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ABSTRACT 

Article History: 
The population of Australian sheep blowflies, Lucilia cuprina, in Australia is of concern to 
many researchers because it causes several problems. These problems occur in the sheep 

industry where there is a term "flystrike" in the industry. Flystrike is a fly attack on sheep 

that causes myiasis on the sheep's skin, affecting the quality and quantity of wool. In the 

worst cases, the sheep may die if not treated. This issue has attracted researcher to conduct 
a population control study of fly growth to suppress flystrike in the Australian sheep 

industry. In this paper, fly growth will be approached using a difference equation to better 

represent the industry’s situation. This equation will be analyzed using its approximate 

solution that is obtained through linearization of perturbation method, Cardano’s formula, 
and Galois solution’s method. By studying fly growth, Australian sheep farmers may find it 

easier to handle and prevent fly infestations using the solution. 
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1. INTRODUCTION 

The progress of human civilization is influenced by the progress of the application of mathematics, 

which uses mathematical concepts to solve problems in everyday real life. Mathematical modeling is one of 

the implementations of applied mathematics that deals with real-life problems expressed in mathematical 

symbols through systematic steps. One of the problems that can be modeled using mathematics is the 

prediction of population growth. In creating a population model, several parameters are required that can be 

predicted according to population growth. In this paper, the population model is considered in discrete time 

intervals, so that each age group describes the same time interval. When modeling the population growth of 

living things, it will be closer to the actual situation by assuming that individuals can reproduce if they have 

reached adulthood. Every individual needs a process to grow and develop from birth until reaching the fertile 

period in order to reproduce. In the mathematical model, this is called a delay time. In the real world, 

population growth does not always increase infinitely, nor does it always decrease. A delay time can cause 

the population to decrease at one point in time, but then increase again, resulting in the form of oscillations 

in population growth. Another approach is to assume limited resources and a biological situation that leads 

to a logistic model (see [1]). Thus, in the logistic model, the population is limited by the population density, 

resulting in an infinite number of populations (see [2]). The results given by the Logistic Model are considered 

to be the closest to the actual results. 

About sixty six years ago, A. J. Nicholson was the first to published a study concerning how 

populations may accommodate themselves to changed conditions in laboratory populations of Australian 

sheep blowflies, Lucilia cuprina (see [3]). May (see [4]) and Barnes-Fulford (see [5]) re-described research 

by its Nicholson’s research more easily understood. In Australia, this species caused particular problems in 

the sheep industry, with farms consisting of thousands of acres accompanied by huge with very large fly 

populations. Of the several groups of flies that exist, there are groups of flies that not only cause disease but 

can harm humans. The activity of "blowflies" is an extrapolation of normal fly activity that extends activity 

from dead animals to live animals. One of the cases that harm humans is the attack of blowflies on livestock, 

namely sheep in Australia. This attack is detrimental to sheep farmers in Australia because it affects the health 

of their sheep and causes death. These fly attacks on sheep are called "flystrike" and result in animal mortality 

and large treatment and prevention costs, estimated at $100-150 million per year in Australia. The most 

influential factor in these attacks is the warm and humid environment, especially in spring, and late summer 

or autumn, in Australia (see [6]). Sheep that have recovered from the attack will also experience a decline in 

condition and the quality of their wool will not be as good as before, resulting in a decrease in the quality and 

quantity of wool. Initially, this fly causes skin myiasis in living sheep. Myiasis is the invasion of maggots or 

flies into body tissue, causing damage to healthy tissue. This fly breeds mainly on carcasses. Sheep skin 

myiasis in Australia is higher due to the level of susceptibility. If infested sheep are not euthanized and the 

development of maggot continues, sheep mortality will occur. An estimate made in 1938 suggested that the 

annual cost of sheep skin myiasis in Australia in terms of crop losses and preventative measures amounted to 

£4,000,000 (see [7]). The problem of fly control in Australia is approached in two main ways: protection of 

sheep against infestation and investigation of ways to reduce fly breeding. Recently, Colvin et al (see [8]) 

revealed reports incidence and control practices on blowfly strike in sheep between 2003 and 2019. There are 

several studies on the analysis of population dynamics growth based on various models such as Rashkovsky 

and Margaliot (see [9]) which gave a fuzzy modeling approach to transform the verbal description of several 

enthologists into a well-defined mathematical model, Hutchinson (see [10]) that first introduced differential 

logistic delay equation for general population, and then Nicholson (see [11]) which modified the equation to 

be applied on the growth of Lucilia cuprina. Some research about Nicholson’s blowflies can be seen in [3], 

[9] , [11]–[17]. 

Population dynamics in an ecosystem are not always close to or away from the carrying capacity of 

the environment. From [5], there is a model that uses that term i.e. discrete logistic equation, 

𝑋𝑛+1 − 𝑋𝑛 = 𝑟𝑋𝑛 −
𝑟

𝐾
𝑋𝑛
2 

(see [5]), where 𝑋𝑛+1 and 𝑋𝑛 represent the number of population at discrete time 𝑛 + 1 and 𝑛, respectively. 

