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1. INTRODUCTION 

Nonlinear waves and vortices are often described by partial differential equations, whose solutions 

cannot be found analytically even in a space of one dimension. As it is clear to all, solitons play a crucial role 

in diverse areas of scientific disciplines such as plasma physics, quantum electronics, and nonlinear optics, 

as they are valuable tools for understanding the dynamics of nonlinear phenomena modeled [1]. The 

Korteweg-de Vries (KdV) equation is one of the nonlinear partial differential equations that has a key role in 

wave physics and many other disciplines [2]. For most nonlinear wave equations arising in physical 

applications, their solitary wave solutions can be obtained only numerically. Numerical computations are 

used to approximate various solutions, including stationary solutions [3]. Some numerical methods can be 

applied to find the solutions of nonlinear wave equations, but most of the recent studies focus on the so-called 

imaginary-time evolution method (ITEM), also referred to as the normalized gradient flow method (see in 

[4], [5], [6], [7], [8]). However, ITEM cannot specify the propagation constant 𝜇 of solitary wave and is 

instead computed using the available approximation to the stationary solution at each iteration. One numerical 

method that can be used to seek a solitary wave with a specified propagation constant rather than with a 

specified power is called the Newton method [8]. The numerical method used to determine the stationary 

waves of the NLS equation is the Petviashvili iteration method. One example of it is the NLS equation 

generated by the theory of Bose-Einstein condensation. However, the equation of this theory is the NLS 

equation with potential function. The existence of a potential function causes modification in the Petviashvili 

iteration method [9]. The modified method is known to be very fast and also to be able to converge to both 

fundamental and excited-state solitary waves [10]. On the other hand, there is an effective numerical for 

computing solitary wave solutions quickly in a space of two dimensions proposed by V. I. Petviashvili in the 

context of the Kadomtsev-Petviashvili equation with positive dispersion in 1976 [11]. Petviasvili’s numerical 

method was applied to numerous nonlinear problems in modern mathematical physics to find the solitary 

waves [12]. 

Petviashvili’s method is one of the most popular schemes to obtain solitary waves as the solutions of 

nonlinear stationary wave equations [11]. This method is well suited to handle a large class of equations and 

can easily be adapted to further constraints and components. It has some advantages such as the elegant way 

to find the stationary solutions for nonlinear solitary waves. The algorithm is not complicated and can be 

implemented easily. Furthermore, this method has quick convergence and good accuracy, which is the 

smallest error limit 10−10 [𝟏𝟑]. Several recent interest research communities study the application of Bose-

Einstein condensation by using the Petviashvili method. However, they applied the Petviashvili method to 

find a stationary wave solution of nonlinear solitary waves for single equation. Then, the purpose of this 

research is to obtain the stationary wave solution for system equations. We walk on the specific equation, 

namely, a two-component system of Nonlinear Schrödinger Equation (NLSE). 

This research is organized as follows. First, we recast the original Petviashvili method into an 

equivalent form. All subsequent analyses will be carried out for that equivalent formulation of the 

Petviashvili method. We give the generalization for single and system wave equations in the second part and 

also show the convergence of this scheme. Third, presents the numerical computation results for 2-D 

and its discussion. There is a  two-component system of nonlinear Schrödinger equations and its system 

contains a small positive parameter value (ε). Finally, we have the concluding remarks. 

 

2. RESEARCH METHODS 

In this part, we explain about NLSE that given by 
 

{
 
 

 
 
𝑖𝑈𝑡 + ∇

2𝑈 + 𝜇1|𝑈|
𝑝−1𝑈 + 𝛽|𝑉|2𝑈 = 0

𝑖𝑉𝑡 + ∇
2𝑉 + 𝜇2|𝑉|

𝑞−1𝑉 + 𝛽|𝑈|2𝑉 = 0

𝑥 ∈ ℝ𝑛, 𝑡 > 0
𝑈 = 𝑈(𝑥, 𝑡), 𝑉 = 𝑉(𝑥, 𝑡) ∈ ℂ

𝑈(𝑥, 𝑡), 𝑉(𝑥, 𝑡) → 0, 𝑎𝑠 |𝑥| → ∞, 𝑡 > 0

 (1) 

 
where 𝜇𝑗 > 0 are positive constants, 𝑛 ≤ 3, and 𝛽 ∈ ℝ is a coupling constant, 𝑝, 𝑞 > 2. The system above 

has applications in many physical problems, especially in nonlinear optics. Physically, the solution (𝑈, 𝑉) 
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denotes the two-component beam in Kerr-like photorefractive media [1]. The positive constant 𝜇𝑗  is for self-

focusing in the 𝑗-th component of the beam. The coupling constant 𝛽 is the interaction between two 
components of the beam. As 𝛽 > 0, the interaction is attractive, but the interaction is repulsive if 𝛽 <  0. To 
obtain solitary wave solutions of the system above, we may set the system of solitary wave solutions [14] for 
system equations as follows: 
 

{
𝑈(𝑥, 𝑡) = 𝑒𝑖𝜆1𝑡𝑢(𝑥)

𝑉(𝑥, 𝑡) = 𝑒𝑖𝜆2𝑡𝑣(𝑥)
(2) 

 
Then, we may transform the system to steady-state two coupled nonlinear Schrodinger equations that 

are given by 
 

{

∇2𝑢 − 𝜆1𝑢 + 𝜇1𝑢
3 + 𝛽𝑢𝑣2 = 0 ∈ ℝ𝑛

∇2𝑣 − 𝜆2𝑣 + 𝜇2𝑣
3 + 𝛽𝑢2𝑣 = 0 ∈ ℝ𝑛

𝑢, 𝑣 > 0 ∈ ℝ𝑛, 𝑢, 𝑣(𝑥) → 0, 𝑎𝑠 |𝑥| → +∞.

