12 

Soft rot disease P8 15 

Culbroot disease P9 10 

 

 

 

 

 

(a)                            (b)                              (c)                              (d)                            (e) 

 

(a)                             (b)                                  (c)                              (d)                              (e) 

Figure 1 (a) Insect Pests, (b) Leaf Spot Disease, (c) Black Rot Disease, (d) Soft Rot Disease, (e) Culbroot Disease.  

 

The following images in Figure 1 illustrate the classification of various diseases and pests affecting 

cabbage. In Figure 1 (a), cabbage is shown infested with pests, exhibiting apparent health but displaying 

perforations on its outer leaves. Figure 1 (b) depicts cabbage afflicted with leaf spot disease, resulting in a 

discoloration of the outer leaves, turning them yellowish brown and causing wilting. In Figure 1 (c), 

symptoms of black or brown rot are evident, as seen in the cabbage head with brown spots and wilting, 

ultimately leading to the demise of the plant. Figure 1 (d) represents cabbage affected by soft rot disease, 

characterized by a blackened and decayed appearance of the cabbage head. Finally, Figure 1 (e) portrays 

cabbage suffering from root rot, where the absence of a well-formed head indicates the failure of plant 

growth. The comprehensive descriptions of each condition aim to facilitate the accurate classification and 

diagnosis of cabbage diseases and pests. 
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2.2 Image Preprocessing 

Before inputting image data into the CNN to improve the quality of the image, noise and variation in 

the image must be eliminated, and it can be used as image normalization and enhance the accuracy of the 

processing step [12]. The steps consist of image enhancement and segmentation. First, remove the 

background to maximize the CNN's ability to identify the parts of the cabbage and form convolutional 

layers. Then, resize the image data size to make all image sizes uniform and expedite the process. Then, the 

image will be segmented. Image segmentation helps in identifying object boundaries, such as leaves that 

have different colors or leaves with holes, and it is used to extract regions of interest from an image [13].  

 

2.3 Splitting Training and Testing Data 

The data was split into three sets: training set, validation set, and testing set. The validation set is 

used as tool for fine tune the model hyperparameters, while the training set is used as tool for the model 

learning process and enables performance assessment, ultimately yielding the production of the optimal 

model, and this best performing model underwent evaluation using the testing dataset to gauge its overall 

performance quality. The partitioning of the train, validation, and test sets was 80:10:10.  

 

2.4 Ensemble Models  

Ensemble learning is one way to address the issue of imbalanced data in classification by 

combining several models to produce the best final model. Three different models are used in this research. 

The first model is CNN, the second model is SVM, and the third model is bagging.  

 

2.4.1 Convolutional Neural Network (CNN) 

This method serves as an automatic feature extractor, where the feature vector, containing the 

extracted features, is utilized as input for subsequent methods. The input image data is denoted by 𝑥𝑖
(𝑘)

 ∈

𝑅𝑑, where d represents the image size (d =W x H = 256 x 256 pixels). The convolutional layer is 

composed of 2D convolutional kernels or filters, taking on the form of rectangles and characterized by 

matrices [14]. This research will be using the SqueezeNet architecture, which is explicitly crafted to 

enhance accuracy while utilizing notably lesser parameters. Notably, SqueezeNet is approximately 510 

times smaller than AlexNet. 

The structural design integrates 8 Convolutional layers, seamlessly incorporating the Fire Inception 

and Fire Squeeze blocks. Noteworthy is our modification, opting for 8 fire modules instead of the original 

16 and substituting Max Pooling with leaky ReLU activation. This choice is made due to the advancements 

it brings in multiclass classification [15] The comprehensive SqueezeNet architecture encompasses 

convolutional layers utilizing the fire module, comprised of a squeeze layer (with singular 1x1 filters) and 

an expand layer (featuring a blend of 1x1 filters and 3x3 filters) [16]. The convolution operation applied to 

a feature map with multiple channels is succinctly expressed in Equation (1) [17].  

𝑥𝑖
(𝑘)

= 𝑥𝑖−1
(𝑐)

∗ 𝑤𝑖
(𝑐,𝑘)

+ 𝑏𝑖
(𝑘)

                       (1) 

Here, w is the weight applied in each layer w ∈ 𝑅𝑑, b is the bias, the variable i signifies the index 

assigned to the network layer, k is for kernels, and c denotes the channel. The Adam optimizer is employed 

to iteratively update network weights based on the training data [18]. After convolution, the activation 

function is applied. The Leaky ReLU activation function is expressed in Equation (2).   