The notation 𝑟 and 𝐾 represent the difference between rate of birth and death and the carrying capacity, 

respectively. However, there are population dynamics where the individuals cannot reproduce (give birth/lay 

eggs) continuously throughout their lives. Therefore, this phenomenon makes population dynamics in 

growing will be delayed. Delay time can cause a decreasing population, but then an increasing occurs, 
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resulting oscillations in graphic of population growth. It means that the rate of population growth not only 

depends on the population size at the current time 𝑡, but also depends on the population size at the previous 

time 𝑡 − 𝑡𝑑  and the number of populations at initial conditions are the same i.e.  

𝑋0 = 𝑋1 = ⋯ = 𝑋𝑡𝑑. The delay time version of the previous equation is 

𝑋𝑛+1 − 𝑋𝑛 = 𝑟𝑋𝑛 −
𝑟

𝐾
𝑋𝑛𝑋𝑛−𝑡𝑑 

where 𝑡𝑑 > 0 (see [5]), which is called difference equation. 

In this paper, we employ the useful method that is a linear perturbation method to get the solution of 

the difference equation. As on perturbation theory, the solution that will be obtained is an approximation, see 

for example [18], [19]. We will focus only on the solution for a particular delay time i.e. 0 ≤ 𝑡𝑑 ≤ 3 and then 

analyzing the growth characteristics of Lucilia cuprina, especially for 𝑡𝑑 = 0,1. The time for the fly grows 

from a laid egg to be an adult fly is 𝑡𝑑 days depending on the surrounding environmental conditions. We 

assume that every unit of time throughout this discussion accounts 𝑡𝑑 and another assumption is the current 

density position is affected by the presence of eggs in the past.  

 

2. RESEARCH METHODS 

Consider the discrete logistic equation, 

𝑋𝑛+1 − 𝑋𝑛 = 𝑟𝑋𝑛 −
𝑟

𝐾
𝑋𝑛
2 (1) 

The delay time version of the previous equation is 

𝑋𝑛+1 − 𝑋𝑛 = 𝑟𝑋𝑛 −
𝑟

𝐾
𝑋𝑛𝑋𝑛−𝑡𝑑 (2) 

where 𝑡𝑑 > 0 (see [5]), which is called difference equation with delay time. We determine the approximate 

solution for difference equation with 0 ≤ 𝑡𝑑 ≤ 3, which is obtained using the linearization of perturbation 

method, particularly by analyzing the displacement around the equilibrium solution, i.e., carrying capacity 

𝐾. The solutions for 𝑡𝑑 = 0 and 𝑡𝑑 = 1 will be explicitly analyzed to describe the growth of Australian sheep 

blowflies, Lucilia cuprina. The solutions for 𝑡𝑑 = 2 and 𝑡𝑑 = 3 will be obtained using the same method but 

with extra tools, namely Cardano’s formula and Galois solution’s method. The key point to find the solution 

in this case (𝑡𝑑 = 2 and 𝑡𝑑 = 3) is solving cubic and quartic polynomials. Cardano’s formula stated that the 

zeros of cubic polynomial (has degree 3), 

𝑠(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑, are 

𝑥1 = −
𝑏

3𝑎
+ √−

𝑞

2
+ √

𝑞2

4
+
𝑝3

27

3

+ √−
𝑞

2
−√

𝑞2

4
+
𝑝3

27

3

 

𝑥2 = −
𝑏

3𝑎
+ (−

1

2
+
𝑖√3

2
) √−

𝑞

2
+ √

𝑞2

4
+
𝑝3

27

3

+ (−
1

2
−
𝑖√3

2
) √−

𝑞

2
− √

𝑞2

4
+
𝑝3

27

3

 

and 

𝑥3 = −
𝑏

3𝑎
+ (−

1

2
−
𝑖√3

2
) √−

𝑞

2
+ √

𝑞2

4
+
𝑝3

27

3

+ (−
1

2
+
𝑖√3

2
) √−

𝑞

2
− √

𝑞2

4
+
𝑝3

27

3
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where 𝑝 = −
𝑏2

3𝑎2
+

𝑐

𝑎
 and 𝑞 =

2𝑏3

27𝑎3
−

𝑏𝑐

3𝑎2
+
𝑑

𝑎
. The method of Galois solution (see [20]) stated that the zeros 

of quartic polynomial (has degree 4) with rational coefficient i.e. 𝑠(𝑥) = 𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑, can be 

obtained after applying the following steps: 

1. Substitute 𝑥 = 𝑦 −
𝑎

4
 into the polynomial to get 𝑌 = 𝑦4 + 𝛼𝑦2 + 𝛽𝑦 + 𝛾. 

2. Let 𝑦1, 𝑦2, 𝑦3, and 𝑦4 are the zeros of 𝑌 and let ℎ = (𝑧 − 𝑤)(𝑧 − 𝑤′)(𝑧 − 𝑤 ′′), where  

𝑤 = (𝑦1 + 𝑦2)(𝑦3 + 𝑦4), 

𝑤 ′ = (𝑦1 + 𝑦3)(𝑦2 + 𝑦4), 

𝑤 ′′ = (𝑦1 + 𝑦4)(𝑦2 + 𝑦3) 

Solve the polynomial ℎ = 𝑧3 − 2𝛼𝑧2 + (𝛼2 − 4𝛾)𝑧 + 𝛽2.  

3. Use 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 = 0 and the zeros of ℎ to get the values of 𝑦1, 𝑦2, 𝑦3, and 𝑦4. 