(3) 

 

The existence of ground state (i.e. least energy) solutions of the system may depend on the coupling 
constant 𝛽. When 𝛽 is positive but sufficiently small, the system has a ground-state solution (𝑢, 𝑣). On the 
other hand, as 𝛽 becomes negative, there is no ground-state solution to it. In this research, we show the 
existence of solitary wave solutions if 𝛽 is negative and |𝛽| is positive and small enough. 

In this part, we first remodel the Petviashvili method into a different form, but the form is still 
equivalent to the original method, yielding the Petviashvili Iteration Method [11]. It is said to be equivalent 
because to reformulate its scheme, it is needed to apply the Taylor expansion to take the linear part and needs 
some algebraic manipulations just to make a different form. The reformulation of the original Petviashvili 
method will be discussed in detail for our generalization of the Pethviashvili method in this section. 

2.1 Generalized Petviashvili Method for Single Equation 

Before we show the details of a generalized Peviashvili method we would like to introduce why the 

single scheme of this method needs to be reconstructed to be equivalent form over the original scheme. We 

have two underlying reasons of Equation (13) below is preferred over the original Petviashvili method for 

the subsequent generalization of the method. First, the generalization Petviashvili method can select the value 

of the new parameter Δ𝜏 to control its convergence. Second, it is free from difficulties that there exist in the 

original Petviashvili method (i.e, if 
〈𝑢𝑛,𝑢𝑛

𝑝
〉

〈𝑢𝑛,𝑀𝑢𝑛〉
< 0) in the original scheme, then it cannot be raised to non-

integer power unless 𝑢𝑛+1 is complex-valued. Due to the form in the generalized Petviashvili method is 

linear, it does not have the parentheses part power 𝛾 that is mentioned in the original Petviashvili scheme. 

The first point of a relation that will be crucial thing for this case is the eigenvalue problem. It has 

eigenvalue-eigenfunction pair. The form of the following is obtained by linearizing the fundamental solitary 

wave solutions of stationary scalar nonlinear wave equations with power-law nonlinearity 𝑀𝑢 + 𝑢𝑝  =  0, 

where 𝑀 is a positive definite and self-adjoint operator and 𝑝 is a constant. 

𝐿𝑢 = (𝑝 − 1)𝑀𝑢 (4) 
 
or, similarly by 

𝑀−1𝐿𝑢 = (𝑝 − 1)𝑢 (5) 
 

Hence, we have 𝑢 is an eigenfunction of the operator 𝑀−1𝐿 and 𝑝 − 1 is eigenfunction of 𝑀−1𝐿. Since 
our process always needs the eigenvalue-eigenfunction pair, then Equation (5) is the key relation of this 
problem. Based on Equation (5), we describe a reason why we need a generalization for this method. We 
will walk on the system equations and we want to obtain the stationary wave solution for nonlinear solitary 
waves of two-component system with self-focusing cubic of the nonlinear Schrödinger equation by using the 
Petviashvili method. However, there are some problems. First, the eigenvalue cannot be found directly. 
Second, the case is system equations. The last problem is we consider several parameters such as coupling 
constant parameter 𝛽 which is located in the interaction of two-component 𝑢 and 𝑣. The coupling constant 𝛽 
is the interaction between two beam components and it influences the behavior of the wave solutions. The 
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important thing is to find the convergence solutions for this problem by having a suitable definite positive 
and self-adjoint operator. Thus, for the two-component equation for single equation (first equation of System 
Equation (3)) we have a coupling constant and two-component 𝑢 and 𝑣 in one term, then we have a linearized 
operator as follows 

 
𝐿 = −𝑀 + 3𝜇𝑢2 + 𝛽𝑣2 (6) 

 
Then, 

𝐿𝑢 = −𝑀𝑢 + 3𝜇𝑢3 + 𝛽𝑢𝑣2 = 2(𝑀 − 𝛽𝑣2)𝑢 ≠ 𝑐𝑜𝑛𝑡 ∙ 𝑀𝑢 
The equation above is the main problem of this case. As a solution, we should find a suitable positive 

definite and self-adjoint operator to process the algorithm. Suppose that 𝑀 in Equation (5) is given by a 
positive definite and self-adjoint operator. Since we do not know whether (𝑀 − 𝛽𝑣2) is invertible or not, we 
should approximate it by replacing it with the simplest ansatz. Thus Equation (4) can be approached by using 

 
𝐿𝑢 ≈ 𝛼𝑁𝑢 (7) 

 
where 𝑁 is 

𝑁 = 𝑐 − ∇2 (8) 
 
Here 𝑐 is to be determined from the condition that the “vector” 𝑁𝑢𝑛 be “aligned along” “vector” 𝐿𝑢𝑛 as 
closely as possible and it is obtained numerically. Therefore, we require that 
 

