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 ABSTRACT   

Article History: 
Research on ring derivation is one of the studies that is quite popular among algebra lovers. 

The definition of the derivation on the ring is motivated by the derivation in calculus which 

has Leibniz's rule. The purpose of this paper is to show some of the derivation properties on 

several rings, namely divisor rings, cartesian product rings, and factor rings. Let 𝑅 be a 
commutative ring with multiplicative identity and A the set of multiplicative closed that has 

non-zero divisor. In this paper, we have shown some results of derivation on ring theory. If  𝑑 

is a ring derivation of R and 𝑅𝐴 is a divisor ring of 𝑅, we can construct 𝛿𝐴: 𝑅𝐴 → 𝑅𝐴,

𝑤ℎ𝑒𝑟𝑒  𝛿𝐴 (
𝑟

𝑎
) =

𝑑(𝑟)∙𝑎−𝑟∙𝑑(𝑎)

𝑎2
  for all 

𝑟

𝑎
∈ 𝑅𝐴, then the map 𝛿𝐴 is a derivation on 𝑅𝐴. The 

concept of embedding one ring into another ring can be used so that the ring of constant of 𝑑, 

namely 𝑅𝑑, is a subring of the divisor ring 𝑅𝐴. Related to the ideal on ring theory, if I is an 

ideal of  R, then �̅�: 𝑅/𝐼 → 𝑅/𝐼 where �̅�(𝑎 + 𝐼) ⟼ 𝑑(𝑎) + 𝐼 is also a derivation on the ring 

𝑅/𝐼. The last result in this paper comes from the ring of cartesian product, take 𝑅𝑖 be a ring 

with derivation 𝑑𝑖: 𝑅𝑖 → 𝑅𝑖 for 𝑖 ∈ ℕ. The cartesian product ring ∏ 𝑅𝑖
𝑛
𝑖=1  have a derivation 

ring defined by ∏ 𝑑𝑖
𝑛
𝑖=1 : ∏ 𝑅𝑖

𝑛
𝑖=1 → ∏ 𝑅𝑖

𝑛
𝑖=1 , ∏ 𝑑𝑖

𝑛
𝑖=1 ((𝑟1, 𝑟2, … , 𝑟𝑛)) =

 (𝑑1(𝑟1), 𝑑2(𝑟2), … , 𝑑𝑛(𝑟𝑛))  for any  (𝑟1, 𝑟2, … , 𝑟𝑛) ∈ ∏ 𝑅𝑖
𝑛
𝑖=1 .  
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1. INTRODUCTION 

Ring theory is a structure in abstract algebra whose existence is very important in mathematics. Almost 

every branch of mathematics and non-mathematics uses it indirectly, one of which is a derivative of Calculus. 

In mathematics, especially in calculus, the concept of derivation is well known. The derivative was first 

thought of by a British mathematician and physicist, whose name is Sir Isaac Newton (1642-1727), and a 

German mathematician, whose name is Gottfried Wilhelm Leibniz (1646-1716). 

The concept of the derivative in calculus uses polynomial rings ℤ[𝑥] as a domain and codomain of the 

derivative function defined for each 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛 ∈ ℤ[𝑥] with 𝑎𝑖 ∈ ℤ and 𝑖 = 0,1,2, … , 𝑛 

where 𝑛 ∈ ℕ ∪ {0} holds 
𝑑

𝑑𝑥
(𝑓(𝑥)) = lim

∆𝑥→0

𝑓(𝑥+∆𝑥)−𝑓(𝑥)

∆𝑥
= 𝑎1 + 2𝑎2𝑥 + ⋯ + 𝑛𝑎𝑛𝑥𝑛−1 ∈ ℤ[𝑥]. There is the 

Leibnitz’s rule that for every 𝑓(𝑥), 𝑔(𝑥) ∈ ℤ[𝑥] holds 
𝑑

𝑑𝑥
(𝑓(𝑥) + 𝑔(𝑥)) =

𝑑

𝑑𝑥
(𝑓(𝑥)) +

𝑑

𝑑𝑥
(𝑔(𝑥)) ∈ ℤ[𝑥] 

and 
𝑑

𝑑𝑥
(𝑓(𝑥) ∙ 𝑔(𝑥)) =

𝑑

𝑑𝑥
(𝑓(𝑥)) ∙ 𝑔(𝑥) + 𝑓(𝑥) ∙

𝑑

𝑑𝑥
(𝑔(𝑥)) ∈ ℤ[𝑥], as described in [1]. This shows that the 

existence of derivatives is inseparable from the ring theory. This is because the concept of derivation was 

first introduced on a ring, namely a polynomial ring. 

Based on [2], a ring 𝑅 is a system consisting of a non-empty set 𝑅 and two binary operations in 𝑅, 

called addition (+) and multiplication (∙) such that (𝑅, +) is an abelian group, (𝑅,∙) is a semigroup, and the 

distributive law applies between multiplication and addition operations. There are many types of rings that 

we already know, for example, divisor rings, cartesian product rings, factor rings, idempotent rings, and many 

more. It can be seen that the derivative in calculus is a mapping from one ring to another ring and there is 

Leibnitz’s rule. This is the initial motivation for defining the ring derivation. 

According to [3], [4], and [5], a map 𝑑: 𝑅 → 𝑅 is a derivation on the ring 𝑅 if for all 𝑎, 𝑏 ∈ 𝑅 a map 𝑑 

satisfies 𝑑(𝑎 + 𝑏) = 𝑑(𝑎) + 𝑑(𝑏) and 𝑑(𝑎 ∙ 𝑏) = 𝑑(𝑎) ∙ 𝑏 + 𝑎 ∙ 𝑑(𝑏). One example of the derivation is the 

derivation on the polynomial ring ℤ[𝑥]. Let a polynomial ring ℤ[𝑥] and the mapping 𝑑: ℤ[𝑥] → ℤ[𝑥] with the 

definition 𝑑(𝑝(𝑥)) = 𝑑(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛) = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ + 𝑛𝑎𝑛𝑥𝑛−1 for all 

𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 ∈ ℤ[𝑥] is a derivation on the polynomial ring ℤ[𝑥] as explained in 

[6]. Another easy-to-understand example of derivation is the derivation which uses lie product. Let 𝑅 be a 

noncommutative ring. For a fixed element 𝑎 ∈ 𝑅 is defined 𝑑: 𝑅 → 𝑅 by 𝑑(𝑟) = [𝑎, 𝑟] = 𝑎𝑟 − 𝑟𝑎 for all 𝑟 ∈
𝑅. If we check, it can be seen that the mapping 𝑑 is a derivation because for all 𝑟1, 𝑟2 ∈ 𝑅 we obtain 

𝑑(𝑟1 + 𝑟2) = [𝑎, 𝑟1 + 𝑟2] = 𝑎(𝑟1 + 𝑟2) − (𝑟1 + 𝑟2)𝑎 = 𝑎𝑟1 + 𝑎𝑟2 − 𝑟1𝑎 − 𝑟2𝑎 = 𝑎𝑟1 − 𝑟1𝑎 + 𝑎𝑟2 − 𝑟2𝑎 =
𝑑(𝑟1) + 𝑑(𝑟2) and 𝑑(𝑟1𝑟2) = [𝑎, 𝑟1𝑟2] = 𝑎𝑟1𝑟2 − 𝑟1𝑟2𝑎 = 𝑎𝑟1𝑟2 − 𝑟1𝑎𝑟2 + 𝑟1𝑎𝑟2 − 𝑟1𝑟2𝑎 = [𝑎, 𝑟1]𝑟2 +
𝑟1[𝑎. 𝑟2] = 𝑑(𝑟1)𝑟2 + 𝑟1𝑑(𝑟2). That means the mapping 𝑑 is a derivation called the inner derivation of 𝑅 

which is associated with 𝑎, see [5]. Several types of special rings can be found, namely divisor rings, cartesian 

product rings, and factor rings. For each of these rings, a general derivation can be defined that will always 

apply. In this paper, we will discuss each derivation on the divisor ring, the cartesian product ring, and the 

factor ring. We will also discuss the concept of inserting one ring into another ring, where for example a ring 

𝑅 with derivation 𝑑 has a ring of constant of 𝑑, namely 𝑅𝑑, then 𝑅𝑑 is a subring of the divisor ring 𝑅𝐴 where 

𝐴 is a multiplicatively closed set of 𝑅. 