4. The zeros of 𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 are 𝑥1 = 𝑦1 −
𝑎

4
, 𝑥2 = 𝑦2 −

𝑎

4
, 𝑥3 = 𝑦3 −

𝑎

4
, and 

 𝑥4 = 𝑦4 −
𝑎

4
. 

  

3. RESULTS AND DISCUSSION 

Given a positive integer 𝛼 and a real number 𝛽, define a polynomial 𝑃𝛼,𝛽(𝑥) = 𝑥
𝛼+1 − 𝑥𝛼 + 𝛽 of 

degree 𝛼 + 1. Now, we use the linearization of perturbation method particularly analyzing displacement 

around the equilibrium solution, i.e., carrying capacity 𝐾.  

Let 𝑋𝑛 = 𝐾 + 𝜖ℎ𝑛 for 0 < 𝜖 ≪ 1 and |𝜖ℎ𝑛| ≪ 𝐾. Substitute this 𝑋𝑛 into Equation (2) such that 

ℎ𝑛+1 − ℎ𝑛 = −𝑟ℎ𝑛−1 −
𝑟𝜖

𝐾
ℎ𝑛ℎ𝑛−𝑡𝑑 

We can neglect the nonlinear term −
𝑟𝜖

𝐾
ℎ𝑛ℎ𝑛−𝑡𝑑 because of the assumption of 𝜖ℎ𝑛. Therefore, we have 

ℎ𝑛+1 − ℎ𝑛 + 𝑟ℎ𝑛−𝑡𝑑 = 0 

It seems like a recurrence relation of degree 𝑡𝑑 + 1 where the coefficient of ℎ𝑛−𝑖 is zero, for each 1 ≤ 𝑖 ≤
𝑡𝑑 + 1. By substituting ℎ𝑛 = 𝑥

𝑛, we have 𝑃𝑡𝑑,𝑟(𝑥) as a characteristic polynomial of the recurrence relation. 

If 𝑧1, 𝑧2, … , 𝑧𝑡𝑑+1 are zeros of the polynomial, then the general solution of the recurrence relation is  

ℎ𝑛 = 𝛼1𝑧1
𝑛 + 𝛼2𝑧2

𝑛 +⋯+ 𝛼𝑡𝑑+1𝑧𝑡𝑑+1
𝑛  

for some constant 𝛼1, 𝛼2, … , 𝛼𝑡𝑑+1. However, the special one can be obtained using the initial values that 

should be given. In other words, the solution of 𝑋𝑛 is gained after we find all zeros of 𝑃𝑡𝑑,𝑟(𝑥). According to 

Abel-Ruffini theorem (see [21]), there is no solution in radicals to general 𝑃𝑡𝑑,𝑟(𝑥) for 𝑡𝑑 ≥ 4, but 𝑃𝑡𝑑,𝑟(𝑥) 

has a beautiful form because 𝑥 = 𝑐 is always the root of 𝑃𝑡𝑑,𝑐𝑡𝑑(1−𝑐)(𝑐) = 0. It means that for 𝑡𝑑 = 4, even 

if it is a quintic polynomial (has degree 5), we still can obtain all radical solutions of the polynomial after we 

solve the quartic form depressed from the quintic. 

3.1 Case 𝒕𝒅 = 𝟎 

It is easy to calculate that the root of 𝑃0,𝑟(𝑥) is only 𝑥 = 1 − 𝑟. Therefore, we obtain ℎ𝑛 = 𝐶(1 − 𝑟)𝑛, 

for some constant 𝐶, such that 𝑋𝑛 = 𝐾 + 𝜖𝐶(1 − 𝑟)
𝑛 where 0 < 𝜖 ≪ 1. Furthermore, we use an initial 

condition 𝑋0 that is the amount of first population of flies such that we obtain the approximate solution of 

Equation (2) for 𝑡𝑑 = 0 is 

𝑋𝑛 = 𝑋0(1 − 𝑟)
𝑛 + 𝐾(1 − (1 − 𝑟)𝑛) (3) 

There are certain questions about the solution such as what are characteristics cling to the curve of 

Equation (3) and how it compared to the curve of Equation (2) for 𝑡𝑑 = 0. We determine them by fixing 𝑋0 

and 𝐾, and varying 𝑟. Let 𝜙 = 1 − 𝑟, then: 

• For 𝑟 < 0, we have 𝜙 > 0. In this case, the rate birth is strictly less than the rate of death, so that the 
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amount of population should be decreasing in increasing unit of time 𝑛. It is obvious that 𝜙𝑛(𝜙 − 1) >
0 and since 𝑋0 < 𝐾 then for all units time 𝑛 ∈ ℕ, 

𝑋0𝜙
𝑛(𝜙 − 1) + 𝐾 < 𝐾𝜙𝑛(𝜙 − 1) + 𝐾 ⇒  𝑋𝑛+1 < 𝑋𝑛 

• For 𝑟 = 0, we have 𝜙 = 1. The rate birth is equivalent to the rate of death, so that there is no change for 

the amount of population of all units of time 𝑛 i.e. 𝑋𝑛 = 𝑋0. 