𝐴𝑖
(𝑘)

= max (0; 𝑥𝑖
(𝑐)

)                       (2) 

To prevent the risk of overfitting, the Softmax function will be employed. This function is primarily 

used in multiclass classification problems, serving as an extension of the previous logistic regression 

method, and is employed to normalize calculations, resulting in probability outputs [17].  

 

2.4.2 Multiclass Support Vector Machine (SVM) 

The original purpose of the SVM was binary classification, with the goal of delineating two classes 

within a provided dataset [19]. For addressing multiclass problems, we adopt the one-vs-one approach, 
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employing features �⃗�𝑖
⬚ ∈ 𝑅𝑛,where �⃗�𝑖

⬚ represents an input feature vector [17], and 𝑦𝑖 ∈ (1, … , 𝑚) is labels 

that correspond to every class. This will create binary classifiers for each possible class, and a grid search is 

utilized to optimize these classifiers. The one vs one method involves constructing classifiers of  𝑚(𝑚 −
1)/2, where two classes selected from the m available classes are trained on each classifier. This approach 

enhances the SVM model's performance by leveraging the extracted features, ensuring robust and effective 

classification outcomes [20]. 

 

2.4.3 Bagging 

Bagging (Bootstrap Aggregating) is a fundamental ensemble learning technique employed to 

address imbalanced data in classification problems [21]. It involves creating random training sample 

subsets through bootstrapping. These subsets serve as the training data for multiple models. In bagging, the 

final prediction is determined by aggregating the predictions from these models through a voting 

mechanism. Employing bagging proves valuable in aiding both CNN and SVM models by mitigating data 

overfitting. It effectively handles issues of variance and bias inherent in CNN [22].  

 

2.4.4  Ensemble CNN, SVM, Bagging, and ADASYN  

 The following flowchart shows the process of ensemble methods in Figure 2. The process begins 

with input data that has already undergone preprocessing. It proceeds by utilizing a CNN model for feature 

extraction. The resulting features are then input into an SVM model, where a grid search is performed to 

fine-tune hyperparameters. To bolster the model's robustness and alleviate overfitting, the SVM model is 

integrated with other models using bagging. This integration ultimately yields a set of classifications based 

on these methods and are presented in Figure 2.  

 
Figure 2. Flowchart of the Ensemble Model of CNN, SVM, and Bagging 

2.5 Dealing with Imbalance Data  

As previously noted, the dataset comprises 242 images distributed across five distinct class 

categories. To mitigate the data imbalance within each category, we are planning involves implementing 

the Adaptive Synthetic Resampling Technique (ADASYN). The primary aim of ADASYN is to address 

data imbalance by creating supplementary synthetic samples tailored specifically for the minority class, 

which often poses challenges to the learning process. This involves identifying minority samples that are 

particularly difficult to address, determined by calculating the number of nearest neighbors. Subsequently, 

ADASYN generates synthetic samples in a manner that approximates the challenging-to-learn regions 

based on the neighbor count  [11].  

2.6 Evaluation Metrics 

In the testing phase, the assessment of the model efficacy relies on performance indicators like 

accuracy, F1 score, sensitivity, and specificity. These metrics serve as crucial measures for evaluating 

classifier performance, and their computation is derived from the information encapsulated in the confusion 

matrix [4].  

Table 2 showcases the confusion matrix that represents the classification model performance. In this 

representation, TP (true positives), FN (false negatives), FP (false positives), and TN (true negatives) are 

employed to signify different aspects of the classification outcomes [23]. In the scenario of addressing a 

multi-class classification task, the confusion matrix provides a detailed examination of the model's 
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performance by revealing how predicted and actual class distributions align for each class in the dataset. 

The confusion matrix is presented in Table 2. 

Table 2. Confusion Matrix 

Actual Predicted 

Positive Negative 

Positive TP FN 

Negative FP TN 

Table 3 depicts of each performance metric linked to the model. Accuracy, calculated using 

Equation (3) with the confusion matrix, covers both accurate and erroneous classifications, providing a 

thorough assessment [14]. Within the domain of machine learning, the loss function acts as a quantifier for 

the model's efficacy on the training data. Equation (4) illustrates that it captures a certain level of 

information loss, thereby influencing the overall completeness of the outcome [14]. Sensitivity, defined as 

the test capability to accurately identify a cabbage as a pest class [24], is depicted in Equation (5), 

showcasing the probability of cabbages testing positive when signs of disease are present. Conversely, 

specificity, denoting the test ability to inaccurately categorize a cabbage as a pest class, is articulated in 

Equation (6), elucidating the probability of testing negative when pests are indeed absent [24]. Given the 

imbalanced nature of the dataset, the F1 score is computed to provide a balanced assessment. As delineated 

in Equation (8), the F1 score serves as a weighted average of precision and sensitivity (recall) [14]. Table 

3 will present the equations for performance measurements.  