 

2. RESEARCH METHODS 

This study focuses on the derivation properties of the divisor ring, the cartesian product ring, and the 

factor ring. At the beginning of the research, we conducted a literature study regarding rings, a derivation on 

ring, an ideal-𝑑, and several theorems as contained in [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], and [12]. 

After that, we construct a conjecture regarding the properties of the derivation in the predetermined rings. In 

the last step, we will prove some of the properties that we have built. In building a derivation property of 

some of these rings, it is necessary to first introduce the process of constructing divisor rings, the theorem of 

necessary and sufficient conditions of a subring, a ring of constant, and an ideal-𝑑. 

There is a type of ring, namely the divisor ring obtained from a ring with a multiplicatively closed set 

which is explained in the following proposition. 
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Proposition 1. [7] Let R be a commutative ring with unity. If A is a multiplicatively closed set of R without 

zero element and zero divisor, then there is a commutative ring 𝑅𝐴 with unity which contains R as a subring 

of 𝑅𝐴. Furthermore, for all element in A is a unit in 𝑅𝐴. 

A subset 𝑆 of a ring 𝑅 with the same operations as a ring 𝑅 that also satisfies every axiom of the ring 

is called a subring, see [7]. To make it easier to prove a subring, there is a theorem of necessary and sufficient 

conditions for a subring as follows. 

Theorem 1. [8], [12] Let S be a non-empty set in a ring (𝑅, +,∙). The set S is a subring of R if and only if for 

all 𝑠1, 𝑠2 ∈ 𝑆 satisfies 𝑠1 − 𝑠2 ∈ 𝑆 and 𝑠1 ∙ 𝑠2 ∈ 𝑆. 

In the introduction, we have known the definition of derivation. Suppose a ring 𝑅 has the derivation 𝑑. 

For any 𝑐 ∈ 𝑅, if 𝑑(𝑐) = 0𝑅, then 𝑐 is called a constant element of 𝑑. The set containing the constant elements 

of 𝑑 will further form a subring of 𝑅 or commonly referred to as the ring of constant of 𝑑 as explained in the 

following theorem. 

Theorem 2. [9], [10] Let 𝑅 be a ring and 𝑑: 𝑅 → 𝑅 a derivation. We have the set of constants of 𝑑, denote by 

𝑅𝑑 = {𝑟 ∈ 𝑅|𝑑(𝑟) = 0𝑅}. The set 𝑅𝑑 is a subring of 𝑅, we call it the ring of constant of 𝑑 and 1𝑅 ∈ 𝑅𝑑. 

In the ring, we know the ideal concept which is a special subring of a ring. For example, ring 𝑅 with 

the derivation 𝑑 and ideal 𝐼. If 𝐼 is an ideal in 𝑅 and 𝑑 is an inner derivation of 𝑅, then the derivation 𝑑 

satisfies 𝑑(𝐼) ⊆ 𝐼. However, if 𝑑 is not an inner derivation, then the derivation 𝑑 does not necessarily satisfy 

to 𝑑(𝐼) ⊆ 𝐼. Therefore, this problem raises the idea of defining an ideal 𝐼 that satisfy 𝑑(𝐼) ⊆ 𝐼 as follows. 

Definition 1. [5], [11] Let a ring 𝑅 with unity, ideal 𝐼 in 𝑅, and a derivation 𝑑 of 𝑅. The ideal 𝐼 is called 𝑑-

ideal if it satisfies 𝑑(𝐼) ⊆ 𝐼. 

After understanding some of the definitions and theorems needed in the discussion, the last step that 

will be taken is to make a conjecture and prove the conjecture to be a theorem or proposition. 

 

 

3. RESULTS AND DISCUSSION 

The derivation discussed in this paper is the derivation on rings, especially the derivation of the divisor 

ring, cartesian product ring, factor ring, and idempotent ring.  

3.1 Derivation on The Divisor Ring 

The quotient has been identified. Suppose a ring 𝑅 with a multiplicatively closed set 𝐴 has a derivation 

of 𝑑. From Proposition 1, we find that there is a divisor ring 𝑅𝐴 = {
𝑟

𝑎
|𝑟 ∈ 𝑅, 𝑎 ∈ 𝐴}. In this ring, a mapping 

𝛿𝐴: 𝑅𝐴 → 𝑅𝐴 can be defined, furthermore, this mapping is a derivation of the divisor ring. 

Theorem 3. Let R be a commutative ring with unity and 𝐴 is a multiplicatively closed of 𝑅 without zero 

element and zero divisors. If a map 𝑑: 𝑅 → 𝑅 is a derivation on ring R, then a map 𝛿𝐴: 𝑅𝐴 → 𝑅𝐴 with the 

definition 𝛿𝐴 (
𝑟

𝑎
) =

𝑑(𝑟)∙𝑎−𝑟∙𝑑(𝑎)

𝑎2  for all  
𝑟

𝑎
∈ 𝑅𝐴 is a derivation of the divisor ring 𝑅𝐴. 

Proof. From Proposition 1, we can define 𝑅𝐴 = {
𝑟

𝑎
|𝑟 ∈ 𝑅, 𝑎 ∈ 𝐴} as a commutative divisor ring with unity. 

We need to prove that 𝛿𝐴 is a derivation on the ring 𝑅𝐴. First, we will show that 𝛿𝐴 is well-defined and closed. 

For any 𝑟1, 𝑟2, 𝑎1, 𝑎2 ∈ 𝑅 with 𝑟1 = 𝑟2, 𝑎1 = 𝑎2, we have 𝑟1 ∙ 𝑎2 = 𝑟2 ∙ 𝑎1 ⟺
𝑟1

𝑎1
=

𝑟2

𝑎2
 where 

𝑟1

𝑎1
,

𝑟2

𝑎2
∈ 𝑅𝐴. We 

can get 

𝛿𝐴 (
𝑟1

𝑎1
)    =

𝑑(𝑟1)∙𝑎1−𝑟1∙𝑑(𝑎1)

𝑎1
2  [Definition of 𝛿𝐴] 

=
𝑑(𝑟2)∙𝑎2−𝑟2∙𝑑(𝑎2)

𝑎2
2  [Because 𝑑 is a mapping and (𝑅, +,∙) is a ring] 

= 𝛿𝐴 (
𝑟2

𝑎2
)  [Definition of 𝛿𝐴] 
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And for any 
𝑟

𝑎
∈ 𝑅𝐴, we have 𝛿𝐴 (

𝑟

𝑎
) =

𝑑(𝑟)∙𝑎−𝑟∙𝑑(𝑎)

𝑎2 ∈ 𝑅𝐴 because 𝑟 ∈ 𝑅, 𝑎 ∈ 𝐴 ⊂ 𝑅, a mapping 𝑑 is a 

derivation of 𝑅, (𝑅, +,∙) is a ring, and (𝐴,∙) is multiplicatively closed. This means that 𝛿𝐴 is a mapping because 

it is well defined and closed. 

