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 ABSTRACT   

Article History: 
This study aims to forecast the exchange rate between the Chinese Yuan (CNY) and the 
Indonesian Rupiah (IDR) using Support Vector Regression (SVR), a machine-learning 

technique that can handle nonlinear and complex data. The authors utilize the monthly selling 

exchange rate of CNY against IDR from January 2012 to October 2023 sourced from the 

“investing” platform. The optimal SVR model is obtained by splitting the data into 113 
training samples and 28 testing samples and using the Radial Basis Function (RBF) kernel. 

The model achieves high accuracy, with a Mean Absolute Percentage Error (MAPE) of 

1.738%, a Root Mean Squared Error (RMSE) of 50.661 for the training data and a MAPE of 

2.516%, and an RMSE of 64.735 for the testing data. The results of this paper can provide 
valuable insights for policymakers, investors, and traders who are interested in the CNY/IDR 

exchange rate dynamics and the economic implications of the Belt and Road Initiative (BRI). 

The study aligns with the Sustainable Development Goals (SDGs), specifically SDG 8, aiming 

to promote sustained, inclusive, and sustainable economic growth. 
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1. INTRODUCTION 

The exchange rate between currencies plays a crucial role in international trade and investment. It 

serves as a measure of commodity value in both domestic and foreign currencies, reflecting the economic 

conditions of a country [1]. A higher exchange rate of one country's currency against another often indicates 

stronger economic conditions in that country [2]. This study focuses on the exchange rate between the Chinese 

Yuan (CNY) and the Indonesian Rupiah (IDR), exploring its significance in the context of China's economic 

growth and its impact on Indonesia's trade and investment landscape. China's prominent role in global 

economic growth, as evidenced by a 46.70% increase in the Yuan exchange rate against the Rupiah from 

2012 to 2023, underscores the need for a comprehensive understanding of the Rupiah-Yuan exchange rate 

dynamics. This understanding is crucial not only for policymakers and central banks in formulating monetary 

and fiscal policies but also for investors and market participants in making informed investment and business 

decisions. The Chinese government has also allocated $40 billion from its national budget to the Silk Road 

Economic Belt fund [3]. 

The study delves into the Belt and Road Initiative (BRI) launched by China in 2012, aiming to enhance 

international connectivity and cooperation. This policy is not just about inter-country collaboration, but also 

China's aim to strengthen its cultural, economic, and political influence in countries involved in the BRI 

projects [4]. This initiative, covering a significant portion of global trade, GDP, and population, involves 

infrastructure projects across various regions, influencing global economic growth and China's pivotal role. 

The BRI has led to increased use of the Yuan in international projects, particularly in Eurasian countries, 

further emphasizing the importance of comprehending the Rupiah-Yuan exchange rate dynamics. Given the 

rapid economic growth, the BRI's impact on the internationalization of the Yuan, especially in developing 

countries like those in East and Southeast Asia, is substantial. The research highlights the pivotal role of the 

BRI in the internationalization of the Yuan and its potential effects on the Yuan-Rupiah exchange rate. As of 

April 2023, 149 countries, including China itself, have signed Memorandums of Understanding (MoU) with 

China [5], emphasizing the BRI's crucial role in the Yuan internationalization and its potential effects on the 

Yuan-Rupiah exchange rate. 

This research aligns with the Sustainable Development Goals (SDGs), specifically SDG 8, aiming to 

promote sustained, inclusive, and sustainable economic growth. It emphasizes the significance of 

understanding how factors like Foreign Direct Investment (FDI) and Exchange Rates (ER) can influence 

sustainable economic growth and contribute to achieving SDG 8 targets in developing countries [6]. 

Considering previous successful applications of Support Vector Regression (SVR) in predicting currency 

exchange rates where a study conducted by Amanda in 2014 to predict the United States Dollar (USD) price 

in Indonesia Rupiah (IDR) gave a result of 99.99% coefficient determinant with a Mean Absolute Percentage 

Error (MAPE) of 0.6131% from linear kernel and 0.6135% from polynomial kernel [7]. Based on the previous 

study, this study employs SVR to model the Yuan-Rupiah exchange rate dynamics. Originating from Support 

Vector Machine (SVM), introduced by Vapnik in 1999, SVR is designed to solve regression problems [8]. 