〈𝑁𝑢𝑛, 𝐿𝑢𝑛〉
2

〈𝑁𝑢𝑛, 𝑁𝑢𝑛〉〈𝐿𝑢𝑛, 𝐿𝑢𝑛〉
= 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (9) 

 
Differentiating the left-hand solutions (l.h.s) of the above condition with respect to 𝑐 and setting the result to 
zero, one obtains 
 

〈𝑁𝑐𝑢𝑛, 𝐿𝑢𝑛〉

〈𝑁𝑐𝑢𝑛, 𝑁𝑢𝑛〉
=
〈𝑁𝑢𝑛, 𝐿𝑢𝑛〉

〈𝑁𝑢𝑛, 𝑁𝑢𝑛〉
(10) 

 

where 𝑁𝑐 ≡
𝜕𝑁

𝜕𝑥
= 1. Then, it yields the value for 𝑐 at the 𝑛-th iteration: 

 

𝑐𝑛 =
〈𝑢𝑛, 𝐿𝑢𝑛〉〈∇

2𝑢𝑛, ∇
2𝑢𝑛〉 − 〈∇

2𝑢𝑛, 𝐿𝑢𝑛〉〈𝑢𝑛, ∇
2𝑢𝑛〉

〈𝑢𝑛, 𝐿𝑢𝑛〉〈𝑢𝑛, ∇
2𝑢𝑛〉 − 〈∇

2𝑢𝑛, 𝐿𝑢𝑛〉〈𝑢𝑛, 𝑢𝑛〉
(11) 

 

It is straightforward to verify that for equations with power-law nonlinearity with 𝑀, Equation (10) yields 

𝑐 = 𝜇 and hence 𝑁 =  𝑀. 

Now that 𝑁 has been determined from Equation (7) and Equation (10), the approximate eigenvalue 
𝛼 in Equation (7) can be found from 

 

𝛼𝑛 =
〈𝑢𝑛, 𝐿𝑢𝑛〉

〈𝑢𝑛,𝑁𝑢𝑛〉
(12) 

 
Refer to the explanation above, we then construct the following counterpart of the algorithm that is 

described in detail below by Equation (13) 
 

𝑢𝑛+1 − 𝑢𝑛 = (𝑁−1(𝐿1𝑢)𝑛 − 𝛾
〈𝑢𝑛, (𝐿𝑢)𝑛〉

〈𝑢𝑛, 𝑀𝑢𝑛〉
𝑢𝑛)Δ𝜏 (13) 

 

We have the optimum 𝛾 as the following 
 

𝛾 = 1 +
1

𝛼Δ𝜏
(14) 
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In Equation (13), 𝐿1𝑢 = −𝑁𝑢𝑛 + 𝑢𝑛
𝑝

. Thus, Equation (8), Equation (11), Equation (12), and 

Equation (13) supply all necessary information for the application of the generalized Petviashvili method. 

Furthermore, we want to describe the details of how to change the original algorithm Petviashvili 

Iteration Method [12] into a different form, said Equation (13). We begin by denoting the stationary equation 

whose solitary wave is what we want to find. The scheme for single equation is a famous method to solve the 

nonlinear solitary wave, but rarely for the system equation. As the challenge, in this article, we would like to 

construct the single scheme to be a system scheme and apply it to the two-component system of NLSE. For 

the basic, as background, we show the details process to recast the scheme for single equation. In the first 

part, we introduce the notation below 

 

𝐿0𝑢 = −𝑀 + 𝑢𝑝−1 = 0 (15) 
 
where 𝑀 is a definite positive and self-adjoint operator and 𝑢 is the exact solitary wave. By applying some 
algebraic manipulations, then we obtain 
 

𝑢𝑛+1 − 𝑢𝑛 = 𝑀
−1𝑢𝑛

𝑝
(
〈𝑢𝑛, 𝑢𝑛

𝑝〉

〈𝑢𝑛, 𝑀𝑢𝑛〉
)

−𝛾

− 𝑢𝑛 

= (𝑢𝑛 −𝑀
−1𝑀𝑢𝑛 +𝑀

−1𝑢𝑛
𝑝
) (
〈𝑢𝑛, 𝑀𝑢𝑛〉 + 〈𝑢𝑛, −𝑀𝑢𝑛 + 𝑢𝑛

𝑝〉

〈𝑢𝑛,𝑀𝑢𝑛〉
)

−𝛾

− 𝑢𝑛 

= (𝑢𝑛 −𝑀
−1(𝐿0𝑢)𝑛) (1 +

〈𝑢𝑛, (𝐿0𝑢)𝑛〉

〈𝑢𝑛, 𝑀𝑢𝑛〉
)

−𝛾

− 𝑢𝑛 (16) 

 
where  

(𝐿0𝑢)𝑛 ≡ −𝑀𝑢𝑛 + 𝑢𝑛
𝑝

 
 

A good result of numerical approximation is obtained if we can find the numerical solution near the 
exact solution. We hope the above scheme is close to the exact solution 𝑢, then, we may linearize by 
substituting Equation (7) into Equation (16) and the result is in the following 

 
𝑢𝑛 = 𝑢 + �̃�𝑛, ‖�̃�𝑛‖ ≪ |𝑢| (17) 