Next, for any 
𝑟1

𝑎1
,

𝑟2

𝑎2
∈ 𝑅𝐴, we have 

1. 𝛿𝐴(
𝑟1

𝑎1
+

𝑟2

𝑎2
)  = 𝛿𝐴(

𝑟1∙𝑎2+𝑟2∙𝑎1

𝑎1∙𝑎2
) 

= 
𝑑(𝑟1∙𝑎2+𝑟2∙𝑎1)∙𝑎1∙𝑎2−(𝑟1∙𝑎2+𝑟2∙𝑎1)∙𝑑(𝑎1∙𝑎2)

(𝑎1∙𝑎2)2  

= 
(𝑑(𝑟1∙𝑎2)+𝑑(𝑟2∙𝑎1))∙𝑎1∙𝑎2−𝑟1∙𝑎2∙𝑑(𝑎1∙𝑎2)−𝑟2∙𝑎1∙𝑑(𝑎1∙𝑎2)

𝑎1
2∙𝑎2

2  

= 
𝑑(𝑟1∙𝑎2)∙𝑎1∙𝑎2+𝑑(𝑟2∙𝑎1)∙𝑎1∙𝑎2−𝑟1∙𝑎2∙(𝑑(𝑎1)∙𝑎2+𝑎1∙𝑑(𝑎2))−𝑟2∙𝑎1∙(𝑑(𝑎1)∙𝑎2+𝑎1∙𝑑(𝑎2))

𝑎1
2∙𝑎2

2  

= 
(𝑑(𝑟1)∙𝑎2+𝑟1∙𝑑(𝑎2))∙𝑎1∙𝑎2+(𝑑(𝑟2)∙𝑎1+𝑟2∙𝑑(𝑎1))∙𝑎1∙𝑎2−𝑟1∙𝑎2∙(𝑑(𝑎1)∙𝑎2+𝑎1∙𝑑(𝑎2))−𝑟2∙𝑎1∙(𝑑(𝑎1)∙𝑎2+𝑎1∙𝑑(𝑎2))

𝑎1
2∙𝑎2

2  

= 
𝑑(𝑟1)∙𝑎1∙𝑎2

2+𝑟1∙𝑑(𝑎2)∙𝑎1∙𝑎2+𝑑(𝑟2)∙𝑎2∙𝑎1
2+𝑟2∙𝑑(𝑎1)∙𝑎1∙𝑎2−𝑟1∙𝑑(𝑎1)∙𝑎2

2−𝑟1∙𝑑(𝑎2)∙𝑎1∙𝑎2−𝑟2∙𝑑(𝑎1)∙𝑎1∙𝑎2−𝑟2∙𝑑(𝑎2)∙𝑎1
2

𝑎1
2∙𝑎2

2  

= 
𝑑(𝑟1)∙𝑎1∙𝑎2

2−𝑟1∙𝑑(𝑎1)∙𝑎2
2+𝑑(𝑟2)∙𝑎2∙𝑎1

2−𝑟2∙𝑑(𝑎2)∙𝑎1
2

𝑎1
2∙𝑎2

2  

= 
𝑑(𝑟1)∙𝑎1−𝑟1∙𝑑(𝑎1)

𝑎1
2 ∙

𝑎2

𝑎2
∙

𝑎2

𝑎2
+

𝑑(𝑟2)∙𝑎2−𝑟2∙𝑑(𝑎2)

𝑎2
2 ∙

𝑎1

𝑎1
∙

𝑎1

𝑎1
 

= 
𝑑(𝑟1)∙𝑎1−𝑟1∙𝑑(𝑎1)

𝑎1
2 +

𝑑(𝑟2)∙𝑎2−𝑟2∙𝑑(𝑎2)

𝑎2
2  

= 𝛿𝐴 (
𝑟1

𝑎1
) + 𝛿𝐴 (

𝑟2

𝑎2
) 

2. 𝛿𝐴 (
𝑟1

𝑎1
∙

𝑟2

𝑎2
)   = 𝛿𝐴(

𝑟1∙𝑟2

𝑎1∙𝑎2
) 

= 
𝑑(𝑟1∙𝑟2)∙𝑎1∙𝑎2−𝑑(𝑎1∙𝑎2)∙𝑟1∙𝑟2

(𝑎1∙𝑎2)2  

= 
(𝑑(𝑟1)∙𝑟2+𝑟1∙𝑑(𝑟2))∙𝑎1∙𝑎2−(𝑑(𝑎1)∙𝑎2+𝑎1∙𝑑(𝑎2))∙𝑟1∙𝑟2

𝑎1
2∙𝑎2

2  

= 
𝑑(𝑟1)∙𝑟2∙𝑎1∙𝑎2+𝑟1∙𝑑(𝑟2)∙𝑎1∙𝑎2−𝑑(𝑎1)∙𝑎2∙𝑟1∙𝑟2−𝑎1∙𝑑(𝑎2)∙𝑟1∙𝑟2

𝑎1
2∙𝑎2

2  

= 
𝑑(𝑟1)∙𝑎1∙𝑟2∙𝑎2−𝑟1∙𝑑(𝑎1)∙𝑟2∙𝑎2

𝑎1
2∙𝑎2

2 +
𝑟1∙𝑎1∙𝑑(𝑟2)∙𝑎2−𝑟1∙𝑎1∙𝑟2∙𝑑(𝑎2)

𝑎1
2∙𝑎2

2  

= 
𝑑(𝑟1)∙𝑎1−𝑟1∙𝑑(𝑎1)

𝑎1
2 ∙

𝑟2

𝑎2
∙

𝑎2

𝑎2
+

𝑟1

𝑎1
∙

𝑎1

𝑎1
∙

𝑑(𝑟2)∙𝑎2−𝑟2∙𝑑(𝑎2)

𝑎2
2  

= 
𝑑(𝑟1)∙𝑎1−𝑟1∙𝑑(𝑎1)

𝑎1
2 ∙

𝑟2

𝑎2
+

𝑟1

𝑎1
∙

𝑑(𝑟2)∙𝑎2−𝑟2∙𝑑(𝑎2)

𝑎2
2  

= 𝛿𝐴 (
𝑟1

𝑎1
) ∙

𝑟2

𝑎2
+

𝑟1

𝑎1
∙ 𝛿𝐴 (

𝑟2

𝑎2
) 

It is proved that the mapping 𝛿𝐴: 𝑅𝐴 → 𝑅𝐴 is a derivation of the divisor ring 𝑅𝐴. ∎ 

From Theorem 3, we can define the derivation of any divisor ring. Here we give the following example of 

Theorem 3. 

Example 1. Let 𝑅 = ℤ[𝑥] be a polynomial ring and 𝐴 = ℤ[𝑥]\{0} be the set of multiplicatively closed. We 

can define a derivation on a polynomial ring, i.e., 𝑑: ℤ[𝑥] → ℤ[𝑥], for all 𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛 ∈

ℤ[𝑥], 𝑑(𝑝(𝑥)) = 𝑎1 + 2 ⋅ 𝑎2𝑥 + ⋯ + 𝑛 ⋅ 𝑎𝑛𝑥𝑛−1. From Proposition 1, we can construct a commutative 

divisor ring 𝑅𝐴 = {
𝑝(𝑥)

𝑞(𝑥)
|𝑝(𝑥) ∈ 𝑅, 𝑞(𝑥) ∈ 𝐴}. Then, from Theorem 3, we can define a derivation 𝛿𝐴: 𝑅𝐴 →

𝑅𝐴 for all 
𝑝(𝑥)

𝑞(𝑥)
∈ 𝑅𝐴 define 𝛿𝐴 (

𝑝(𝑥)

𝑞(𝑥)
) =

𝑑(𝑝(𝑥))∙𝑞(𝑥)−𝑝(𝑥)∙𝑑(𝑞(𝑥))

𝑞(𝑥)2 . 