• For 0 < 𝑟 < 1, we have 0 < 𝜙 < 1. We consider that for all units of time 𝑛 ∈ ℕ, 

𝜙𝑛(𝑋0 − 𝐾) + 𝐾 < 𝜙
𝑛+1(𝑋0 −𝐾) + 𝐾 < 𝐾 ⇒   𝑋𝑛 < 𝑋𝑛+1 < 𝐾 

It means that the growth is exponentially increasing and asymptotically close to 𝐾. This growth is often 

called as logistic growth and the equilibrium 𝐾 is stable. 

• For 𝑟 = 1, we have 𝜙 = 0. The rate of birth and the rate of death differ by 1 and it is obvious that 𝑋𝑛 =
𝐾 for 𝑛 ∈ ℕ. In other words, the amount of population for all units of time 𝑛 ∈ ℕ is always in stable 

condition 𝐾. 

• For 𝑟 > 1, we have 𝜙 < 0. The term 𝜙𝑛 is depend on the parity of 𝑛, so that it can be divided by two 

cases : 

▪ If 𝑛 is even integer, then 𝜙𝑛 > 0. Therefore, 

𝑋𝑛 = 𝑋0𝜙
𝑛 + 𝐾(1 − 𝜙𝑛) = (𝑋0 − 𝐾)𝜙

𝑛 + 𝐾 < 𝐾. 

It means that the amount of population is always under 𝐾 while unit of time 𝑛 is even integer. 

▪ If 𝑛 is odd integer, then 𝜙𝑛 < 0. Therefore, 

𝑋𝑛 = 𝑋0𝜙
𝑛 + 𝐾(1 − 𝜙𝑛) = (𝑋0 − 𝐾)𝜙

𝑛 + 𝐾 > 𝐾. 

It means that the amount of population is always beyond 𝐾 while unit of time 𝑛 is odd integer. 

Those cases show that it is an oscillation growth around equilibrium 𝐾 for all units of time 𝑛. 

• For 𝑟 = 2, we have 𝜙 = −1 and then 𝑋𝑛 = 𝑋0(−1)
𝑛 +𝐾(1 − (−1)𝑛). It is obvious that 

𝑋𝑛 = 𝑋0 < 𝐾, when 𝑛 is even integer and 𝑋𝑛 = −𝑋0 + 2𝐾 > 𝐾, when 𝑛 is odd integer. Those values 

are always constant such that the oscillation forms a 2-cycle (when the same amount of population 

always repeated after two units of time). 

Equation (3) also shows that the amplitude of oscillation in the curve will increase for large 𝑟 due to 

lim
𝑟→∞

𝑋𝑛 = {
𝐾 + 𝑠, 𝑠 → +∞,𝑛 is odd
𝐾 + 𝑠, 𝑠 → −∞,𝑛 is even

 

In Figure 1 are presented the population of flies based on the Equation (2) for 𝑡𝑑 = 0 and Equation (3) for 

𝑛 unit time. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 1. In this simulation, it is used Matlab software and the input parameters are 𝑲 = 𝟏𝟎𝟎𝟎 and 𝑿𝟎 =
𝟓𝟎𝟎 for each figure (a) 𝒓 = 𝟎, (b) 𝒓 = 𝟎. 𝟓, (c) 𝒓 = 𝟏, and (d) 𝒓 = 𝟏. 𝟔. The function 𝒉(𝒏) and 

𝒎(𝒏) represent the graphic of Equation (2) for 𝒕𝒅 = 𝟎 and Equation (3), respectively. 

 

3.2 Case 𝒕𝒅 = 𝟏 

In this case, since 𝑃1,𝑟(𝑥) is a quadratic polynomial, then it is also easy to calculate that the zeros of 

𝑃1,𝑟(𝑥) are 𝑥1 =
1+√1−4𝑟

2
 and 𝑥2 =

1−√1−4𝑟

2
. Therefore, 

ℎ𝑛 = 𝐶1 (
1 + √1 − 4𝑟

2
)

𝑛

+ 𝐶2 (
1 − √1 − 4𝑟

2
)

𝑛

 

for some constants 𝐶1 and 𝐶2, such that 

𝑋𝑛 = 𝐾 + 𝜖 [𝐶1 (
1 + √1 − 4𝑟

2
)

𝑛

+ 𝐶2 (
1 − √1 − 4𝑟

2
)

𝑛

] 

where 0 < 𝜖 ≪ 1. Recall that 𝑋0 = 𝑋1 = 𝜇 as initial conditions based on the delayed time. So, using these 

initial conditions, we obtain 𝐶1 =
𝜇−𝐾

2𝜖
(1 +

1

√1−4𝑟
) and 𝐶2 =

𝜇−𝐾

2𝜖
(1 −

1

√1−4𝑟
), where 𝑟 ≠

1

4
. Therefore, the 

approximate solution of Equation (2) for 𝑡𝑑 = 1 is 

𝑋𝑛 = 𝐾 +
𝜇 − 𝐾

2𝑛+1Δ
1
2

[(1 + Δ
1
2)
𝑛+1

− (1 − Δ
1
2)
𝑛+1

] (4) 

where Δ = 1 − 4𝑟. It is obvious that 𝑋𝑛 is unbounded whenever 𝑟 goes to 
1

4
. For other values of 𝑟, there are 

some characteristics of the curve of Equation (4) by fixing 𝜇 and 𝐾 as follows: 

• For 𝑟 = 0, it is obvious that 𝑋𝑛 = 𝜇 for any positive integer 𝑛 ≥ 2. It means that there is no change for 

the amount of Lucilia cuprina’s population of all units of time 𝑛 ≥ 2. 