Table 3. Performance Measures 

Name Representation 

Accuracy [25] 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
             (3) 

Loss [14] 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦               (4) 

Sensitivity [25] 𝑇𝑃

𝑇𝑃+𝐹𝑁
                     (5) 

Specificity [25] 𝑇𝑁

𝐹𝑃+𝑇𝑁
                    (6) 

Precision [4] 𝑇𝑃

𝑇𝑃+𝐹𝑃
                     (7) 

F1-score [4] 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
           (8) 

Validation graph acts as diagnostic tools, offering insights into whether iterative training enhances a 

model effectiveness. Graphically, this graph represents training and validation epochs along the horizontal 

axis, while the vertical axis is defined by quality metrics such as accuracy and loss, as outlined in 

Equations (3) and Equation (4).  

 

3. RESULTS AND DISCUSSION 

In this part, we introduce the experimental findings derived from our study, which include the 

application of various proposed methods for classifying cabbage pests, along with their respective 

performance measures. The stage of image preprocessing showcases the results of improving and 

segmenting image data. Following conventional machine learning practices, the data will then undergo the 

division into training and testing subsets, revealing the challenge of imbalanced data distribution. We 

address this imbalance using the resampling method ADASYN. Subsequently, we compare the results of 

each model when using the ADASYN resampling technique and when not using it. This comparison allows 

us to draw conclusions based on the effectiveness of the resampling technique. 
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3.1 Image Pre-processing 

The preprocessing of images before conducting classification using the CNN method is crucial to 

prepare optimal input data. The following outlines the image preprocessing process illustrated in Figure 3. 

(1) Background Removal: As we can see in Figure 3 (b) that the background of the cabbage is becoming 

black and the shape of the cabbage is clearly visible.  

(2)  Image Sharpening and Resizing: The data obtained from the camera has a very large size of 1600x1600 

pixels. If the image is too large, the modeling process will take a long time. To make the process faster, the 

image data is then resized to 256x256 pixels with three channels. 

(3) Segmentation: In this study, segmentation uses k-means based method to make the segmentation more 

detail and change the colors into RGB.  

 

                              
(a)                           (b)                      (c)                             (d) 

Figure 3 (a) Original Cabbage Image, (b) Cabbage Image after Background Removal, (c) Cabbage Image after 

sharpening and resizing, (d) Segmented Cabbage Image 

3.2 Split into Training and Testing  

Figure 4 illustrates the data distribution after it has been partitioned into training and testing subsets. 

Following this step, to create a validation set the training data will undergo additional partitioning. It 

becomes evident that the data displays an imbalance, with a significant difference in the amount of data 

between the minority classes and majority classes. In order to improve the model's performance, resampling 

is required.  

 
Figure 4. Training and Testing Data Class Distribution 

 

3.3 Hyperparameter  

Table 4 presents a variety of hyperparameter configurations. An ‘epoch’ represents the number of 

times the model undergoes training on the complete dataset. The ‘batch size’ indicates the number of 

training examples used in each iteration, with common choices falling within the range of B ∈ {32, 64, 128, 

256 In the context of imbalanced data, it is often more advantageous to select a smaller batch size. The 

'learning rate' governs the step size at each iteration of the optimization algorithm. Adam as ‘optimizer’ will 

adjust the learning rates for each parameter individually. The ‘neighbor parameter’ is set to four, indicating 

that ADASYN selects four minority samples from each neighborhood for the generation of new samples.  
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Table 4. Hyperparameter Settings 

(Hyper) parameter Settings 

Epochs 100 

Batch Size 32 

Learning rate 2.5e-5; 1e-5; 1e-5 

Optimizer Adam 

Neighbor for ADASYN 4 

 

Table 5 displays the hyperparameters employed for SVM and grid search. These hyperparameters 

include the ‘C’ value, where a higher value aims to minimize training data misclassification, while a lower 

C value aims to achieve a smoother classification by allowing for more margin errors. The 'kernels' are 

functions that execute a conversion from a space with low dimensions, namely the input space or feature 

space, to a space with higher dimensions. Finally, the parameter 'gamma' holds significance within the 

framework of SVM, particularly for the RBF kernel, which defines the extent to which a single training 

example's influence extends. 