In the following theorem, we will explain the relationship between the ring of constant of 𝑑 and the 

ring of constant of 𝛿𝐴 where the ring of constant of 𝑑 is a subring of the ring of constant of 𝛿𝐴. Further 

explanation is shown in the following theorem. 

Theorem 4. Let 𝑅 be a commutative ring with unity, a derivation 𝑑: 𝑅 → 𝑅, and 𝑅𝐴 be a divisor ring with 

derivation 𝛿𝐴: 𝑅𝐴 → 𝑅𝐴 with the definition 𝛿𝐴 (
𝑟

𝑎
) =

𝑑(𝑟)∙𝑎−𝑟∙𝑑(𝑎)

𝑎2  for all  
𝑟

𝑎
∈ 𝑅𝐴. If 𝑅𝑑 = {𝑟 ∈ 𝑅|𝑑(𝑟) = 0𝑅} 

is a ring of constant of d and 𝑅𝐴
𝛿𝐴 = {

𝑟

𝑎
∈ 𝑅𝐴|𝛿𝐴 (

𝑟

𝑎
) = 0𝑅𝐴

} is a ring of constant of 𝛿𝐴, then ring 𝑅𝑑 is a 

subring of ring 𝑅𝐴
𝛿𝐴. 
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Proof. We need to prove that the ring 𝑅𝑑 is a subring of ring 𝑅𝐴
𝛿𝐴. We can form a mapping 𝛼: 𝑅 → 𝑅𝐴 with 

the definition 𝛼(𝑟) =
𝑟

1𝑅
 for all 𝑟 ∈ 𝑅. For all 𝑟1, 𝑟2 ∈ 𝑅, we obtain 

1. 𝛼(𝑟1 + 𝑟2) =
𝑟1+𝑟2

1𝑅
=

𝑟1

1𝑅
+

𝑟2

1𝑅
= 𝛼(𝑟1) + 𝛼(𝑟2) 

2. 𝛼(𝑟1 ∙ 𝑟2) =
𝑟1∙𝑟2

1𝑅
=

𝑟1∙𝑟2

1𝑅∙1𝑅
=

𝑟1

1𝑅
∙

𝑟2

1𝑅
= 𝛼(𝑟1) ∙ 𝛼(𝑟2) 

It can be concluded that 𝛼 is a ring homomorphism. Now, we will show that 𝛼 is a ring monomorphism. For 

any 𝑟1, 𝑟2 ∈ 𝑅 where 𝛼(𝑟1) = 𝛼(𝑟2). From this, we can get 

𝛼(𝑟1) = 𝛼(𝑟2) ⟹
𝑟1

1𝑅
=

𝑟2

1𝑅
⟹ 𝑟1 ∙ 1𝑅 = 𝑟2 ∙ 1𝑅 ⟹ 𝑟1 = 𝑟2 

Now, we know that 𝑟1 = 𝑟2. Thus, we can say that 𝛼 is a ring monomorphism and it is proved that ring 𝑅 can 

be embedded into the 𝑅𝐴. Because of any ring monomorphism 𝛼: 𝑅 → 𝑅𝐴, element 𝑟 ∈ 𝑅 can be considered 

as element 
𝑟

1𝑅
∈ 𝑅𝐴. We know that 𝑅𝑑 ⊆ 𝑅 and 𝑅𝐴

𝛿𝐴 ⊆ 𝑅𝐴. So, it can be obtained that for all 𝑐1, 𝑐2 ∈ 𝑅𝑑 

1. 𝑐1 − 𝑐2 =
𝑐1

1𝑅
−

𝑐2

1𝑅
=

𝑐1−𝑐2

1𝑅
∈ 𝑅𝐴 

Because 𝑅𝑑 is the ring of constant of 𝑑, that means ring 𝑅𝑑 is a subring of the ring 𝑅. It can be obtained 

from Theorem 1 that 𝑐1 − 𝑐2 ∈ 𝑅𝑑 or 𝑑(𝑐1 − 𝑐2) = 0𝑅. So, we can get 

𝛿𝐴 (
𝑐1 − 𝑐2

1𝑅
) =

𝑑(𝑐1 − 𝑐2) ∙ 1𝑅 − (𝑐1 − 𝑐2) ∙ 𝑑(1𝑅)

1𝑅
2 =

0𝑅 ∙ 1𝑅 − (𝑐1 − 𝑐2) ∙ 0𝑅

1𝑅
=

0𝑅

1𝑅
= 0𝑅𝐴

 

It can be concluded that 
𝑐1−𝑐2

1𝑅
∈ 𝑅𝐴

𝛿𝐴 

2. 𝑐1 ∙ 𝑐2 =
𝑐1

1𝑅
∙

𝑐2

1𝑅
=

𝑐1∙𝑐2

1𝑅
∈ 𝑅𝐴 

Because 𝑅𝑑 is the ring of constant of 𝑑, that means ring 𝑅𝑑 is a subring of the ring 𝑅. From Theorem 

1 we have 𝑐1 ∙ 𝑐2 ∈ 𝑅𝑑 or 𝑑(𝑐1 ∙ 𝑐2) = 0𝑅. We can get that 

𝛿𝐴 (
𝑐1 ∙ 𝑐2

1𝑅
) =

𝑑(𝑐1 ∙ 𝑐2) ∙ 1𝑅 − 𝑐1 ∙ 𝑐2 ∙ 𝑑(1𝑅)

1𝑅
2 =

0𝑅 ∙ 1𝑅 − 𝑐1 ∙ 𝑐2 ∙ 0𝑅

1𝑅
=

0𝑅

1𝑅
= 0𝑅𝐴

 

It can be concluded that 
𝑐1∙𝑐2

1𝑅
∈ 𝑅𝐴

𝛿𝐴 

Because for all 𝑐1, 𝑐2 ∈ 𝑅𝑑  we get 𝑐1 − 𝑐2, 𝑐1 ∙ 𝑐2 ∈ 𝑅𝑑 and element 𝑐1 − 𝑐2, 𝑐1 ∙ 𝑐2 ∈ 𝑅𝑑 can be considered 

as element 
𝑐1−𝑐2

1𝑅
,

𝑐1∙𝑐2

1𝑅
∈ 𝑅𝐴

𝛿𝐴, then ring 𝑅𝑑 can be embedded into the 𝑅𝐴
𝛿𝐴 or we can say that the ring 𝑅𝑑 is a 

subring of ring 𝑅𝐴
𝛿𝐴. ∎ 

An example is given to clarify Theorem 4. 