• For 0 < 𝑟 <
1

4
, then 0 < Δ < 1. In holds true that (1 + √Δ)

𝑛
> (1 − √Δ)

𝑛
 and 𝜇 − 𝐾 < 0, then 𝑋𝑛 <

𝐾 for any positive integer 𝑛 ≥ 2. On the other hand, lim
𝑛→∞

𝑋𝑛 = 𝐾 so that the amount of Lucilia cuprina’s 

population grows exponentially close to the equilibrium 𝐾 for large number unit of time 𝑛. In other 

words, this is called as logistic growth and the equilibrium 𝐾 is stable. 

• For 
1

4
< 𝑟 < 1 such that 0 < −Δ < 3, then 

𝑋𝑛 = 𝐾 +
𝜇 − 𝐾

2𝑛+1(−Δ)
1
2

[((−Δ)
1
2 − 𝑖) (1 + 𝑖(−Δ)

1
2)
𝑛

+ ((−Δ)
1
2 + 𝑖) (1 − 𝑖(−Δ)

1
2)
𝑛

] (5) 
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By changing Equation (5) into a polar coordinate, we have 𝑋𝑛 = 𝐾 +
2(𝜇−𝐾)𝑟

𝑛+1
2 cos𝛼

(−Δ)1/2
, where 𝛼 =

𝑛 tan−1((−Δ)1/2) − tan−1 (
1

(−Δ)1/2
). It is not hard to know that there is 𝛼 = 0 such that 𝑋𝑛 < 𝐾. Suppose 

that cos 𝛼 ≥ 0 for any 0 < −Δ < 3. Then 𝛼 ≥ 2𝑛𝜋. In fact, 0 < 𝑛 tan−1((−Δ)1/2) <
𝑛𝜋

3
 and −

𝜋

6
<

−cot−1((−Δ)1/2) < −
𝜋

2
 such that −

𝜋

6
< 𝛼 <

(2𝑛−3)𝜋

6
. However, the inequality 2𝑛𝜋 ≤ 𝛼 <

(2𝑛−3)𝜋

6
 is 

impossible. Therefore, there is at least one −Δ ∈ (0,3) such that cos 𝛼 < 0 and it implies that 𝑋𝑛 > 𝐾. Hence, 

the Lucilia cuprina’s population growth contains an oscillation around equilibrium 𝐾 and this equilibrium is 

stable due to 𝑋𝑛 → 𝐾 for large number unit of time 𝑛. 

In Figure 2, we present the population of flies based on Equation (2) for 𝑡𝑑 = 1 and Equation (4) 

for 𝑛 unit time.  

 
(a) 

 
(b) 

 
(c) 

Figure 2. In this simulation, it is used Matlab software and the input parameters are 𝑲 = 𝟏𝟎𝟎𝟎 

and 𝑿𝟎 = 𝑿𝟏 = 𝟓𝟎𝟎 for each figure (a) 𝒓 = 𝟎, (b) 𝒓 = 𝟎. 𝟐, and (c) 𝒓 = 𝟎. 𝟖. The 

function 𝒉(𝒏) and 𝒎(𝒏) represent the graphic of Equation (2) for 𝒕𝒅 = 𝟏 and 

Equation (4), respectively. 

3.3 Case 𝒕𝒅 = 𝟐 

By Cardano’s formula, the zeros of 𝑃2,𝑟(𝑥) are 

𝑥1 =
1

3
+
√
−
𝑟

2
+
1

27
+
√(𝑟 −

2
27
)
2

4
−

1

729

3

+
√
−
𝑟

2
+
1

27
−
√(𝑟 −

2
27
)
2

4
−

1

729

3
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𝑥2 =
1

3
+ (−

1

2
+
𝑖√3

2
)
√
−
𝑟

2
+
1

27
+
√(𝑟 −

2
27
)
2

4
−

1

729

3

 + (−
1

2
−
𝑖√3

2
)
√
−
𝑟

2
+
1

27
−
√(𝑟 −

2
27
)
2

4
−

1

729

3

 

and 

𝑥3 =
1

3
+ (−

1

2
−
𝑖√3

2
)
√
−
𝑟

2
+
1

27
+
√(𝑟 −

2
27
)
2

4
−

1

729

3

 + (−
1

2
+
𝑖√3

2
)
√
−
𝑟

2
+
1

27
−
√(𝑟 −

2
27
)
2

4
−

1

729

3

 

so the general solution is 

𝑋𝑛 = 𝐾 + 𝜖(ℓ1𝑥1
𝑛 + ℓ2𝑥2

𝑛 + ℓ3𝑥3
𝑛) 

Recall that 𝑋0 = 𝑋1 = 𝑋2 = 𝑍 as initial conditions based on the delay of time. Those initial conditions give 

us the following linear system in three variables, 

ℓ1 + ℓ2 + ℓ3 =
𝑍 − 𝐾

𝜖
 

ℓ1𝑥1 + ℓ2𝑥2 + ℓ3𝑥3 =
𝑍 − 𝐾

𝜖
 

and 

ℓ1𝑥1
2 + ℓ2𝑥2

2 + ℓ3𝑥3
2 =

𝑍 − 𝐾

𝜖
 

The system can be considered as the following 

[

1 1 1
𝑥1 𝑥2 𝑥3
𝑥1
2 𝑥2

2 𝑥3
2
] [

ℓ1
ℓ2
ℓ3

] =

[
 
 
 