The potential contributions of this research extend to economic and financial realms, supporting SDG 

attainment, offering insights to potential investors, and fostering improved collaboration between China and 

Indonesia for mutual development. This research, therefore, holds not only academic value but also real-

world implications, promoting sustainable economic growth and creating significant investment opportunities 

for both nations. 

This study innovatively applies SVR with Grid Search Optimization to model the CNY/IDR exchange 

rate dynamics. This approach aims to improve prediction accuracy compared to traditional methods. By 

leveraging this novel methodology, the research seeks to provide valuable insights for stakeholders and 

contribute to advancements in exchange rate forecasting within international finance. 
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2. RESEARCH METHODS 

2.1 Data Source 

The data utilized in this study comprises monthly interval data tracking the exchange rate of the 
Indonesian Rupiah (IDR) against the Chinese Yuan (CNY). Historical data spanning from January 2012 to 
October 2023, totaling 141 months, were sourced from the Investing platform [9]. 

To ensure robustness in model training and evaluation, the dataset was partitioned into a training set 
comprising 80% of the total data and a testing set comprising the remaining 20%. Consequently, the training 
dataset spans from January 2012 to May 2021, encompassing 113 months, while the testing dataset covers 
June 2021 to October 2023, spanning 28 months. This division was determined to yield the most optimal 
outcomes in modeling and predicting exchange rate dynamics using the Support Vector Regression (SVR) 
method. 

2.2 Support Vector Regression 

Support Vector Regression (SVR) is a supervised learning algorithm derived from Support Vector 

Machine (SVM), introduced by Vapnik in 1999, specifically designed for regression tasks [8]. SVM is a 

machine learning application for classification cases, producing integer or real values, while SVR is tailored 

for regression scenarios, generating real-numbered outputs [10]. 

The fundamental principle of SVR involves minimizing risk by estimating a function, thereby 

minimizing the upper limit of generalization errors to prevent overfitting. The SVR algorithm aims to find 

the best hyperplane, optimizing a linear function represented in Equation (1) as follows. 

𝑓(𝑥) = 〈𝑤 ∙ 𝑥〉 + 𝑏 (1) 

Where 𝑓(𝑥) represent the output of the predicted value, 〈𝑤 ∙ 𝑥〉 denotes the inner product (or dot 

product) between the weight vector 𝑤 and the input vector 𝑥, where 𝑤 contains the coefficients associated 

with the input features and 𝑥 represents the feature vector of the data point. The inner product operation 

calculates the sum of the products of the corresponding components of the two vectors. Additionally, 𝑤 

represents the weight vector in SVR, containing the coefficients associated with the input features. Similarly, 

𝑥 denotes the input vector, which consists of features of the data point for which the output is being predicted. 

Lastly, 𝑏 represents the bias or intercept in the linear equation, providing an offset to the regression line. 

The cost parameter (𝐶) in SVR controls the trade-off between the model's complexity and the amount 

of error that is acceptable in the training data. A smaller value of 𝐶 leads to a softer margin, allowing more 

training points to be misclassified or falling outside the margin, thus creating a simpler model with higher 

bias and lower variance. On the other hand, a larger value of 𝐶 results in a harder margin, forcing the model 

to classify all training points correctly, which can lead to a more complex model with lower bias and higher 

variance [11]. 

The epsilon parameter (𝜀) in SVR determines the margin of tolerance where no penalty is given for 

errors. It specifies the size of the tube within which no penalty is associated with errors. In other words, it 

controls the width of the margin of tolerance around the predicted value. A smaller value of 𝜖 results in a 

smaller margin and a more sensitive model, while a larger value of 𝜖 leads to a wider margin and a less 

sensitive model [12]. 