Example 2. Let a polynomial ring 𝑅 = ℤ[𝑥] and the set of multiplicatively closed 𝐴 = ℤ[𝑥]\{0}. We can 

define a derivation on a polynomial ring, i.e., 𝑑: ℤ[𝑥] → ℤ[𝑥] for all 𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛 ∈ ℤ[𝑥] 

define 𝑑(𝑝(𝑥)) = 𝑎1 + 2 ⋅ 𝑎2𝑥 + ⋯ + 𝑛 ⋅ 𝑎𝑛𝑥𝑛−1. Assume that the ring of constant of 𝑑 is ℤ[𝑥]𝑑 = {𝑝(𝑥) ∈

ℤ[𝑥]|𝑑(𝑝(𝑥)) = 0}. Note that ring ℤ is subring of ℤ[𝑥] and for all 𝑝(𝑥) = 𝑎0 ∈ ℤ where 𝑝(𝑥) = 𝑎0 + 0𝑥 +

⋯ + 0𝑥𝑛 we get 𝑑(𝑝(𝑥)) = 0 or ℤ ⊆ ℤ[𝑥]𝑑. From the definition 𝑑, we have for any 𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 +

⋯ + 𝑎𝑛𝑥𝑛 ∈ ℤ[𝑥]𝑑 where 𝑑(𝑝(𝑥)) = 0 ⟺ 𝑎1 + 2 ⋅ 𝑎2𝑥 + ⋯ + 𝑛 ⋅ 𝑎𝑛𝑥𝑛−1 = 0. In ℤ[𝑥], any non-empty set 

𝐵 = {𝑥𝑛|𝑛 ∈ ℤ+} = {1, 𝑥, 𝑥2, … , 𝑥𝑛} ⊆ ℤ[𝑥] such that for all 𝑝(𝑥) ∈ ℤ[𝑥] there is 𝑎𝑖 ∈ ℤ and 𝑥𝑖 ∈ 𝐵 such 

that 𝑝(𝑥) = ∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=0  with 𝑖 ∈ ℕ ∪ {0}. Besides that, if for any 𝑎𝑖 ∈ ℤ, 𝑥𝑖 ∈ 𝐵 for 𝑖 ∈ ℤ+ holds ∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=0 =
0, then the only value of 𝑎𝑖 that satisfies is 0 or we can write 𝑎0 = 𝑎1 = ⋯ = 𝑎𝑛 = 0. That means 𝐵 is a base 

of ℤ[𝑥] and ℤ-module ℤ[𝑥] is a free module.  Because 𝑎1 + 2 ⋅ 𝑎2𝑥 + ⋯ + 𝑛 ∙ 𝑎𝑛𝑥𝑛 = 0 and ℤ[𝑥] is a free 

module, then 𝑎1 = 2 ⋅ 𝑎2 = ⋯ = 𝑛 ∙ 𝑎𝑛 = 0. We know that ℤ is a domain integral, so we have 𝑎1 = 𝑎2 =
⋯ = 𝑎𝑛 = 0. Substitute 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑛 = 0 to 𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛 to get 𝑝(𝑥) = 𝑎0. 

Because 𝑎0 ∈ ℤ, then ℤ[𝑥]𝑑 ⊆ ℤ. In conclusion, the ring of constant of 𝑑 is ℤ. From Proposition 1, we can 

construct a commutative divisor ring 𝑅𝐴 = {
𝑝(𝑥)

𝑞(𝑥)
|𝑝(𝑥) ∈ ℤ[𝑥], 𝑞(𝑥) ∈ 𝐴}. So, from Theorem 3, we can 

define a derivation 𝛿: 𝑅𝐴 → 𝑅𝐴 for all 
𝑝(𝑥)

𝑞(𝑥)
∈ 𝑅𝐴 as 𝛿 (

𝑝(𝑥)

𝑞(𝑥)
) =

𝑑(𝑝(𝑥))∙𝑞(𝑥)−𝑝(𝑥)∙𝑑(𝑞(𝑥))

𝑞(𝑥)2 . Assume that the ring 

of constant of 𝛿 is 𝑅𝐴
𝛿𝐴 = {

𝑝(𝑥)

𝑞(𝑥)
|𝛿 (

𝑝(𝑥)

𝑞(𝑥)
) = 0𝑅𝐴

, 𝑝(𝑥) ∈ ℤ[𝑥], 𝑞(𝑥) ∈ ℤ[𝑥]\{0}}. Based on Theorem 4, it can 

be obtained that the ring of constant of 𝑑, i.e., ℤ[𝑥]𝑑, is a subring of the ring of constant of 𝛿, i.e., 𝑅𝐴
𝛿𝐴. 
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3.2 Derivation on The Cartesian Product Ring 

Furthermore, there is a ring that is obtained from the cartesian product of several other rings, which is 

called the cartesian product ring. In the following theorem, we will show a derivation on the cartesian product 

ring. 

Theorem 5. Let 𝑅𝑖 be a commutative ring with unity for 𝑖 = 1,2, … , 𝑛 and (∏ 𝑅𝑖
𝑛
𝑖=1 , +,∙) be a cartesian 

product ring where 𝑖 ∈ ℕ. If a map 𝑑𝑖: 𝑅𝑖 → 𝑅𝑖 is a derivation on the ring 𝑅𝑖 for 𝑖 = 1,2, … , 𝑛, then a map 

∏ 𝑑𝑖
𝑛
𝑖=1 : ∏ 𝑅𝑖

𝑛
𝑖=1 → ∏ 𝑅𝑖

𝑛
𝑖=1  with the definition ∏ 𝑑𝑖

𝑛
𝑖=1 ((𝑟1, 𝑟2, … , 𝑟𝑛)) = (𝑑1(𝑟1), 𝑑2(𝑟2), … , 𝑑𝑛(𝑟𝑛)) for 

all (𝑟1, 𝑟2, … , 𝑟𝑛) ∈ ∏ 𝑅𝑖
𝑛
𝑖=1  is a derivation of the Cartesian product ring ∏ 𝑅𝑖

𝑛
𝑖=1  where 𝑖 ∈ ℕ. 

Proof. We have a ring 𝑅𝑖, cartesian product ring ∏ 𝑅𝑖
𝑛
𝑖=1 , and derivation on the ring 𝑅𝑖, i.e., 𝑑𝑖: 𝑅𝑖 → 𝑅𝑖, for 

𝑖 = 1,2, … , 𝑛. It will be shown that ∏ 𝑑𝑖
𝑛
𝑖=1  is a derivation of the cartesian product ring ∏ 𝑅𝑖

𝑛
𝑖=1  where 𝑖 ∈ ℕ. 

First, we will show that ∏ 𝑑𝑖
𝑛
𝑖=1  is well-defined and closed. For all (𝑎1, 𝑎2, … , 𝑎𝑛), (𝑏1, 𝑏2, … , 𝑏𝑛) ∈ ∏ 𝑅𝑖

𝑛
𝑖=1  

where (𝑎1, 𝑎2, … , 𝑎𝑛) = (𝑏1, 𝑏2, … , 𝑏𝑛), that means 𝑎𝑖 = 𝑏𝑖 for 𝑖 = 1,2, … , 𝑛. We can get 

∏ 𝑑𝑖
𝑛
𝑖=1 (𝑎1, 𝑎2, … , 𝑎𝑛) = (𝑑1(𝑎1), 𝑑2(𝑎2), … , 𝑑𝑛(𝑎𝑛))  [Definition of ∏ 𝑑𝑖

𝑛
𝑖=1 ] 

= (𝑑1(𝑏1), 𝑑2(𝑏2), … , 𝑑𝑛(𝑏𝑛))  [Because 𝑑 is a mapping] 

= ∏ 𝑑𝑖
𝑛
𝑖=1 (𝑏1, 𝑏2, … , 𝑏𝑛)  [Definition of ∏ 𝑑𝑖

𝑛
𝑖=1 ] 

And for all (𝑎1, 𝑎2, … , 𝑎𝑛) ∈ ∏ 𝑅𝑖
𝑛
𝑖=1 , we have ∏ 𝑑𝑖

𝑛
𝑖=1 (𝑎1, 𝑎2, … , 𝑎𝑛) = (𝑑1(𝑎1), 𝑑2(𝑎2), … , 𝑑𝑛(𝑎𝑛)) ∈

∏ 𝑅𝑖
𝑛
𝑖=1  because 𝑑𝑖 is a derivation of 𝑅𝑖 for 𝑖 = 1,2, … , 𝑛. This means that ∏ 𝑑𝑖

𝑛
𝑖=1  for 𝑖 = 1,2, … , 𝑛 is a 

mapping because it is well-defined and closed. 