 
 
𝑍 − 𝐾

𝜖
𝑍 − 𝐾

𝜖
𝑍 − 𝐾

𝜖 ]
 
 
 
 
 

 

We can obtain the solutions of the linear system by doing reduced row echelon of the following augmented 

3 × 3 transposed Vandermonde matrix of the linear system, 

[
 
 
 
 
 
1 1 1
𝑥1 𝑥2 𝑥3
𝑥1
2 𝑥2

2 𝑥3
2
 

|
|
|
 

𝑍 − 𝐾

𝜖
𝑍 − 𝐾

𝜖
𝑍 − 𝐾

𝜖 ]
 
 
 
 
 

 

Therefore, we obtain 

ℓ1 = (1 + (1 − 𝑥1)(𝑥2 − 𝑥1))
(𝑥2 − 1)

(𝑥2 − 𝑥1)

𝑍 − 𝐾

𝜖
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ℓ2 = (1 −
(1 − 𝑥2)

(𝑥3 − 𝑥2)
)
(1 − 𝑥1)

(𝑥2 − 𝑥1)

𝑍 − 𝐾

𝜖
 

and 

ℓ3 =
(1 − 𝑥1)(1 − 𝑥2)

(𝑥3 − 𝑥1)(𝑥3 − 𝑥2)

𝑍 − 𝐾

𝜖
 

We finally obtain the approximate solution of Equation (2) for 𝑡𝑑 = 2 is 

𝑋𝑛 = 𝐾 + (𝑍 − 𝐾)

{
 
 

 
 (1+ (1 − 𝑥1)(𝑥2 − 𝑥1))

(𝑥2 − 1)𝑥1
𝑛

(𝑥2 − 𝑥1)
+ (1−

(1− 𝑥2)

(𝑥3 − 𝑥2)
)
(1 − 𝑥1)𝑥2

𝑛

(𝑥2 − 𝑥1)

+
(1− 𝑥1)(1− 𝑥2)𝑥3

𝑛

(𝑥3 − 𝑥1)(𝑥3 − 𝑥2) }
 
 

 
 

 

 

3.4 Case 𝒕𝒅 = 𝟑 

In this case, we cannot give the general solutions for Equation (2) because our methods, which will 

be used to solve 𝑃3,𝑟(𝑥), only hold for certain values of 𝑟. First, let 𝑟 = 𝑎3(1 − 𝑎) for any 𝑎 ∈ ℝ. It is clear 

that the zeros of 𝑃3,𝑎3(1−𝑎)(𝑥) are 

𝑥1 = 𝑎 

𝑥2 = √
𝑏

2
+ √

𝑏2

4
+
(𝑎2 − 2𝑎 − 2)3

5832

3

+ 3√
𝑏

2
− √

𝑏2

4
+
(𝑎2 − 2𝑎 − 2)3

5832

3

−
(𝑎 − 1)

3
 

𝑥3 = (−
1

2
+
𝑖√3

2
) √

𝑏

2
+ √

𝑏2

4
+
(𝑎2 − 2𝑎 − 2)3

5832

3

+ (−
3

2
−
3𝑖√3

2
) √

𝑏

2
− √

𝑏2

4
+
(𝑎2 − 2𝑎 − 2)3

5832

3

−
(𝑎 − 1)

3
 

and 

𝑥4 = (−
1

2
−
𝑖√3

2
) √

𝑏

2
+ √

𝑏2

4
+
(𝑎2 − 2𝑎 − 2)3

5832

3

+ (−
3

2
+
3𝑖√3

2
) √

𝑏

2
− √

𝑏2

4
+
(𝑎2 − 2𝑎 − 2)3

5832

3

−
(𝑎 − 1)

3
 

where 𝑏 =
20𝑎3−31𝑎2−5𝑎−2

27
. Here we have the general solution 

𝑋𝑛 = 𝐾 + 𝜖(𝑠1𝑎
𝑛 + 𝑠2𝑥2

𝑛 + 𝑠3𝑥3
𝑛 + 𝑠4𝑥4

𝑛) 

Recall that 𝑋0 = 𝑋1 = 𝑋2 = 𝑋3 = 𝑍 as initial conditions based on the delayed time. Those conditions give 

us the following linear system in four variables, 

𝑠1 + 𝑠2 + 𝑠3 + 𝑠4 =
𝑍 − 𝐾

𝜖
 

𝑠1𝑎 + 𝑠2𝑥2 + 𝑠3𝑥3 + 𝑠4𝑥4 =
𝑍 − 𝐾

𝜖
 

𝑠1𝑎
2 + 𝑠2𝑥2

2 + 𝑠3𝑥3
2 + 𝑠4𝑥4

2 =
𝑍 − 𝐾

𝜖
 

and 

𝑠1𝑎
3 + 𝑠2𝑥2

3 + 𝑠3𝑥3
3 + 𝑠4𝑥4

3 =
𝑍 − 𝐾

𝜖
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By doing the reduced row echelon, we obtain the solutions of the linear system as follows, 