These parameters play crucial roles in determining the trade-off between the model's complexity and 

its error tolerance, thus contributing to the prevention of overfitting and the minimization of generalization 

errors in SVR. The margin, i.e., the distance from the hyperplane to the nearest data point, is crucial in SVR, 

with support vectors being the data points closest to the margin. In SVR, the objective is to minimize the 

norm of the weight vector ||𝑤|| while addressing the optimization problem 
1

2
||𝑤||

2
, constrained by 𝑦𝑖 −

〈𝑤 ∙ 𝑥〉 − 𝑏 ≤ 𝜀 and 〈𝑤 ∙ 𝑥〉 + 𝑏 − 𝑦𝑖 ≤ 𝜀. Introducing a soft margin or total slack variable (𝜉𝑖 + 𝜉𝑖
∗) , where 

𝜉𝑖 represents the slack variable associated with the 𝑖-th data point, while 𝜉𝑖
∗ represents the slack variable 

associated with the upper bound side of the margin allows for conditions where error values may exceed the 

𝜀 threshold. The 𝜀-insensitive loss function is defined in Equation (2) as follows. 
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|𝜉𝑖|𝜀 = {
0, |𝜉𝑖| ≤ 𝜀

|𝜉𝑖| − 𝜀, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2) 

For non-linear problems, SVR transforms values using the feature space with a kernel function 

𝐾(𝑥𝑖 , 𝑥𝑗). The final equation for non-linear problems is presented in Equation (3) as follows. 

𝑓(𝑥) = ∑(𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖 , 𝑥𝑗 ) + 𝑏

𝑙

𝑖=1

(3) 

The function in Equation (3) encompasses several critical components fundamental to SVR where 𝑙 
represents the number of support vectors in the SVR model, indicating the size of the training dataset subset 

that significantly influences the decision boundary. 𝛼𝑖 denotes the Lagrange multiplier associated with the 𝑖-

th support vector, and 𝛼𝑖
∗ represents the dual variable linked to the 𝑖-th support vector. Additionally, 𝐾(𝑥𝑖 , 𝑥𝑗) 

denotes the kernel function applied to the input vectors 𝑥𝑖 and 𝑥𝑗 , facilitating the transformation of input data 

into a higher-dimensional space, which aids in capturing complex relationships between data points. Lastly, 

𝑏 signifies the bias term in the regression equation, serving as an offset to the regression line. 

2.3 Kernel Function 

To address non-linear problems in high dimensions, the inner product (𝑥𝑖 and 𝑥𝑗) is replaced with a 

kernel function [13]. The performance of the SVR method is determined by the type of kernel function and 

the parameters used [14]. Table 1 below shows kernel functions that can be used in the SVR method. 

Table 1. Kernel Function in Support Vector Regression 

Kernel Type Formula 

Linear 𝐾(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖
𝑇𝑥) 

Polynomial 𝐾(𝑥𝑖, 𝑥𝑗) = (𝛾(𝑥𝑖
𝑇𝑥))

𝑝

 

Radial Basis 

Function 
𝐾(𝑥𝑖, 𝑥𝑗) = exp (−𝛾(𝑥𝑖 − 𝑥𝑗)

2
) 

 

Where 𝑝: degree of polynomial and 𝛾: gamma parameter. Each kernel has its own function, and the 

choice of kernel should be appropriate for the data conditions. The linear kernel facilitates modeling linear 

relationships between input and target variables, suitable for data with linear or nearly linear structures. The 

polynomial kernel allows the learning of non-linear models through polynomial representations of original 

variables, while caution is needed to avoid overfitting at higher orders. The RBF kernel, also known as the 

Gaussian kernel, measures the similarity between inputs based on their distance in a high-dimensional space. 

The parameter γ in the RBF kernel controls the width of the bell curve, influencing the extent of a single data 

point's impact. Although the RBF kernel projects into an infinite-dimensional space, SVR can express only a 

subset of these functions. 

2.4 Grid Search Optimization 

Grid Search Optimization (GSO) systematically explores a predefined grid of hyperparameters to 

optimize machine learning models. In the context of SVR, this involves defining ranges for parameters like 

kernel type, regularization parameter, and kernel coefficient, then evaluating multiple model combinations to 

find the optimal configuration [15]. 