Next, for all 𝑥 = (𝑎1, 𝑎2, … , 𝑎𝑛), 𝑦 = (𝑏1, 𝑏2, … , 𝑏𝑛) ∈ ∏ 𝑅𝑖
𝑛
𝑖=1 , we obtain 

1. ∏ 𝑑𝑖(𝑥 + 𝑦)𝑛
𝑖=1  = ∏ 𝑑𝑖(𝑎1, 𝑎2, … , 𝑎𝑛) + (𝑏1, 𝑏2, … , 𝑏𝑛)𝑛

𝑖=1  

= ∏ 𝑑𝑖
𝑛
𝑖=1 ((𝑎1 + 𝑏1, 𝑎2 + 𝑏2, … , 𝑎𝑛 + 𝑏𝑛)) 

= (𝑑1(𝑎1 + 𝑏1), 𝑑2(𝑎2 + 𝑏2), … , 𝑑𝑛(𝑎𝑛 + 𝑏𝑛)) 

= (𝑑1(𝑎1) + 𝑑1(𝑏1), 𝑑2(𝑎2) + 𝑑2(𝑏2), … , 𝑑𝑛(𝑎𝑛) + 𝑑𝑛(𝑏𝑛)) 

= (𝑑1(𝑎1), 𝑑2(𝑎2), … , 𝑑𝑛(𝑎𝑛)) + (𝑑1(𝑏1), 𝑑2(𝑏2), … , 𝑑𝑛(𝑏𝑛)) 

= ∏ 𝑑𝑖
𝑛
𝑖=1 ((𝑎1, 𝑎2, … , 𝑎𝑛)) + ∏ 𝑑𝑖

𝑛
𝑖=1 ((𝑏1, 𝑏2, … , 𝑏𝑛)) 

= ∏ 𝑑𝑖(𝑥)𝑛
𝑖=1 + ∏ 𝑑𝑖(𝑦)𝑛

𝑖=1  

2. ∏ 𝑑𝑖(𝑥 ∙ 𝑦)𝑛
𝑖=1    = ∏ 𝑑𝑖((𝑎1, 𝑎2, … , 𝑎𝑛) ∙ (𝑏1, 𝑏2, … , 𝑏𝑛))𝑛

𝑖=1  

= ∏ 𝑑𝑖
𝑛
𝑖=1 ((𝑎1 ∙ 𝑏1, 𝑎2 ∙ 𝑏2, … , 𝑎𝑛 ∙ 𝑏𝑛)) 

= (𝑑1(𝑎1 ∙ 𝑏1), 𝑑2(𝑎2 ∙ 𝑏2), … , 𝑑𝑛(𝑎𝑛 ∙ 𝑏𝑛)) 

= (𝑑1(𝑎1) ∙ 𝑏1 + 𝑎1 ∙ 𝑑(𝑏1), 𝑑2(𝑎2) ∙ 𝑏2 + 𝑎2 ∙ 𝑑(𝑏2), … , 𝑑𝑛(𝑎𝑛) ∙ 𝑏𝑛 + 𝑎𝑛 ∙ 𝑑(𝑏𝑛)) 

= (𝑑1(𝑎1) ∙ 𝑏1, 𝑑2(𝑎2) ∙ 𝑏2, … , 𝑑𝑛(𝑎𝑛) ∙ 𝑏𝑛) + (𝑎1 ∙ 𝑑1(𝑏1), 𝑎2 ∙ 𝑑(𝑏2), … , 𝑎𝑛 ∙ 𝑑(𝑏𝑛)) 

= (𝑑1(𝑎1), 𝑑2(𝑎2), … , 𝑑𝑛(𝑎𝑛)) ∙ (𝑏1, 𝑏2, … , 𝑏𝑛) + (𝑎1, 𝑎2, … , 𝑎𝑛) ∙ (𝑑1(𝑏1), 𝑑2(𝑏2), … , 𝑑𝑛(𝑏𝑛)) 

= ∏ 𝑑𝑖
𝑛
𝑖=1 ((𝑎1, 𝑎2, … , 𝑎𝑛)) ∙ (𝑏1, 𝑏2, … , 𝑏𝑛) + (𝑎1, 𝑎2, … , 𝑎𝑛) ∙ ∏ 𝑑𝑖

𝑛
𝑖=1 ((𝑏1, 𝑏2, … , 𝑏𝑛)) 

= ∏ 𝑑𝑖(𝑥)𝑛
𝑖=1 ∙ 𝑦 + 𝑥 ∙ ∏ 𝑑𝑖(𝑦)𝑛

𝑖=1  

From the explanation above, it can be concluded that the mapping ∏ 𝑑𝑖
𝑛
𝑖=1 : ∏ 𝑅𝑖

𝑛
𝑖=1 → ∏ 𝑅𝑖

𝑛
𝑖=1  is a derivation 

on the cartesian product ring ∏ 𝑅𝑖
𝑛
𝑖=1 . ∎ 

The following is an example of the application of Theorem 5 to a cartesian product ring of two polynomial 

rings. 

Example 3. Let a polynomial ring (ℝ[𝑥], +,∙) and the derivation 𝑑1: ℝ[𝑥] → ℝ[𝑥] with the definition 

𝑑1(𝑝(𝑥)) = 𝑎1 + 2 ⋅ 𝑎2𝑥 + ⋯ + 𝑛 ⋅ 𝑎𝑛𝑥𝑛−1 for all 𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 ∈ ℝ[𝑥] define 

Then given a polynomial ring (ℤ[𝑥], +,∙) and the derivation 𝑑2: ℤ[𝑥] → ℤ[𝑥] with the definition 𝑑2(𝑞(𝑥)) =

𝑏1 + 2 ⋅ 𝑏2𝑥 + ⋯ + 𝑛 ⋅ 𝑏𝑛𝑥𝑛−1for all 𝑞(𝑥) = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛 ∈ ℤ[𝑥]. It is possible to 

construct a cartesian product ring ℝ[𝑥] × ℤ[𝑥] = {(𝑝(𝑥), 𝑞(𝑥))|𝑝(𝑥) ∈ ℝ[𝑥], 𝑞(𝑥) ∈ ℤ[𝑥]}. From Theorem 

5, we can form a mapping 𝑑1 × 𝑑2: ℝ[𝑥] × ℤ[𝑥] → ℝ[𝑥] × ℤ[𝑥] for all (𝑓(𝑥), 𝑔(𝑥)) ∈ ℝ[𝑥] × ℤ[𝑥] define 

𝑑1 × 𝑑2 ((𝑓(𝑥), 𝑔(𝑥))) = (𝑑1(𝑓(𝑥)), 𝑑2(𝑔(𝑥))) which is the derivation on the cartesian product ring 

ℝ[𝑥] × ℤ[𝑥]. 
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3.3 Derivation on The Factor Ring 

In this subsection, we will discuss the derivation on factor rings. The factor ring used here is a factor 

ring constructed from a ring and 𝑑-ideal. The properties of the derivation on the factor ring are described in 

the following theorem. 

Theorem 6. Let a ring 𝑅 with unity, a map 𝑑: 𝑅 → 𝑅 is a derivation on ring 𝑅, and set 𝐼 ⊆ 𝑅 is a 𝑑-ideal of 

𝑅. A map �̅�: 𝑅/𝐼 → 𝑅/𝐼 with the definition �̅�(𝑎 + 𝐼) = 𝑑(𝑎) + 𝐼 for all 𝑎 + 𝐼 ∈ 𝑅/𝐼 is a derivation on the 

factor ring 𝑅/𝐼. 