𝑠1 =
𝑍 − 𝐾

𝜖
− 𝑠2 − 𝑠3 − 𝑠4, 

𝑠2 = (1 −
(1 + 𝑥3 + 𝑥4 − 𝑥2)

(𝑥3 − 𝑥2)(𝑥4 − 𝑥2)
)
(1 − 𝑎)

(𝑥2 − 𝑎)

𝑍 − 𝐾

𝜖
 

𝑠3 =
(1 − 𝑎)(1 − 𝑥2)(𝑥4 − 1)

(𝑥3 − 𝑥2)(𝑥3 − 𝑎)(𝑥4 − 𝑥3)

𝑍 − 𝐾

𝜖
 

and  

𝑠4 =
(1 − 𝑎)(1 − 𝑥2)(1 − 𝑥3)

(𝑥4 − 𝑥2)(𝑥4 − 𝑎)(𝑥4 − 𝑥3)

𝑍 − 𝐾

𝜖
 

Therefore, the approximate solution of Equation (2) for 𝑡𝑑 = 3 is the following, 

𝑋𝑛 = 𝐾 + (𝑍 − 𝐾)

{
 
 

 
 𝑠1𝑎

𝑛 + (1 −
(1 + 𝑥3 + 𝑥4 − 𝑥2)

(𝑥3 − 𝑥2)(𝑥4 − 𝑥2)
)
(1 − 𝑎)

(𝑥2 − 𝑎)
𝑥2
𝑛 +

(1 − 𝑎)(1 − 𝑥2)(𝑥4 − 1)

(𝑥3 − 𝑥2)(𝑥3 − 𝑎)(𝑥4 − 𝑥3)
𝑥3
𝑛

+
(1 − 𝑎)(1 − 𝑥2)(1 − 𝑥3)

(𝑥4 − 𝑥2)(𝑥4 − 𝑎)(𝑥4 − 𝑥3)
𝑥4
𝑛

}
 
 

 
 

(6) 

 

Second, let 𝑟 is any rational number. We will use the Galois solution’s method for 𝑃3,𝑟(𝑥). Now, substitute 

𝑥 = 𝑦 +
1

4
, yielding 𝑃3,𝑟

′ (𝑦) = 𝑦4 −
6

16
𝑦2 −

3

32
𝑦 + (𝑟 −

3

256
). Let 𝑦1, 𝑦2, 𝑦3, and 𝑦4 are the zeros of 𝑃3,𝑟

′ (𝑦). 

Let 𝐿 ∈ ℚ[𝑦] be the polynomial 

𝐿 = (𝑦 − (𝑦1 + 𝑦2)(𝑦3 + 𝑦4))(𝑦 − (𝑦1 + 𝑦3)(𝑦2 + 𝑦4))(𝑦 − (𝑦1 + 𝑦4)(𝑦2 + 𝑦3)) 

where 

𝐿 = 𝑦3 +
3

4
𝑦2 + (

48

256
− 4𝑟) 𝑦 +

9

1024
 

The last 𝐿 can be solved by Cardano’s formula. Therefore, 

(𝑦1 + 𝑦2)(𝑦3 + 𝑦4) =△++△−−
1

4
 

(𝑦1 + 𝑦3)(𝑦2 + 𝑦4) = (−
1

2
+
𝑖√3

2
)△++ (−

1

2
−
𝑖√3

2
) △−−

1

4
 

and 

(𝑦1 + 𝑦4)(𝑦2 + 𝑦3) = (−
1

2
−
𝑖√3

2
)△++ (−

1

2
+
𝑖√3

2
) △−−

1

4
 

where △+≔
√1
2
(

7

1024
− 𝑟) + √

(
7

1024
−𝑟)

2

4
−
64𝑟3

27

3

 and △−≔
√1
2
(

7

1024
− 𝑟) − √

(
7

1024
−𝑟)

2

4
−
64𝑟3

27

3

. By using the 

fact that the sum of all zeros of 𝑃3,𝑟
′ (𝑦) is zero, we obtain 

𝑦1 = −
𝑖

2

(

 
 
 √△++△−−

1

4
+ √(−

1

2
+
𝑖√3

2
) △++ (−

1

2
−
𝑖√3

2
) △−−

1

4

+√(−
1

2
−
𝑖√3

2
) △++ (−

1

2
+
𝑖√3

2
) △−−

1

4 )
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𝑦2 =
𝑖

2

(

 
 
 √(−

1

2
−
𝑖√3

2
)△++ (−

1

2
+
𝑖√3

2
)△−−

1

4
− √△++△−−

1

4

−√(−
1

2
+
𝑖√3

2
)△++ (−

1

2
−
𝑖√3

2
) △−−

1

4 )

 
 
 

 

𝑦3 =
𝑖

2

(

 
 
 √△++△−−

1

4
− √(−

1

2
+
𝑖√3

2
)△++ (−

1

2
−
𝑖√3

2
)△−−

1

4

+√(−
1

2
−
𝑖√3

2
)△++ (−

1

2
+
𝑖√3

2
) △−−

1

4 )

 
 
 

 

and 

𝑦4 =
𝑖

2

(

 
 
