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 ABSTRACT   

Article History: 
Investment is one of the many ways to achieve future profits. One form of investment that is 
widely made is stocks. The return obtained in investing in stocks is potentially higher than 

other investment alternatives, but the risks borne are amplified, so it is necessary to analyze 

these risks that may occur. In this study, the Archimedean copula method is used to estimate 

the Value at Risk on shares of PT Bank Rakyat Indonesia Tbk (BBRI) and PT Telekomunikasi 
Indonesia Tbk (TLKM) for the period September 1, 2021, to August 31, 2023. The stock data 

is used to determine the Archimedean copula model and calculate the estimated value of Value 

at Risk (VaR) on the stock return portfolio using the Archimedean copula approach. The 

Archimedean copula models used are the Clayton copula model, Gumbel copula, and Frank 
copula. Of the three Archimedean copula models, the best model was selected by looking at 

the largest Maximum Likelihood Estimation (MLE) value. In this study, the log-likelihood 

value of Clayton copula is 7.958, Gumbel copula is 6.663, and Frank copula is 8.398. 

Therefore, Frank copula is the best Archimedean copula model with the largest log-likelihood 
value of 8.398 for the said data. Then the VaR estimation is done with the Frank copula model. 

The Value at Risk estimation results based on the Frank copula model show maximum loss 

rates of -0.0277 at the 90% confidence level, -0.0363 at the 95% confidence level, and -0.0516 
at the 99% confidence level. 
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1. INTRODUCTION 

Investment is the strategic positioning of capital in a company with the aim of obtaining potentially 

high profits in the future. It can be conceptualized as a commitment to allocate a set amount of funds to one 

or more assets (at this time) that are expected to provide benefits in the future. According to the Indonesian 

Central Securities Depository (KSEI), one of the most popular investment instruments today is the allocation 

of funds in shares [1]. Stocks offer a high profit or return, albeit accompanied by an elevated degree of risk. 

Risk can be minimized by diversifying. Diversification is done by combining a few assets and determining 

the proportion of each asset in a portfolio [2]. 

Stock portfolios exhibit significant volatility, reflected in frequent and substantial price fluctuations 

which causes the variance of the residuals to change every time and is not constant. For this reason, time 

series modeling is carried out, namely with the Autoregressive Integrated Moving Average (ARIMA) and 

Generalized Autoregressive Conditional Heteroscedasticity (GARCH) processes. This process aims to 

minimize risk and uncertainty factors [3]. This risk can be used in capture dynamic volatility patterns and 

predict future price movements using the Value at Risk (VaR) method. 

In the case of stock portfolios, the normality property often deviates significantly. In addition, the 

dependency structure between stocks is challenging to quantify due to non-linear dependency. These 

deviations result in the invalidation of VaR estimation so that the risk obtained is leading to a potentially 

significant underestimation of risk. Therefore, a VaR estimation method using copula was developed. 

Copula's flexibility lies in its ability to not have the assumption requirement of data normality, so this method 

is considered appropriate without necessitating normality assumptions. In addition, Copula can also combine 

several marginal distributions into a combined distribution [4]. One of the copula families, it’s called 

Archimedean copula, is quite well used for financial assets [5]. This is because the Archimedean copula 

function can be used in financial asset applications to determine the dependency structure of financial asset 

returns, model the distribution of financial asset returns, and simulate a more adequate distribution of 

financial assets. Archimedean copula is divided into several parts, namely Clayton copula, Gumbel copula, 

and Frank copula [6]. 

The Copula method has been widely used for financial and actuarial applications. Cases in the financial 

sector are generally found to have non-normally distributed data. Research that uses this approach in the 

financial industry, among others, analyzes the relationship between macroeconomic factors and the level of 

world gold prices. This research uses the Archimedean copula approach whose parameters are estimated 

using Tau Kendall [7]. [8] has also investigated estimating claim reserves in several lines of business using 

Archimedean Copula and the Generalized Linear Model. Then [9] conducted the previous work on the 

application of the copula-GARCH method with a single index model approach which is used as a method to 

find the optimal portfolio shares from several stock data obtained which will then be estimated Value at Risk 

with the copula-GARCH method. The types of copulas used are Archimedean copula and elliptical copula. 