Grid Search employs cross-validation on training data to measure model performance. By dividing the 

data into parts and calculating error rates, it assesses the effectiveness of different parameter pairs [16]. This 

iterative process selects models with the lowest error rates, ensuring robust performance. The algorithm of 

Grid Search Optimization to obtain the best solution is as follows [17]. 

1. Define ranges for SVR hyperparameters such as kernel type, regularization parameter, and kernel 

coefficient. 

2. Initialize candidate SVR models with different parameter combinations. 
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3. Evaluate model performance using a chosen metric. 

4. Select models with the best performance. 

5. Enhance exploration by adjusting hyperparameters iteratively. 

6. Accelerate convergence using this method. 

7. Promote diversity in the model population for robustness. 

8. Repeat steps 3-7 until the stopping criterion is met. 

9. Choose the best-performing model as the optimal solution. 

Moreover, Grid Search Optimization often complements other optimization techniques like line search 

and surrogate model-based algorithms, enhancing efficiency, especially when the hyperparameter space is 

manageable [18]. 

2.5 Terasvirta for Non-linearity Test 

The non-linearity test is conducted to detect nonlinear relationships in data, employing both parametric 

and nonparametric tests. Parametric tests include the Terasvirta test, RESET test, Tsay test, Lagrange 

Multiplier test, and Likelihood Ratio test. Nonparametric tests involve the Ljung-Box chi-square residual test 

and Bispectral test [19]. In this study, the non-linearity test used is the Terasvirta test. The Terasvirta test is 

a non-linearity detection test developed from a neural network model and falls under the category of Lagrange 

Multiplier (LM) tests. This test is an LM-type test developed with a Taylor expansion. In the Terasvirta test, 

𝑚 additional predictors, represented by quadratic and cubic terms, are used, stemming from the Taylor 

expansion approach. Linearity test with Terasvirta can be done using one of the statistical tests, namely the 

𝜒2 test. The procedure to obtain the 𝜒2 test is as follows: 

1. Regressing 𝑦𝑡 on 1, 𝑦𝑡−1 , … , 𝑦𝑡−𝑝 and calculating the residual values �̂�𝑡 = 𝑦𝑡 − �̂�𝑡 

2. Regressing �̂�𝑡 on 1, 𝑦𝑡−1 , … , 𝑦𝑡−𝑝 and 𝑚 additional predictors, then calculating the coefficient of 

determination from this regression, namely 𝑅2. In this test, 𝑚 additional predictors are quadratic and 

cubic terms resulting from the Taylor expansion approach. 

3. Calculating 𝜒2 =  𝑞𝑅2, with 𝑞 being the number of observations used. 

The formulated hypothesis for this test is as follows: 

𝐻0: The model of the data follows a linear pattern. 

𝐻1: The model of the data does not follow a linear pattern. 

Hence, the criteria for rejecting 𝐻0 are if the 𝜒2 value is greater than or equal to 𝜒𝛼,𝑞
2  or if the 𝑝-value 

obtained from the probability value of 𝜒2 is less than the significance level 𝛼. 

2.6 Model Evaluation 

In the context of evaluating the Support Vector Regression (SVR) model, two key metrics are 

employed: Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE). RMSE, as 

defined by [20], serves as a measure of the difference between predicted values from a statistical model and 

the actual values. Mathematically, RMSE represents the standard deviation of residuals, which are the 

distances between the regression line and data points. The calculation of RMSE, expressed in Equation (4) 

is as follows. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑡 − �̂�𝑡)2

𝑛

𝑡=1

(4) 

Equation (4) involves the actual data at the time 𝑡 (𝑦𝑡), the predicted data at the time 𝑡 (�̂�𝑡), and the 

total number of data points (𝑛). A lower RMSE value indicates better predictive accuracy, with values 

approaching 0 being rare in practical applications. 

Complementing RMSE, Mean Absolute Percentage Error (MAPE), outlined by [21], measures the 

accuracy of a forecasting method in statistics. This metric is expressed in Equation (5) as follows. 
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𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦𝑡 − �̂�𝑡|

𝑦𝑡

𝑛

𝑡=1

(5) 

where 𝑦𝑡 represents actual data at the time 𝑡, �̂�𝑡 denotes predicted data at the time 𝑡, and 𝑛 is the total 

number of data points. MAPE gauges accuracy in percentage form, offering an intuitive interpretation of 

relative errors. It is frequently utilized in various loss functions in model analysis. 