 
We apply the Taylor expansion and we just consider the term of order Ο(�̃�𝑛). In this step, we obtain 

the left-hand side is 
 

𝑢𝑛+1 − 𝑢𝑛  =  𝑢 + �̃�𝑛+1 −  𝑢 − �̃�𝑛 
= �̃�𝑛+1 − �̃�𝑛  

 

Here we should substitute Equation (17) into (𝐿0𝑢)𝑛 = −𝑀𝑢𝑛 + 𝑢𝑛
𝑝

 to obtain the linearized term for 

r.h.s. Here we choose 𝑝 =  3. Hence, we obtain 
 

(𝐿0𝑢)𝑛 = −𝑀(𝑢 + �̃�𝑛) + (𝑢 + �̃�𝑛)
3 = −𝑀𝑢 + 𝑢3 + �̃�𝑛(−𝑀 + 3�̃�2) 

= 𝐿0𝑢 + 𝐿�̃� 
 
we need the information above to linearize the r.h.s. of Equation (6). Thus, we obtain the right-hand side of 
the following 
 

(𝑀−1𝐿�̃�𝑛 − 𝛾
〈𝑢𝑛, 𝐿�̃�𝑛〉

〈𝑢𝑛,𝑀𝑢〉
𝑢)Δ𝜏 

 
or for both sides, we can rewrite it to be 
 

𝑢𝑛+1 + �̃�𝑛 = (𝑀
−1𝐿�̃�𝑛 − 𝛾

〈𝑢𝑛, 𝐿�̃�𝑛〉

〈𝑢𝑛,𝑀𝑢〉
𝑢)Δ𝜏 (18) 

 
with the optimum value of Δ𝜏 on Equation (20) 
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Δ𝜏 = 1 (19) 
 

where 𝐿 is the linearized operator of Equation (15) 

𝐿�̃�𝑛 ≡ (−𝑀 + 𝑝𝑢𝑝−1)�̃�𝑛 (20) 

 
Refer to [10], Equation (18) is interpreted as the explicit Euler discretization of the following 

continuous linear flow 
 

�̃�𝜏 = 𝑀
−1𝐿�̃� − 𝛾

〈𝑢, 𝐿�̃�〉

〈𝑢𝑛, 𝑀𝑢〉
𝑢 (21) 

 

where 𝜏 is the auxiliary (nonphysical) ”time” variable. According to [10] we may ”delinearize” the above 
continuous flow to be 

 

�̃�𝜏 = 𝑀
−1𝐿0�̃� − 𝛾

〈�̅�, 𝐿�̅�〉

〈�̅�, 𝑀�̅�〉
�̅� (22) 

 
Since 𝑢 depends on 𝜏, then 𝑢 is namely the ”current” approximation to the exact solitary wave 𝑢. That 

is, if one linearizes Equation (22) via a continuous analog of Equation (17), one will obtain Equation (21) 
[10]. Therefore, we need to discretize Equation (22) in time using the explicit Euler method and it is a 
generalized of the original Petviashvili method. Its scheme is shown in the following 
 

𝑢𝑛+1 + 𝑢𝑛 = (𝑀−1(𝐿0𝑢)𝑛 − 𝛾
〈𝑢𝑛, (𝐿0𝑢)𝑛〉

〈𝑢𝑛, 𝑀𝑢〉
𝑢)Δ𝜏 (23) 

 
Equation (23) with ∆𝜏 =  1 is equivalent to the original Petviashvili algorithm for single equation. 

Indeed, Equation (8) still can converge to the solitary wave 𝑢 without ∆𝜏 parameter. However, we put this 
parameter into the scheme because it can make the solutions converge quickly. As a reminder of this research,  
Equation (23) is also equivalent to the Petviashvili method when given ∆𝜏 ≈ 1. Moreover, we should replace 
the definite positive and self-adjoint operator 𝑀 by the simplest ansatz 𝑁 to obtain the approximate 
eigenvalue-eigenfunction pair first, see Equation (13). Equation (23) represents the generalized Petviashvili 
method for single and acts as clues to develop the generalized scheme for system equations proposed in this 
chapter, which is one of two main results of this research and will be based on this reformulated version of 
the original algorithm. 
 

2.2 Generalized Petviashvili Method for System Equations 

This section contains the first main result of this study. Namely, we will show how the Petviashvili 

method can be generalized for a system equation of the form 

𝐿0 (
𝑢
𝑣
) ≡ −𝑀(

𝑢
𝑣
) + 𝜇𝑗 (

𝑢3

𝑣3
) + 𝛽 (𝑢𝑣

2

𝑣𝑢2
) = 0, 𝑗 = 1,2 (24) 

where 𝜇𝑗 > 0’s are positive constants, 𝑛 ≤ 3, and 𝛽 is a coupling constant. Next, we will simulate it in 

Chapter 3. 