The use of the copula-GARCH method aims to overcome the problems commonly found in time series data, 

namely autocorrelation and heteroscedasticity. Then copula modeling is done to describe the dependency 

relationship between stocks without requiring normal assumptions. In addition, in the formation of a stock 

portfolio using the copula-GARCH method to calculate the estimated value at risk on stock data that has high 

fluctuations. Then, the research conducted by [10] examined how the application of one type of Archimedean 

copula family, namely the Gumbel copula. Gumbel copula is used in estimating value at risk on 

Telecommunication stocks and then backtesting was carried out to check the results of the VaR calculation. 

In this study, VaR estimation was carried out using the Archimedean copula. The Archimedean copula 

is a type of copula family that is quite well used in analyzing financial data because it has a unique generator 

for each sub-copula in its part. In Archimedean copulas, the generator function is very important. This is 

because the generator function is used to determine the cumulative distribution function, the probability 

density function, and the log-likelihood function. These functions are used to model the Archimedean copula 

and to determine its loglikelihood value. The Archimedean copula has a wide range of applications. It is 

widely used because it can be constructed easily, has a wide range of dependency structures, models tail 

dependency, and is a simple bivariate copula in describing dependencies [11]. Then, from the Archimedean 

copula model, the best Archimedean copula is selected based on the largest log-likelihood value found using 

the Kendall Tau value. After that, VaR estimation is calculated based on the best Archimedean copula model 

and backtesting is conducted to check the accuracy of VaR calculations on stock return portfolios with 90%, 

95%, and 99% confidence levels. 
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Thus, this study examined how to calculate the amount of VaR value estimation and backtesting of 

VaR results on the stock return portfolio with the best Archimedean copula approach based on the largest 

log-likelihood value. The data used in this study are daily stock closing price data incorporated in the LQ45 

index for the period September 1, 2021, to August 31, 2023, namely stock data for PT Bank Rakyat Indonesia 

Tbk (BBRI) and PT Telekomunikasi Indonesia Tbk (TLKM). 

 

2. RESEARCH METHODS 

2.1 Stock Return 

Stock return is the rate of return for a stock and is the cash payment received because of a stock at the 

time of initial investment. Stock returns can be calculated daily, weekly, monthly, and annually using 

Equation (1). 

𝑅𝑖𝑡 =
𝑃𝑡 − 𝑃(𝑡−1)

𝑃(𝑡−1)
 (1) 

where 𝑅𝑖𝑡 is stock return 𝑖 period 𝑡, 𝑃𝑡 is stock price 𝑖 period 𝑡, and 𝑃(𝑡−1) is stock price period 𝑡 − 1[12]. 

2.2 Data Identification 

The initial step in identifying BBRI and TLKM stock return data is to test the normality of stock return 

data using the Kolmogorov-Smirnov test. The interpretation of the Kolmogorov-Smirnov test results is if the 

test value is more than 𝛼 =  5% then the data distribution is declared to fulfill the normality assumption, and 

if the test value is less than 𝛼 =  5% then it is interpreted as abnormal [13]. Then testing the stationarity of 

stock return data using time series plots and the Augmented Dickey-Fuller (ADF) test. Furthermore, testing 

the autocorrelation properties to see whether there is a correlation effect on the data using the Ljung-Box test 

and looking at the ACF and PACF plots formed from the observation data. Then the identification of the 

appropriate ARIMA model is carried out and a heteroscedasticity test is carried out to find out whether the 

data has a very diverse variant that can result in unstable residues by looking at the ACF plot squared data 

and the ARCM LM test. After that, GARCH modeling is performed to eliminate the effects of 

heteroscedasticity on the data. 

2.3 Stages of Data Analysis 

The stages in analyzing the data are as follows. 