In model evaluation, these metrics provide insights into the accuracy and reliability of SVR predictions, 

guiding the selection of optimal parameters and kernel functions through techniques like Grid Search 

Optimization. 

 

3. RESULTS AND DISCUSSION 

The dataset, spanning from January 2012 to October 2023 with 141 months, provides a comprehensive 

overview of the Chinese Yuan (CNY) to Indonesian Rupiah (IDR) exchange rates. Descriptive statistics 

indicate an average exchange rate of Rp2,008.3, with a minimum of Rp1,423.1 and a maximum of Rp2,303.2. 

The time series plot reveals an increasing trend until September 2015, followed by fluctuating data until 

September 2023. The time series plot in Figure 1 visually represents the exchange rate trend over the period, 

illustrating an increasing trend from 2012 to September 2015. Subsequently, the data exhibits fluctuations in 

each period until September 2023. The dataset is divided into training (80%) and testing (20%) sets, covering 

the periods from 2012 to May 2021 and June 2021 to October 2023, respectively. This division sets the stage 

for further analysis and modeling of the exchange rate dynamics. 

 

 
Figure 1. Time Series Plot for CNY to IDR Exchange Rate 

 

A non-linearity test was conducted to ascertain whether the data follows any specific pattern. The 

chosen method for testing non-linearity in this research is the Terasvirta test based on a Neural Network 

model. The hypothesis for the Terasvirta non-linearity test is as follows. 

𝐻0: The model of the CNY/IDR rate follows a linear pattern. 

𝐻1: The model of the CNY/IDR rate does not follow a linear pattern. 

The results of the Terasvirta test are presented in Table 2. 

Table 2. Terasvirta Test Results 

𝝌𝟐 Degrees of Freedom P-Value Conclusion 

8.262 2 0.01607 Non-linear Model 

From Table 2, the obtained 𝑝-value for the Terasvirta test is 0.01607. Using a significance level 𝛼 of 

5%, it is determined that the null hypothesis (𝐻0) is rejected. Therefore, it can be concluded that the CNY/IDR 

data for the period from January 2012 to August 2023, monthly, does not exhibit any discernible pattern and 

is non-linear. Consequently, Polynomial and Radial Basis Function (RBF) kernels are chosen for the SVR 

modeling. 

The selection of autoregressive lag is aimed at determining the lags that significantly influence the 

actual data. By identifying significant lags, the values from those lags can be utilized to model the data with 
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high accuracy. Lag selection in this study involves plotting the Partial Autocorrelation Function (PACF) as 

shown in Figure 2. 

 
Figure 2. Partial Autocorrelation Function for Yuan Exchange Rate Against Indonesian Rupiah 

 

Based on Figure 2, it is evident that the lag considered significant is lag 1. Therefore, the data exhibits 

dependence on the data from the previous period. This implies that the data can be effectively modeled with 

this significant lag. The Support Vector Regression (SVR) modeling involves several stages, starting with 

hyperparameter tuning using Grid Search Optimization to estimate the best parameters based on data. The 

parameter grid utilized for obtaining the best parameters is presented in Table 3. 

Table 3. Parameter Grid 

Parameter Range 

𝐶 20, 21, 22, … , 29 

𝛾 0.1, 0.2, 0.3, … , 1.0 

𝜀 0.1, 0.2, 0.3, … ,1.0 

𝑝 2, 3, 4, 5 

 

The selection of the best parameters relies on the Mean Squared Error (MSE) as the evaluation metric, 

and negative MSE is used for comparison. The negative MSE concept is applied in machine learning model 

evaluation, where higher return values are considered better than lower ones. The hyperparameter tuning with 

the specified grid aims to obtain the best parameter combination for the SVR model. Subsequently, 

hyperparameter tuning for the polynomial kernel is illustrated in Figure 3, while the formal results are 

presented in Table 4. 