Recall that one of the key results of this section is Equation (4). We will seek to obtain a counterpart 

of Equation (4) for Equation (24). In the aforementioned physical applications, 𝑀 is given. The linearized 

operator 𝐿 in this case is 

𝐿 = −𝑀 (
𝑢
𝑣
) + 3𝜇𝑗 (

𝑢2

𝑣2
) + 𝛽 (𝑣

2

𝑢2
) , 𝑗 = 1,2 (25) 

 
and hence 

𝐿 (
𝑢
𝑣
) = −𝑀(

𝑢
𝑣
) + 3𝜇𝑗 (

𝑢3

𝑣3
) + 𝛽 (𝑢𝑣

2

𝑣𝑢2
) (26) 
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= 2(𝑀 − 𝛽 (𝑣
2 0
0 𝑢2

)) (
𝑢
𝑣
) ≠ 𝑐𝑜𝑛𝑠𝑡.𝑀 (

𝑢
𝑣
) (27) 

 
Thus, an exact counterpart for a general stationary wave in Equation (25) cannot be obtained. We don’t know 

(𝑀 − 𝛽 (𝑣
2 0
0 𝑢2

)) 

is invertible or not. As a solution to the above problem, we propose to seek such a positive definite and self-

adjoint operator 𝑁 that the counterpart of Equation (24) would approximately hold: 

𝐿 (
𝑢
𝑣
) = (

𝛼1 0
0 𝛼2

)𝑁 (
𝑢
𝑣
) (28) 

 

Here both 𝑁 and the constants 𝛼1, 𝛼2 remain to be determined. Given such, 𝛼1, and 𝛼2, then we 

construct the counterpart of the algorithm for the system equation. For the easy way, we follow Equation 

(18) and Equation (19) to construct the generalization for the system scheme. 

For the system, we show how the operator 𝑁 and constants 𝛼1, 𝛼2 in Equation (28) can be determined 

efficiently. It should be noted that we cannot give the most general recipe in this regard, simply because there 

are infinitely many possibilities here, as it will become clear as we proceed. Instead, we will consider in detail 

only one typical case that arises in many applications and will show how 𝑁 can be found for it. At the end of 

this subsection, we will also briefly comment on another example of finding 𝑁. 

This research aims to obtain the solitary wave solution of the system of nonlinear solitary wave 

equations for a two-component system of NLSE. We should construct the generalization of the Petviasvili 

method first to solve the case of two-component system of nonlinear Schrödinger equations. Let us construct 

the algorithm for system equations and find out the optimal value 𝛾. One substitutes the following 

decomposition of �̃�𝑛 and �̃�𝑛 into Equation (18): 

(
�̃�
�̃�
)
𝑛
(𝐱) = (

𝛼𝑛 0
0 𝑏𝑛

) (
𝑢
𝑣
) (𝐱) + (

𝑧
𝑠
)
𝑛
(𝐱) (29) 

 
where 𝑎𝑛 and 𝑏𝑛 are scalars (i.e., not a function of 𝐱), 𝑧𝑛 and 𝑠𝑛 are chosen to be orthogonal to 𝑁𝑢 and 𝑁𝑣  at 
every iteration: 

〈(
𝑧
𝑠
)
𝑛
, 𝑀 (

𝑢
𝑣
)
𝑛
〉 = 0 𝑜𝑟 〈𝑀 (

𝑧
𝑠
)
𝑛
, (
𝑢
𝑣
)
𝑛
〉 = 0, ∀𝑛 (30) 

 
We know that is the key relation, which is to establish its counterpart for a more general equation of Equation 
(24). It will correspondingly be one of the key steps in the generalization of the Petviashvili method. Since 
we have used the fact that the linearized operator 𝐿 is self-adjoint operator, then note that from Equation (18) 
there follow the orthogonality relations 
 

〈(
𝑧
𝑠
)
𝑛
, 𝐿 (

𝑢
𝑣
)
𝑛
〉 = 0 𝑜𝑟 〈𝐿 (

𝑧
𝑠
)
𝑛
, (
𝑢
𝑣
)
𝑛
〉 = 0, ∀𝑛 (31) 

 
We continue with the analysis of the evolution of the error �̃�𝑛 with 𝑛. Substituting decomposition 

Equation (37) into Equation (18), using relation Equation (4) and the second of the orthogonality conditions 
Equation (31). However, we know that we cannot find the eigenvalues directly in this case, so we should 
replace 𝑝 −  1 and 𝑞 −  1 by 𝛼1and 𝛼2 respectively, where 𝛼1 and 𝛼2 are the approximation of eigenvalues. 
Then, one obtains: 

 

(
𝑎𝑛+1 − 𝑎𝑛 0

0 𝑏𝑛+1 − 𝑏𝑛
) (
𝑢
𝑣
) + (

𝑧𝑛+1 − 𝑧𝑛 0
0 𝑠𝑛+1 − 𝑠𝑛

) = 𝑀−1𝐿 (
𝑧𝑛+1 − 𝑧𝑛 0

0 𝑠𝑛+1 − 𝑠𝑛
)  Δ𝜏 

+(
𝑎𝑛+1 − 𝑎𝑛 0

0 𝑏𝑛+1 − 𝑏𝑛
) (
𝑢
𝑣
)(
𝛼1 0
0 𝛼2

) (1 − (
𝛾1
𝛾2
)) Δ𝜏 (32) 

 
Then, taking the inner product of this equation with 𝑀𝑢 and 𝑀𝑣 and using the orthogonality conditions 

Equation (30) and Equation (31), one gets 
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(
𝑎𝑛+1
𝑏𝑛+1

) = (
𝑎𝑛
𝑏𝑛
) (1 + (

𝛼1 0
0 𝛼2

) (1 − (
𝛾1
𝛾2
)))Δ𝜏 (33) 

 
 Then when 

𝛾1 = 1 +
1

𝛼1Δ𝜏
(34) 

𝛾2 = 1 +
1

𝛼2Δ𝜏
(35) 

 
𝑎𝑛+1 = 𝑏𝑛+1 = 0, i.e. the component of the error �̃�𝑛+1, �̃�𝑛+1 ”along” the eigenfunction 𝑢, 𝑣 respectively are 
zero (in the order 𝑂(�̃�𝑛) and 𝑂(�̃�𝑛), no matter what this component was at the 𝑛-th iteration. Note that for 
∆𝜏 =  1, formula Equation (34) and Equation (35) yield the optimal value of generalization Petviashvili 
method. Here, 𝛼1and 𝛼2 are eigenvalues. 