Proof. We will show that �̅� is a derivation on the factor ring (𝑅/𝐼, +̅,∙)̅. Because we have a ring R and I is a 

𝑑-ideal in R, so we can construct a factor ring 𝑅/𝐼 = {�̅� = 𝑟 + 𝐼|𝑟 ∈ 𝑅}. First, we will show that �̅� is well-

defined and closed. For any �̅� = 𝑎 + 𝐼, �̅� = 𝑏 + 𝐼 ∈ 𝑅/𝐼 where �̅� = �̅� ⟺ 𝑎 − 𝑏 ∈ 𝐼. That means 𝑑(𝑎 − 𝑏) ∈
𝐼. So, we can get 

�̅�(�̅�) = �̅�(𝑎 + 𝐼)  [Because �̅� = 𝑎 + 𝐼] 

= 𝑑(𝑎) + 𝐼  [Definition of �̅�] 

= 𝑑(𝑏) + 𝐼  [Because 𝑑(𝑎) − 𝑑(𝑏) = 𝑑(𝑎 − 𝑏) ∈ 𝐼] 

= �̅�(𝑏 + 𝐼)  [Definition of �̅�] 

= �̅�(�̅�)   [Because �̅� = 𝑏 + 𝐼] 

And for any �̅� = 𝑎 + 𝐼 ∈ 𝑅/𝐼, we have �̅�(�̅�) = 𝑑(𝑎) + 𝐼 ∈ 𝑅/𝐼 because 𝑎 ∈ 𝑅 and 𝑑 is a derivation on 𝑅. 

This means that �̅� is a mapping because it is well defined and closed. 

Next, from the definition of �̅� and for all 𝑟1̅, 𝑟2̅ ∈ 𝑅/𝐼 where 𝑟1̅ = 𝑟1 + 𝐼 and 𝑟2̅ = 𝑟2 + 𝐼, we obtain 

1. �̅�(𝑟1̅+̅𝑟2̅) = �̅�(𝑟1 + 𝐼+̅𝑟2 + 𝐼) 

= �̅�((𝑟1 + 𝑟2) + 𝐼) 

= 𝑑(𝑟1 + 𝑟2) + 𝐼 

= 𝑑(𝑟1) + 𝑑(𝑟2) + 𝐼 

= 𝑑(𝑟1) + 𝐼+̅𝑑(𝑟2) + 𝐼 

= �̅�(𝑟1 + 𝐼)+̅�̅�(𝑟2 + 𝐼) 

= �̅�(𝑟1̅)+̅�̅�(𝑟2̅) 

2. �̅�(𝑟1̅ ∙ ̅ 𝑟2̅) = �̅�((𝑟1 + 𝐼) ∙ ̅ (𝑟2 + 𝐼)) 

= �̅�((𝑟1 ∙ 𝑟2) + 𝐼) 

= 𝑑(𝑟1 ∙ 𝑟2) + 𝐼 

= 𝑑(𝑟1) ∙ 𝑟2 + 𝑟1 ∙ 𝑑(𝑟2) + 𝐼 

= 𝑑(𝑟1) ∙ 𝑟2 + 𝐼+̅𝑟1 ∙ 𝑑(𝑟2) + 𝐼 

= (𝑑(𝑟1) + 𝐼) ∙ ̅ (𝑟2 + 𝐼)+̅(𝑟1 + 𝐼) ∙ ̅ (𝑑(𝑟2) + 𝐼) 

= �̅�(𝑟1 + 𝐼) ∙ ̅ (𝑟2 + 𝐼)+̅(𝑟1 + 𝐼) ∙ ̅ �̅�(𝑟2 + 𝐼) 

= �̅�(𝑟1̅) ∙ ̅ 𝑟2̅+̅𝑟1̅ ∙ ̅ �̅�(𝑟2̅) 

From the description, it is clear that �̅� is the derivation on the factor ring 𝑅/𝐼. ∎ 

The following is an example of applying the Theorem 6. 

Example 4. Given a ring matrix 𝑀2(ℤ) = {[
𝑎 𝑏
𝑐 𝑑

] |𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ} with addition and multiplication 

operations on matrix with the derivation 𝑑: 𝑀2(ℤ) → 𝑀2(ℤ) where for all [
𝑎 𝑏
𝑐 𝑑

] ∈ 𝑀2(ℤ), 𝑑 ([
𝑎 𝑏
𝑐 𝑑

]) =

[
0 −𝑏
𝑐 0

]. An ideal of 𝑀2(ℤ), namely 𝐼 = {[
𝑒 𝑓
𝑔 ℎ

] |𝑒, 𝑓, 𝑔, ℎ ∈ 2ℤ}. A factor ring 𝑀2(ℤ)/𝐼 can be formed 

with the definition of addition operation “ +̅ ” and multiplication operation “ ∙ ̅” where for each 𝐴 + 𝐼, 𝐵 +
𝐼 ∈ 𝑀2(ℤ), define (𝐴 + 𝐼)+̅(𝐵 + 𝐼) = (𝐴 + 𝐵) + 𝐼 and (𝐴 + 𝐼) ∙ ̅ (𝐵 + 𝐼) = (𝐴 ∙ 𝐵) + 𝐼. We can define a 

function �̅�: 𝑀2(ℤ) → 𝑀2(ℤ) where �̅�(𝐴 + 𝐼) = 𝑑(𝐴) + 𝐼 for all 𝐴 + 𝐼 ∈ 𝑀2(ℤ)/𝐼. From Theorem 6, a 

mapping �̅� is a derivation on the factor ring 𝑀2(ℤ)/𝐼 because for all [
𝑎1 𝑎2

𝑎3 𝑎4
] + 𝐼, [

𝑏1 𝑏2

𝑏3 𝑏4
] + 𝐼 ∈ 𝑀2(ℤ)/𝐼 

we obtain 

1. �̅� ([
𝑎1 𝑎2

𝑎3 𝑎4
] + 𝐼+̅ [

𝑏1 𝑏2

𝑏3 𝑏4
] + 𝐼) = �̅� ([

𝑎1 + 𝑏1 𝑎2 + 𝑏2

𝑎3 + 𝑏3 𝑎4 + 𝑏4
] + 𝐼) 

= 𝑑 ([
𝑎1 + 𝑏1 𝑎2 + 𝑏2

𝑎3 + 𝑏3 𝑎4 + 𝑏4
]) + 𝐼 
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= [
0 −𝑎2 − 𝑏2

−𝑎3 − 𝑏3 0
] + 𝐼 

= [
0 −𝑎2

−𝑎3 0
] + 𝐼+̅ [

0 −𝑏2

−𝑏3 0
] + 𝐼 

= 𝑑 ([
𝑎1 𝑎2

𝑎3 𝑎4
]) + 𝐼+̅𝑑 ([

𝑏1 𝑏2

𝑏3 𝑏4
]) + 𝐼 

= �̅� ([
𝑎1 𝑎2

𝑎3 𝑎4
] + 𝐼) +̅�̅� ([

𝑏1 𝑏2

𝑏3 𝑏4
] + 𝐼) 

2. �̅� ([
𝑎1 𝑎2

𝑎3 𝑎4
] + 𝐼 ⋅̅ [

𝑏1 𝑏2

𝑏3 𝑏4
] + 𝐼) = �̅� ([

𝑎1𝑏1 + 𝑎2𝑏3 𝑎1𝑏2 + 𝑎2𝑏4

𝑎3𝑏1 + 𝑎4𝑏3 𝑎3𝑏2 + 𝑎4𝑏4
] + 𝐼) 