 
Figure 3. Grid Search Optimization Results for Polynomial Kernel 

 

Table 4. Grid Search Optimization Results for Polynomial Kernel 

𝑪 𝜺 𝜸 𝒑 Score 

4 0.1 0.6 2 -0.023053137 

16 0.1 0.3 2 -0.023053137 

64 0.1 0.5 2 -0.023053137 

256 0.1 0.8 2 -0.023053137 

4 0.1 0.4 2 -0.023053137 

8 0.1 0.2 2 -0.023053155 

32 0.1 0.1 2 -0.023053155 

16 0.1 1.0 2 -0.023154618 
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𝑪 𝜺 𝜸 𝒑 Score 

64 0.1 0.5 2 -0.023157322 

256 0.1 0.8 2 -0.023157322 

 

The process is repeated for the radial basis function (RBF) kernel, as shown in Figure 4, and formalized 

in Table 5. 

 
Figure 4. Grid Search Optimization Results for Radial Basis Function Kernel 

 

Based on Figure 4, which uses a radial basis function kernel, the optimal combination of parameters 

can be identified in the brightest area. This area corresponds to a higher negative mean squared error value. 

The optimal parameters seem to vary diagonally from the bottom left to the top right. For improved results, 

the top 10 combinations are presented in Table 5. 

Table 5. Grid Search Optimization Results for Radial Basis Function Kernel 

𝑪 𝜺 𝜸 Score 

32 0.1 0.4 -0.003574233 

32 0.1 0.5 -0.003627554 

32 0.1 0.6 -0.003636616 

32 0.1 0.3 -0.003651547 

16 0.1 0.6 -0.0036528 

64 0.1 0.2 -0.003663258 

256 0.1 0.1 -0.003707638 

16 0.1 0.7 -0.003732414 

32 0.1 0.7 -0.003795851 

16 0.1 0.4 -0.003922918 

 

According to Table 5, the optimal configuration for Support Vector Regression (SVR) utilizing the 

radial basis function kernel is achieved with parameters set at 𝐶 = 32, 𝜀 = 0.1, and 𝛾 = 0.4. This specific 

combination yields the most favorable performance, evidenced by the highest negative mean squared error 

value of negative 0.00357. 

After obtaining the best parameters through grid search optimization, a comparison of the two best 

SVR models is conducted on the training data, evaluating them with MAPE and RMSE. The results are 

summarized in Table 6. 

 
Table 6. Comparison of Best SVR Models 

Kernel 𝑪 𝜺 𝜸 𝒑 𝐌𝐀𝐏𝐄 𝐑𝐌𝐒𝐄 

Polynomial 4 0.1 0.6 2 2.985% 76.210 

Radial Basis 

Function 
32 0.1 0.4 - 1.738% 50.661 

 

Based on the comparison in Table 6, the Radial Basis Function (RBF) kernel with parameters 𝐶 = 32, 

𝜀 = 0.1, and 𝛾 = 0.4 is identified as the best SVR model, achieving a MAPE of 1.738% and an RMSE of 

50.661. Figure 5 illustrates the prediction results of the CNY/IDR exchange rate based on the best SVR 

model using the radial basis function kernel. 
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Figure 5. Plot of Actual Data with Prediction Results on Training Data 

 

After obtaining the best SVR model (RBF kernel with 𝐶 = 32, 𝜀 = 0.1, and 𝛾 = 0.4), the model is 

tested on the testing data, and predictions are made based on the results of the testing. The performance of 

the selected SVR model on the testing data is presented in Table 7. 

Table 7. Testing the Best SVR Model on Testing Data 

Kernel 𝑪 𝜺 𝜸 𝐌𝐀𝐏𝐄 𝐑𝐌𝐒𝐄 

Radial Basis 

Function 
32 0.1 0.4 2.516% 64.735 

 

The comparison between the predictions on the testing data and the actual data in Table 8 was done to 

test the validity and robustness of the clustering method. The results showed that the predicted clusters 

matched the actual clusters in most cases, and that the method was able to handle noise and outliers in the 

data. 