 √△++△−−

1

4
+ √(−

1

2
+
𝑖√3

2
)△++ (−

1

2
−
𝑖√3

2
)△−−

1

4

−√(−
1

2
−
𝑖√3

2
)△++ (−

1

2
+
𝑖√3

2
) △−−

1

4 )

 
 
 

 

So, the zeros of 𝑃3,𝑟(𝑥) are 

𝑥1 = 𝑦1 +
1

4
, 𝑥2 = 𝑦2 +

1

4
, 𝑥3 = 𝑦3 +

1

4
, 𝑥4 = 𝑦4 +

1

4
 

We obtain the general solution 

𝑋𝑛 = 𝐾 + 𝜖(𝑣1𝑥1
𝑛 + 𝑣2𝑥2

𝑛 + 𝑣3𝑥3
𝑛 + 𝑣4𝑥4

𝑛) 

Recall that 𝑋0 = 𝑋1 = 𝑋2 = 𝑋3 = 𝑍 as initial conditions based on the delayed time. Those conditions give 

us the following linear system in four variables, 

𝑣1 + 𝑣2 + 𝑣3 + 𝑣4 =
𝑍 − 𝐾

𝜖
 

𝑣1𝑥1 + 𝑣2𝑥2 + 𝑣3𝑥3 + 𝑣4𝑥4 =
𝑍 − 𝐾

𝜖
 

𝑣1𝑥1
2 + 𝑣2𝑥2

2 + 𝑣3𝑥3
2 + 𝑣4𝑥4

2 =
𝑍 − 𝐾

𝜖
 

and 

𝑣1𝑥1
3 + 𝑣2𝑥2

3 + 𝑣3𝑥3
3 + 𝑣4𝑥4

3 =
𝑍 − 𝐾

𝜖
 

By doing the reduced row echelon, we obtain the solutions of the linear system as follows, 

𝑣1 =
𝑍 − 𝐾

𝜖
− 𝑣2 − 𝑣3 − 𝑣4 

𝑣2 = (1 −
(1 + 𝑥3 + 𝑥4 − 𝑥2)

(𝑥3 − 𝑥2)(𝑥4 − 𝑥2)
)
(1 − 𝑥1)

(𝑥2 − 𝑥1)

𝑍 − 𝐾

𝜖
 

𝑣3 =
(1 − 𝑥1)(1 − 𝑥2)(𝑥4 − 1)

(𝑥3 − 𝑥2)(𝑥3 − 𝑥1)(𝑥4 − 𝑥3)

𝑍 − 𝐾

𝜖
 

𝑣4 =
(1 − 𝑥1)(1 − 𝑥2)(1 − 𝑥3)

(𝑥4 − 𝑥2)(𝑥4 − 𝑥1)(𝑥4 − 𝑥3)

𝑍 − 𝐾

𝜖
 

Therefore, the approximate solution of Equation (2) for 𝑡𝑑 = 3, where 𝑟 ∈ ℚ, is the following, 
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𝑋𝑛 = 𝐾 + (𝑍 − 𝐾)

{
 
 

 
 𝑣1𝑥1

𝑛 + (1−
(1+ 𝑥3 + 𝑥4 − 𝑥2)

(𝑥3 − 𝑥2)(𝑥4 − 𝑥2)
)
(1− 𝑥1)

(𝑥2 − 𝑥1)
𝑥2
𝑛 +

(1 − 𝑥1)(1− 𝑥2)(𝑥4 − 1)

(𝑥3 − 𝑥2)(𝑥3 − 𝑥1)(𝑥4 − 𝑥3)
𝑥3
𝑛

+
(1− 𝑥1)(1− 𝑥2)(1− 𝑥3)

(𝑥4 − 𝑥2)(𝑥4 − 𝑥1)(𝑥4 − 𝑥3)
𝑥4
𝑛

}
 
 

 
 

(7) 

 

The solution of the model for 𝑡𝑑 = 0,1,2 has covered all values of parameter 𝑟 whereas for 𝑡𝑑 = 3, the 

solutions only cover two possibilities of 𝑟, which are 𝑟 = 𝑎3(1 − 𝑎) for any 𝑎 ∈ ℝ and 𝑟 ∈ ℚ. According to 

Abel-Ruffini’s Theorem, we cannot write the solution of the model for 𝑡𝑑 > 3, so the numerical method may 

be used to solve it. 

 

4. CONCLUSIONS 

The results obtained in the discussion are the approximate solutions of the difference equation at certain 

values of delay time, i.e., 𝑡𝑑 = 0,1,2,3, and the analysis of Equation (3) and Equation (4) which show that 

the growth characteristics of the solutions closely approximate those of the related equations. This research 

has not provided a handling solution for the problem of Australian Sheep Blowflies, Lucilia cuprina, but the 

approximate solutions that have been obtained and some analysis can be a reference to other researchers to 

study the growth characteristics of the flies in certain period of time. Moreover, the readers that are interested 

in this topic can directly apply our results to solve the Lucillia cuprina’s problem deeply or determine the rest 

case that is not covered in this paper (i.e. the solution of the model when 𝑡𝑑 = 3 and 𝑟 ≠ 𝑎3(1 − 𝑎) for 𝑎 ∈
ℝ and 𝑟 ∉ ℚ). 
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