= 𝑑 ([
𝑎1𝑏1 + 𝑎2𝑏3 𝑎1𝑏2 + 𝑎2𝑏4

𝑎3𝑏1 + 𝑎4𝑏3 𝑎3𝑏2 + 𝑎4𝑏4
]) + 𝐼 

= [
0 −𝑎1𝑏2 − 𝑎2𝑏4

−𝑎3𝑏1 − 𝑎4𝑏3 0
] + 𝐼 

= ([
0 −𝑎2

−𝑎3 0
] ⋅ [

𝑏1 𝑏2

𝑏3 𝑏4
] + [

𝑎1 𝑎2

𝑎3 𝑎4
] ⋅ [

0 −𝑏2

−𝑏3 0
]) + 𝐼 

= [
0 −𝑎2

−𝑎3 0
] ⋅ [

𝑏1 𝑏2

𝑏3 𝑏4
] + 𝐼+̅ [

𝑎1 𝑎2

𝑎3 𝑎4
] ⋅ [

0 −𝑏2

−𝑏3 0
] + 𝐼 

= ([
0 −𝑎2

−𝑎3 0
] + 𝐼 ⋅̅ [

𝑏1 𝑏2

𝑏3 𝑏4
] + 𝐼) +̅ ([

𝑎1 𝑎2

𝑎3 𝑎4
] + 𝐼 ⋅̅ [

0 −𝑏2

−𝑏3 0
] + 𝐼) 

= (𝑑̅ ([
𝑎1 𝑎2

𝑎3 𝑎4
] + 𝐼) ⋅̅ [

𝑏1 𝑏2

𝑏3 𝑏4
] + 𝐼) +̅ ([

𝑎1 𝑎2

𝑎3 𝑎4
] + 𝐼 ⋅̅ 𝑑̅ ([

𝑏1 𝑏2

𝑏3 𝑏4
] + 𝐼)) 

 

Theorem 7. Let a ring R with unity, a derivation on ring R with definition 𝑑: 𝑅 → 𝑅, (∀𝑟 ∈ 𝑅)𝑟 ⟼ 𝑑(𝑟), 

and the ideal 𝐼 ⊆ 𝑅 . In the factor ring 𝑅/𝐼, we can construct a derivation �̅�: 𝑅/𝐼 → 𝑅/𝐼 with the definition 

�̅�(𝑎 + 𝐼) =  𝑑(𝑎) + 𝐼 for all 𝑎 + 𝐼 ∈ 𝑅/𝐼. If 𝑅𝑑 = {𝑟 ∈ 𝑅|𝑑(𝑟) = 0𝑅} is a ring of constant of d and 𝐼 ⊆ 𝑅𝑑, 

then factor ring 𝑅𝑑/𝐼 = {𝑎 + 𝐼 ∈ 𝑅/𝐼|𝑎 ∈ 𝑅𝑑} is a subring of ring of constant of �̅�. 

Proof. We can show that if ring 𝑅𝑑 = {𝑟 ∈ 𝑅|𝑑(𝑟) = 0𝑅} is a ring of constant of the derivation 𝑑 and 𝐼 ⊆

𝑅𝑑, then factor ring 𝑅𝑑/𝐼 = {𝑎 + 𝐼 ∈ 𝑅/𝐼|𝑎 ∈ 𝑅𝑑} is a subring of ring of constant of the derivation �̅�. 

Assume that the set (𝑅/𝐼)�̅� = {𝑟 + 𝐼 ∈ 𝑅/𝐼|�̅�(𝑟 + 𝐼) = 0𝑅 + 𝐼} is a ring of constant of the derivation �̅�. We 

have the fact that the set 𝐼 is ideal of 𝑅. Because of 𝐼 ⊆ 𝑅𝑑 and 𝑅𝑑 is a ring, then 𝐼 is an ideal of 𝑅𝑑 too. So, 

we can construct the set 𝑅𝑑/𝐼 = {𝑎 + 𝐼 ∈ 𝑅/𝐼|𝑎 ∈ 𝑅𝑑}. First, for all 𝑎 + 𝐼 ∈ 𝑅𝑑/𝐼 ⊆ 𝑅/𝐼 we know 𝑎 + 𝐼 ∈
𝑅/𝐼. Because we have �̅� as a derivation of factor ring 𝑅/𝐼, we get �̅�(𝑎 + 𝐼) = 𝑑(𝑎) + 𝐼 ∈ 𝑅/𝐼. Because 

element 𝑎 ∈ 𝑅𝑑 and ring 𝑅𝑑 is a ring of constant of the derivation 𝑑, so �̅�(𝑎 + 𝐼) = 𝑑(𝑎) + 𝐼 = 0𝑅 + 𝐼. It’s 

mean that 𝑎 + 𝐼 ∈ (𝑅/𝐼)�̅� or 𝑅𝑑/𝐼 ⊆ (𝑅/𝐼)�̅�. And then, for all 𝑎 + 𝐼, 𝑏 + 𝐼 ∈ 𝑅𝑑/𝐼 ⊆ 𝑅/𝐼 we get 𝑎 +
𝐼+̅(−𝑏) + 𝐼 = (𝑎 − 𝑏) + 𝐼 ∈ 𝑅𝑑/𝐼 and (𝑎 + 𝐼) ∙ ̅ (𝑏 + 𝐼) = 𝑎 ∙ 𝑏 + 𝐼 ∈ 𝑅𝑑/𝐼 because 𝑎, 𝑏 ∈ 𝑅𝑑 and 𝑅𝑑 is a 

ring of constant of the derivation 𝑑. Based on Theorem 1, it can be concluded that 𝑅𝑑/𝐼 is a subring of the 

ring of constant of the derivation �̅�, i.e. (𝑅/𝐼)�̅�. ∎ 

 

4. CONCLUSIONS 

A commutative ring R with unit elements along with a set A is provided with a derivation 𝑑: 𝑅 → 𝑅 

will have a derivation on the divisor ring defined by 𝛿𝐴: 𝑅𝐴 → 𝑅𝐴, for all 
𝑟

𝑎
∈ 𝑅𝐴, 𝛿 (

𝑟

𝑎
) =

𝑑(𝑟)∙𝑎−𝑟∙𝑑(𝑎)

𝑎2  with 

𝑅𝐴 = {
𝑟

𝑎
|𝑟 ∈ 𝑅, 𝑎 ∈ 𝐴}. The derivation of the divisor ring also has several properties such as if 𝑅𝑑 =

{𝑟 ∈ 𝑅|𝑑(𝑟) = 0𝑅} is a subring of 𝑅 or as a ring constant of 𝑑 and 𝑅𝐴
𝛿𝐴 = {

𝑟

𝑎
∈ 𝑅𝐴|𝛿𝐴 (

𝑟

𝑎
) = 0𝑅𝐴

} is a subring 

of 𝑅𝐴 or as a ring of constant of 𝛿𝐴, then ring 𝑅𝑑 is a subring of ring 𝑅𝐴
𝛿𝐴. It is also possible to construct a 

ring derivation on the cartesian product ring by definition ∏ 𝑑𝑖
𝑛
𝑖=1 : ∏ 𝑅𝑖

𝑛
𝑖=1 → ∏ 𝑅𝑖

𝑛
𝑖=1  for all (𝑟1, 𝑟2, … , 𝑟𝑛) ∈

∏ 𝑅𝑖
𝑛
𝑖=1 , ∏ 𝑑𝑖

𝑛
𝑖=1 ((𝑟1, 𝑟2, … , 𝑟𝑛)) = (𝑑1(𝑟1), 𝑑2(𝑟2), … , 𝑑𝑛(𝑟𝑛)) and derivation on factor ring by definition 

�̅�: 𝑅/𝐼 → 𝑅/𝐼 for all 𝑎 + 𝐼 ∈ 𝑅/𝐼, �̅�(𝑎 + 𝐼) = 𝑑(𝑎) + 𝐼. 
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