To find the generalization Petviashvili method for system equation we may have an extension of 
Equation (21) to the vector case: 

(
�̃�
�̃�
)
𝜏
= 𝑁−1𝐿 (

�̃�
�̃�
) −∑𝛾𝑘

〈𝑒𝑘 , 𝐿 (
�̃�
�̃�
)〉

〈𝑒𝑘 , 𝑁𝑒𝑘〉
𝑒𝑘

2

𝑘=1

(36) 

𝛾𝑘 = 1 +
1

𝛼𝑘Δ𝜏
, 𝛼𝑘 =

〈𝑒𝑘 , 𝐿𝑒𝑘〉

〈𝑒𝑘, 𝑁𝑒𝑘〉
, 𝑘 = 1,2 (37) 

 
where 𝑁 is a self-adjoint operator, a positive definite matrix operator, whose form will be discussed shortly. 
For the notation on the following, we follow the paper of [10] where 𝑒𝑘 and 𝛼𝑘 are the approximate 

eigenvectors and eigenvalues of 𝑁−1𝐿: 
𝐿𝑒𝑘 ≈ 𝛼𝑘𝑁𝑒𝑘 (38) 

 
Now, we discuss the computationally efficient choice of operator 𝑁 and vector 𝑒𝑘. This choice makes 

the generalization of the method to the case of system equations nontrivial. Hence, it constitutes an important 
technical result of this section. The form of 𝑁 that we advocate 

 

𝑁 = (
𝑁1 0
0 𝑁2

) ,𝑁𝑘 = 𝑐𝑘 − 𝑑𝑘∇
2, 𝑘 = 1,2 (39) 

 
Let us now show how 𝑐1,2 and 𝑑1,2 can be computed while assuming a general form of the eigenvector 𝑒𝑘, 

and then will argue that one can and should take 𝑒𝑘 = (𝑢, 𝑣)
𝑇 . Let 

 

𝐿 ≡ (
𝐿11 𝐿12
𝐿21 𝐿22

) , 𝑒1 ≡ (
𝑒11
𝑒21
) (40) 

 
where each of 𝐿𝑖𝑗  is a self-adjoint operator. In a similar way in [13] we require that 

 
〈𝑁𝑒1, 𝐿𝑒1〉

2

〈𝑁𝑒1, 𝑁𝑒1〉〈𝐿𝑒1, 𝐿𝑒1〉
= 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (41) 

 
and then we find the equations for 𝑐1,2 and 𝑑1,2 by setting the derivatives of the l.h.s with respect to these 

parameters to zero. Thus, similarly to Equation (25), one obtains 
 

〈𝑁𝑟𝑒1, 𝐿𝑒1〉

〈𝑁𝑟𝑒1, 𝑁𝑒1〉
=
〈𝑁𝑒1, 𝐿𝑒1〉

〈𝑁𝑒1, 𝑁𝑒1〉
, 𝑁𝑟 ≡

𝜕𝑁

𝜕𝑟
, 𝑟 = 𝑐1, 𝑐2, 𝑑1, 𝑑2 (42) 

 
The solution of Equation (42) can most easily be found by using a similarly way for one equation in Section 
2.1. Equating the l.h.s with 𝑟 = 𝑐𝑘 to those with the corresponding 𝑟 = 𝑑𝑘 yields: 
 

𝜂𝑘 ≡
𝑐𝑘
𝑑𝑘
=
〈(〈∇2𝑒𝑘1, ∑ 𝐿𝑘𝑗𝑒𝑗1

2
𝑗=1 〉𝑒𝑘1 − 〈𝑒𝑘1 , ∑ 𝐿𝑘𝑗𝑒𝑗1

2
𝑗=1 〉∇2𝑒𝑘1), ∇

2𝑒𝑘1〉

〈(〈∇2𝑒𝑘1, ∑ 𝐿𝑘𝑗𝑒𝑗1
2
𝑗=1 〉𝑒𝑘1 − 〈𝑒𝑘1, ∑ 𝐿𝑘𝑗𝑒𝑗1

2
𝑗=1 〉∇2𝑒𝑘1), 𝑒𝑘1〉

(43) 

where 𝑘 = 1,2. 
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Then, equating the l.h.s’s of Equation (41) with 𝑟 = 𝑐1 and 𝑟 = 𝑐2 yields 
 

𝑑2
𝑑1
=
〈𝑒11, (𝜂1 − ∇

2)𝑒11〉〈𝑒21, ∑ 𝐿2𝑗𝑒𝑗1
2
𝑗=1 〉

〈𝑒21, (𝜂2 − ∇
2)𝑒21〉〈𝑒11, ∑ 𝐿1𝑗𝑒𝑗1

2
𝑗=1 〉

(44) 