Table 5. Grid Search Space 

(Hyper) parameter Settings 

C [10; 100; 1,000] 

Kernels [linear]; [rbf] 

Gamma [0.001; 0.0001 

 

The structure of the CNN architecture significantly influences the model's accuracy, as illustrated in 

Table 6. The SqueezeNet architecture was applied to process images with dimensions of 256 x 256 pixels 

and three channels (RGB - Red Green Blue). In the given context, the "-" symbol is used to indicate that no 

specific or relevant value needs to be computed for a particular attribute.  

Table 6. SqueezeNet Architecture 

Layer Type Output Size Kernel Size/Stride Number of Filters 

Input 256 x 256 x 3 - - 

Convolution 128 x 128 x 96 7x7, stride 2 96 

Leaky ReLU 64 x 64 x 96 3x3, stride 2 - 

Fire Module (1) 64 x 64 x 128 1x1 (squeeze); 1x1 (expand); 1x1 (expand) 16; 64; 64 

Fire Module (2) 64 x 64 x 128 1x1 (squeeze); 1x1 (expand); 1x1 (expand) 16; 64; 64 

Leaky ReLU 32 x 32 x 128 3x3, stride 2 - 

Fire Module (3) 32 x 32 x 256 1x1 (squeeze); 1x1 (expand); 1x1 (expand) 32; 128; 128 

Fire Module (4) 32 x 32 x 256 1x1 (squeeze); 1x1 (expand); 1x1 (expand) 32; 128; 128 

Leaky ReLU 16 x 16 x 256 3x3, stride 2 - 

Fire Module (5) 16 x 16 x 384 1x1 (squeeze); 1x1 (expand); 1x1 (expand) 48; 192; 192 

Fire Module (6) 16 x 16 x 384 1x1 (squeeze); 1x1 (expand); 1x1 (expand) 48; 192; 192 

Fire Module (7) 16 x 16 x 512 1x1 (squeeze); 1x1 (expand); 1x1 (expand) 64; 256; 256 

Fire Module (8) 16 x 16 x 512 1x1 (squeeze); 1x1 (expand); 1x1 (expand) 64; 256; 256 

Convolution 16 x 16 x 1,000 1x1 1,000 

Global Average 

Pooling 

1x1x1,000 - - 

Softmax 1x1x1,000 - - 

 

3.4 Result  

To assess the outcomes, the graph representing training and validation for the CNN model are 

depicted in Figure 5 and Figure 6.  
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(a)                                                          (b) 

Figure 5. (a) Accuracy Graph of CNN with ADASYN, (b) Accuracy Graph of CNN without ADASYN 

Figure 5 shows the accuracy graph for both training and validation, along with the corresponding 

loss graph. These graphs are compared between the scenarios with and without the use of ADASYN. It is 

obvious that the two models are generalized, but both validation accuracy is below training accuracy, which 

means that there is a possibility of overfitting. Accuracy with ADASYN seems more stable than without 

ADASYN, which means that ADASYN has helped to enhance the stability of the model's performance. 

The utilization of ADASYN results in a more consistent accuracy curve. This implies that the model is 

better equipped to generalize to unseen data and is less susceptible to overfitting. Figure 6 illustrates the 

loss graph for both the model with ADASYN and the model without ADASYN. The pattern reveals that 

when the validation loss curve is below the training loss curve, overfitting occurs. However, similar to the 

accuracy curve, the loss curve is more stable when ADASYN is employed compared to when it is not. 

 
(a)                                                          (b) 

Figure 6. (a) Loss Graph of CNN with ADASYN, (b) Loss Graph of CNN without ADASYN 

Table 6. Table Loss 

Method Loss 

CNN with ADASYN 0.524 

CNN without ADASYN 0.616 

  

From Table 6, we can interpret that the CNN model with ADASYN has a lower loss value 

compared to the CNN model without ADASYN. A reduced loss value signifies enhanced performance, 

signifying the model's increased efficiency in minimizing the disparity between predicted and actual values. 
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Therefore, the CNN model with ADASYN is likely to be more accurate and reliable in its predictions than 

the CNN model without ADASYN. 