Table 8. Prediction Results with the Best SVR Model 

Time Actual Data Predicted Data Time Actual Data Predicted Data 

Jul 2021 Rp2,240.59 Rp2,158.66 Sep 2022 Rp2,198.63 Rp2,155.26 

Aug 2021 Rp2,244.57 Rp2,163.10 Oct 2022 Rp2,153.28 Rp2,143.52 

Sep 2021 Rp2,237.70 Rp2,164.80 Nov 2022 Rp2,138.79 Rp2,118.93 

Oct 2021 Rp2,207.86 Rp2,161.85 Dec 2022 Rp2,135.04 Rp2,110.34 

Nov 2021 Rp2,219.26 Rp2,148.10 Jan 2023 Rp2,216.43 Rp2,108.06 

Dec 2021 Rp2,211.04 Rp2,153.54 Feb 2023 Rp2,255.80 Rp2,152.21 

Jan 2022 Rp2,249.95 Rp2,149.64 Mar 2023 Rp2,218.26 Rp2,169.43 

Feb 2022 Rp2,240.53 Rp2,167.04 Apr 2023 Rp2,198.49 Rp2,153.07 

Mar 2022 Rp2,260.47 Rp2,163.08 May 2023 Rp2,181.82 Rp2,143.45 

Apr 2022 Rp2,276.51 Rp2,171.28 Jun 2023 Rp2,121.30 Rp2,134.82 

May 2022 Rp2,266.00 Rp2,177.37 Jul 2023 Rp2,106.88 Rp2,099.51 

Jun 2022 Rp2,193.22 Rp2,173.43 Aug 2023 Rp2,066.65 Rp2,090.21 

Jul 2022 Rp2,185.09 Rp2,140.78 Sep 2023 Rp2,110.46 Rp2,062.55 

Aug 2022 Rp2,222.97 Rp2,136.55 Oct 2023 Rp2,097.25 Rp2,092.55 

 

The visual representation of the actual data compared to the predicted data on the testing data is shown 

in Figure 6. 
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Figure 6. Plot of Actual Data with Prediction Results on Testing Data 

 

In conclusion, the SVR model with the radial basis function kernel (𝐶 = 32, 𝜀 = 0.1, and 𝛾 = 0.4) 

exhibits excellent accuracy in modeling the CNY/IDR exchange rate, with a MAPE of 2.516% and an RMSE 

of 64.735. This indicates an average error of around 2.516% in predicting the CNY/IDR exchange rate, 

while the RMSE reflects an average deviation of 64.735 units from the actual values. 

 

4. CONCLUSIONS 

During the period from January 2012 to October 2023, the average monthly exchange rate of the 

Chinese Yuan to the Indonesian Rupiah was Rp2,008.3, with the lowest and highest monthly rates recorded 

at Rp1,423.1 and Rp2,303.2, respectively. Employing the Support Vector Regression (SVR) method with 

113 training data points resulted in the best SVR model utilizing the Radial Basis Function (RBF) kernel, 

achieving a Mean Absolute Percentage Error (MAPE) of 1.738% and a Root Mean Squared Error (RMSE) 

of 50.661. Subsequent testing on 28 data points using the RBF kernel with parameters 𝐶 = 32, 𝜀 = 0.1, and 

𝛾 = 0.4 demonstrated excellent accuracy, yielding a MAPE of 2.516% and an RMSE of 64.735. On average, 

the model exhibited an error of approximately 2.516% in predicting the CNY to IDR exchange rate, with 

predictions deviating by around 64.735 units from actual values. The results of this research demonstrate that 

the SVR model accurately follows the actual exchange rate data, indicating its efficacy in predicting future 

exchange rate movements between CNY to IDR. 

In conclusion, this study demonstrates the effectiveness of an SVR model with a MAPE of 2.516% in 

predicting the CNY to IDR exchange rate. This level of accuracy provides valuable insights for policymakers, 

investors, and market participants, enabling them to make informed decisions regarding trade and investment 

activities, ultimately contributing to economic stability and growth.  Future research could explore 

incorporating additional factors or utilizing different machine learning techniques to potentially improve 

prediction accuracy. 
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