 
We now discuss the choice of the eigenvectors 𝑒1 and 𝑒2. First, we note that since these eigenvectors 

enter Equation (36) on equal footing, it might seem that it would be ”more correct” to replace the l.h.s of 
Equation (41) by 

∑
〈𝑁𝑒𝑘 , 𝐿𝑒𝑘〉

2

〈𝑁𝑒𝑘 , 𝑁𝑒𝑘〉〈𝐿𝑒𝑘 , 𝐿𝑒𝑘〉

2

𝑘=1
(45) 

 
However, in particular, the corresponding counterpart of Equation (42) becomes a truly nonlinear system for 
𝑐1, 𝑐2, 𝑑1, 𝑑2 and hence cannot be easily solved. Therefore, we continue to use the results obtained from (41). 
Next, a reasonable, although not the most general, choice for 𝑒1 is 

𝑒1 = (
𝑢

𝜌21𝑣
) (46) 

Then, 𝑒2 can be written by 

𝑒2 = (
𝜌21𝑢
𝑣
) (47) 

 
where 𝜌21 is determined from the orthogonality condition 𝑒1 toward 𝑁𝑒1, then we can compute 
 

𝜌21 = −𝜌21
〈𝑣, 𝑁2𝑣〉

〈𝑢,𝑁1𝑢〉
(48) 

 
where 𝑁1 and 𝑁2 are from Equation (38), Equation (43), and Equation (44) for each given value 𝜌21 by 
simply taking 

𝜌21 = 1 (49) 
 

We now state the algorithm of the generalized Petviashvili method for coupled nonlinear wave 
equations, which is obtained by ”delinearizing” Equation (44): 

 

(
𝑢
𝑣
)
𝑛+1

= (
𝑢
𝑣
)
𝑛
+ [𝑁−1 (𝐿0 (

𝑢
𝑣
))
𝑛
−∑𝛾𝑘

〈𝑒𝑘,𝑛, (𝐿0 (
𝑢
𝑣
))
𝑛
〉

〈𝑒𝑘 , 𝑁𝑒𝑘,𝑛〉

2

𝑘=1

] Δ𝜏, (50) 

 
where 𝑒𝑘,𝑛 are computed using the components 𝑢𝑛, 𝑣𝑛 at each iteration, and 𝑁 and 𝛾𝑘 are computed iteratively 

until the solution reaches a prescribed accuracy 10−3. Iteration scheme above along with the details of the 
calculation of N and 𝑒𝑘 (Equation (39), Equation (43), Equation (44), and Equation (46)- Equation (49)) 
is the main result of this section. 
 

3. RESULTS AND DISCUSSION 

3.1 Two-Component System of Nonlinear Schrödinger Equations 

To obtain the stationary solution, we should set the initial iterative data close to the solution. We fix 

this initial iterative data by trying the suitable form in the numerical simulation. We let some parameter values 

and components inside it. Then, we fix 

 

{
𝑢0 = 2𝑒−(𝑥

2+𝑦2)(𝜖 + 𝑥 + 𝑦)

  𝑢0 = 1.5𝑒
−(𝑥2+𝑦2)(𝜖 + 𝑥 + 𝑦)

. (51) 

 

Previously, we do not have a unique value for 𝜖. There are two different values, namely, 𝜖1 and 𝜖2 for 

𝑥 and 𝑦 respectively. However, we get the divergence solution directly. Hence, we try to modify by swapping 
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and changing some components inside, then we obtain the initial iterative data as above. To find an efficient 

number of iterations, we may choose the good parameter values and make some trials and errors first until 

we obtain the best parameter values. Then, the numerical computation results are shown on the following 

table 

Table 1. Table of Parameter Value when 𝜷 > 𝟎 

𝝀𝟏,𝟐 𝝁𝟏,𝟐 𝝐 𝚫𝝉 𝜷 

1.89 ; 8.5 0.1 ; 1.9 0.001 0.9 0.05 

 

𝜆1 and 𝜆2 are fixed from [15]. It is the stiffest condition, which mentioned three conditions, there are mildly 

stiff, stiffer, and stiffest. The stiffest condition can produce the convergence of solitary wave solutions faster 

than others. Meanwhile, numerically, the value of 𝜇1, 𝜇1 are chosen by trial and error many times to obtain 

the best value of 𝜇1,2. 

As the computation results, we obtain a pair convergence solution for a two-component system 

equation for 𝑢 and 𝑣. We obtain one bump solution for both. The supports are getting narrow and the high 

peak of the 𝑢-solution is higher than the 𝑣-solution. For instance, we found that ∆𝜏 =  0.9, the convergence 

rate of our method converges in 80 iterations. It is the fastest convergence with the optimal value of ∆𝜏 =
 0.9. Otherwise, the solutions are convergence slowly or divergence. The numerical solutions are shown in 

Figure. 1. 

The solution exists since the interaction between two-component is attractive. By applying the 

theorem 4.1 in [16], which is the extension, we show the uniqueness of solitary wave solution numerically 

when fixed 𝛽 to be positive small enough and 𝜆1,2 has a similar value. To satisfy the condition of its theorem, 

we set 𝜆1 = 𝜆2 = 8.5. 