 Table 7. Comparison Accuracy of Training and Validation 

 Method Training Validation 

with ADASYN 

CNN 0.71 0.71 

CNN + SVM 0.1 0.90 

CNN + Bagging 0.99 0.91 

CNN + SVM+ Bagging 0.89 0.75 

without ADASYN 

CNN 0.75 0.75 

CNN + SVM 0.99 0.87 

CNN + Bagging 0.98 0.85 

CNN + SVM + Bagging 0.89 0.82 

 

Table 7 presents a comparison of accuracy between the training and validation datasets. The results 

reveal that during the training phase, every model exhibited a notable capability in effectively categorizing 

almost all classes, with the CNN + SVM ensemble model incorporating ADASYN achieving the highest 

accuracy at 0.99, alongside a validation accuracy of 0.91. Conversely, the CNN model with ADASYN 

exhibited the lowest accuracy. Notably, the CNN model displayed similar training and validation accuracies 

in both ADASYN and non-ADASYN cases. However, the ensemble models showcased higher training 

accuracies and validation accuracies with ADASYN, except for Ensemble CNN + SVM + Bagging, which 

exhibited slightly lower validation accuracies in both scenarios, with and without ADASYN. This suggests 

that while the ADASYN technique contributes to enhancing the capacity of the model to adapt and acquire 

knowledge from data imbalances during the training process., it may not necessarily result in improved 

generalization to unseen data. 

For further measurements, the performance is then assessed with the proposed method. Table 8 

shows the accuracy, F1 score, sensitivity (recall) and precision. The result of ensemble shows a higher 

result when using ADASYN than without ADASYN. With the highest result in precision CNN + SVM + 

bagging with ADASYN with 99% and accuracy of 97%. The method using ADASYN gives improvements 

in ensemble, whereas the method without ADASYN has a high result but is not stable in CNN + SVM. 

Comparing the results with and without ADASYN, we can see that ADASYN has helped to improve the 

sensitivity of the CNN model from 0,87 to 0,96, indicating that the model is better at detecting the minority 

class. The F1 scores for the methods with and without ADASYN are comparable, with some methods 

without ADASYN even outperforming their counterparts. The methods with ADASYN have higher recall 

values, indicating better performance in correctly identifying positive cases. This is again due to the 

balancing effect of ADASYN on the imbalanced datasets. The methods without ADASYN have slightly 

higher precision values, indicating better performance in correctly identifying negative cases. This could be 

because the methods without ADASYN are not influenced by the synthetic samples generated by 

ADASYN, which might introduce some noise in the classification process. The approaches employing 

CNN + SVM showed a decline in performance or remained relatively constant across all metrics. This 

implies that the ensemble model might be a more effective means of enhancing the performance of the 

CNN model and Bagging in comparison to the SVM-based models. 

Table 8. Comparison of Accuracy, F1 Score, Sensitivity and Specificity 

 Method Accuracy F1 Recall Precision 

with ADASYN 

CNN 0.88 0.85 0.75 0.95 

CNN+SVM 0.97 0.90 0.94 0.98 

CNN + Bagging 0.98 0.98 0.93 0.98 

CNN + SVM + Bagging 0.97 0.81 0.94 0.99 

without ADASYN 

CNN 0.86 0.78 0.15 0.1 

CNN + SVM 0.96 0.88 0.80 0.1 

CNN + Bagging 0.95 0.96 0.80 0.98 

CNN + SVM + Bagging 0.95 0.87 0.80 0.98 
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4. CONCLUSIONS 

This study highlights the potential of the ADASYN technique to enhance the performance of 

ensemble CNN with SVM and bagging methods in handling imbalanced datasets. We explored two 

ensemble methods, one with ADASYN and one without. Our findings show that integrating ADASYN 

substantially improves stability and generalization, leading to consistently high results in evaluation 

metrics. This is evident in the results without ADASYN which show values that are lower overall than the 

results obtained when using ADASYN. For instance, the highest accuracy achieved with ADASYN is in 

the ensemble CNN and Bagging, reaching 98%, whereas without ADASYN, it is in the ensemble CNN and 

SVM at 96%. The results obtained using ensemble methods demonstrate higher accuracy, F1 score, recall, 

and precision compared to using CNN alone, both in cases with ADASYN and without ADSYN. Overall, 

ensemble methods, particularly when combined with ensemble CNN models, offer better stability in 

performance. The ensemble CNN model, especially when integrated with ADASYN, achieves the highest 

accuracy and stability, aligning with previous studies. 

 In the future, refining and optimizing the ADASYN integration to address potential overfitting and 

noise issues should be a focus. Exploring strategies to fine-tune ADASYN parameters or incorporating 

additional data preprocessing techniques can help strike a better balance between mitigating class 

imbalance and preserving data integrity. Collaboration with the agricultural sector and considering faster 

processing methods like YOLO could enhance the efficiency of plant disease identification in cabbage 

crops. 
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