 

 
(a) (b)  

Figure 1. The Stationary Wave Solution by Table 1 (a) The Stationary Wave Solution of 𝒖 and (b) The 

Stationary Wave Solution of 𝒗 

 

Choose 𝛽 is positive and small enough. We obtain the convergence results even the 𝛽 value tends to 

zero. However, the solution is blow-up when 𝛽 is really small and close to zero. We show our results in Table 

2. 

Table 2. Numerical Results for The Uniqueness of Solution with 

𝜷 
Number of 

Iterations 

High Peak of 𝒖-

solution 

High Peak of 𝒗-

solution 

0.06 

0.05 

0.04 

0.03 

0.01 

0.002 

0.001 

𝟏𝟎−𝟖 

𝟏𝟎−𝟏𝟎 

62 

76 

108 

97 

292 

180 

214 

159 

282 

1010 

1010 

1010 

1010 

1010 

1010 

1010 

1010 

Blow-up Solution 

10 

10 

102 

102 

102 

102 

103 

103 

Blow-up Solution 
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Moreover, we have the extension condition based on the refer theorem [16]. We will show our 

numerical results with 𝜆1 ≠ 𝜆2, but 𝛽 values are still positive enough and decrease. One obtains in Table 3, 

In this case, we still get the convergence solution with one bump solution for 𝑢 and 𝑣 even though 𝜆1,2 

has a different value. Instead, we have a suitable range larger than the previous results of 𝛽 to obtain the 

solitary wave solution. On the other hand, when the value of 𝛽 tends to zero, the solution is not blow-up but 

it exists and tends to 𝛿(𝑥). The solution tends to 𝛿(𝑥) means that everywhere the value is zero, except at zero 

point, the value is maximal. The looks of this result are the same as in Figure. 1, just had a change of peaks 

with different values. 

The opposite results shown by Table 3 produce the divergence solution for both 𝑢 and 𝑣 fastly, if we 

simulate 𝛽 < 0 directly.  

Table 3. Numerical Results for The Uniqueness of Solution (𝝀𝟏 =  𝟕. 𝟖𝟗; 𝝀𝟐 = 𝟖. 𝟓) 

𝜷 
Number of 

Iterations 

High Peak of 𝒖-

solution 

High Peak of 𝒗-

solution 

0.05 74 1010 101 

0.04 108 1010 102 

0.03 97 1010 102 

0.01 292 1011 102 

0.002 180 1012 102 

0.001 214 1013 102 

𝟏𝟎−𝟖 235 1014 103 

𝟏𝟎−𝟏𝟎 232 1015 103 

𝟏𝟎−𝟏𝟐 108 1015 103 

𝟏𝟎−𝟏𝟔 119 1015 103 

𝟏𝟎−𝟐𝟐 106 1015 103 

𝟏𝟎−𝟑𝟐 106   

 

It is caused by the interaction between 𝑢 and 𝑣 is repulsive, then we cannot find the solution easily. 

However, we may obtain the existence of the 𝑢 and 𝑣 solution even when 𝛽 is negative, namely, given a 

special condition. We have a certain condition to get it by using theorem 1 in [17]. Given a condition 

√𝜆1

√𝜆2
< sin

𝜋

𝑘
 

on 𝑛 =  2, assume 𝑘 is a positive integer 𝑘 >  2, let 𝛽 <  0, and assume that 𝜆1 < 𝜆2. Then, we obtain the 

solitary wave solution by fixing parameter values in Table 3. By Table 3 we get the graphs for 𝑢-solution 

and 𝑣-solution in Figure 2.  

Table 4. Table of parameter value when 𝜷 < 𝟎 

𝝀𝟏,𝟐 𝝁𝟏,𝟐 𝝐 𝚫𝝉 𝜷 

7.89 ; 11 0.1 ; 1.9 0.001 0.9 -0.05 

 

Based on Table 4 with 𝛽 < 0, we have the optimum parameters. The solution is convergence with 568 

iterations. We have 𝜆1 is 7.89 and 11 for 𝜆2 or we can say 𝜆1 is less than 𝜆2. This is also the key to the 

convergence of the solution. The solution convergence only in this condition. However, they have a suitable 

value of 𝜆2, it is 11 ≤ 𝜆2 ≤ 11.85. Otherwise, the solutions are divergent for all conditions. 

One bump of 𝑢-solution and 𝑣-solution has a similar form to the case 𝛽 >  0. Both of them are getting 

narrower for the support. The high peak of solutions is between 1010 and 1015 for 𝑢 and for 𝑣 is started from 

102 until 104. They have different high peak solutions, but they have the same form. 
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(a)  (b)  

Figure 2. The Stationary Wave Solution by Table 3 (a) The Stationary Wave Solution of 𝒖 and (b) The 

Stationary Wave Solution of 𝒗 

 

4. CONCLUSIONS 

In this research, we obtained the following two main results. The results are as follows below. 

1. The main result here was finding a way in which all the required parameters of the iteration scheme 

can be computed by explicit expressions. The algorithm is given by Equation (50), Equation (39), 

Equation (43), Equation (44), and Equation (46)-(49). 

2. The numerical simulation with the generalized Petviashvili method cannot be applied to Two-

Component System of NLSE with a small positive parameter 𝜀2. It can be observed when the 

coupling constants 𝛽 that shows the existential of the solitary wave solutions for nonlinear stationary 

wave equations. If 𝛽 is positive and small enough, then the stationary wave exists and is unique. If 𝛽 

is negative, then the stationary wave exists by providing a certain condition.  
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