1. Describe the data to obtain an overview based on the descriptive statistics of the research data. 

2. Normality test on stock return data using the Kolmogorov-Smirnov test. 

3. Identify the appropriate ARIMA model. 

• Testing the stationarity of stock return data using time series plots and the Augmented Dickey-

Fuller (ADF) test. 

• Autocorrelation test on BBRI and TLKM stock return data using the Ljung-Box test. 

• Heteroscedasticity test on BBRI and TLKM stock return data using the Lagrange Multiplier (LM). 

4. Calculate the Tau Kendall correlation coefficient used in the Copula parameter estimation. 

5. Establishment of Archimedean copula model. 

6. The best Archimedean copula model was selected. 

The next step is to determine the Archimedean copula function that can show the dependency 

relationship of the function that can show the dependency relationship of the two stocks well. The 

method of estimating copula parameters The Archimedean copula parameter estimation method used 

is the Maximum Likelihood Estimation (MLE) method. 
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7. Calculation of Value at Risk (VaR) value using Monte Carlo simulation of copula models. Monte Carlo 

simulation of the best Archimedean copula model for BBRI and TLKM stocks. 

8. Backtesting test to test the accuracy of the VaR value. 

9. Interpretation of the VaR value assuming the weight of the two stocks is the same. 

10. Drawing conclusions. 

2.4 Kendall Tau Correlation 

There are (
𝑛
2

) pairs (𝑋𝑖 , 𝑌𝑖) and (𝑋𝑗 , 𝑌𝑗) of observations in the sample, each pair is either concordant 

(pairs of agreements) or discordant (pairs of disagreements). C denotes the number of concordant pairs and D 

denotes the number of discordant pairs. 

If there is bivariate data (𝑋𝑖 , 𝑌𝑖  ), 𝑖 = 1,2, … , 𝑛 Where X and Y are at least ordinal scale. Then for each 

pair of observed values (𝑋𝑖 , 𝑌𝑖  ) and (𝑋𝑗, 𝑌𝑗 ) for 𝑖 ≠ 𝑗 can be defined if the pair (𝑋𝑖, 𝑌𝑖 ) and (𝑋𝑗, 𝑌𝑗 )  are 

concordant, if (𝑋𝑖 − 𝑋𝑗  )(𝑌𝑖 − 𝑌𝑗 ) > 0 means that if 𝑋𝑖 > 𝑋𝑗 then 𝑌𝑖 > 𝑌𝑗 or if 𝑋𝑖 < 𝑋𝑗 then 𝑌𝑖 < 𝑌𝑗 so 

that(𝑋 − 𝑋) and (𝑌 − 𝑌) have the same sign, which is equally positive or equally negative with a product that 

is always positive. If the pairs (𝑋𝑖 , 𝑌𝑖  ) and (𝑋𝑗, 𝑌𝑗  ) are discordant, if (𝑋𝑖 − 𝑋𝑗  )(𝑌𝑖 − 𝑌𝑗  ) < 0  it means that 

if 𝑋𝑖 > 𝑋𝑗  then 𝑌𝑖 < 𝑌𝑗 or if 𝑋𝑖 < 𝑋𝑗 then 𝑌𝑖 > 𝑌𝑗 so that (𝑋 − 𝑋) and (𝑌 − 𝑌) have opposite signs with a 

product that is always negative. The sample-based Kendall Tau equation can be seen in Equation (2) [14]. 

𝜏 =
𝐶 − 𝐷

𝐶 + 𝐷
=

𝐶 − 𝐷

(𝑛
2

)
(2) 

2.5. Copula 

Copulas are generalized distribution functions of several marginal distribution functions [15]. One of 

the popular copula families used is the Archimedean copula. Archimedean copulas are divided into several 

parts including Clayton, Gumbel, and Frank [16]. Find the correlation coefficient using Kendall's Tau 

Correlation [17] for the Archimedean copula in Equation (3). 

𝜏 = 1 + 4 ∫
𝜑(𝑡)

𝜑′(𝑡)

1

0

𝑑𝑡 (3) 

2.6. Archimedean Copula 

The Archimedean copula is a continuous multivariate copula that has a simple form, but it has a wide 

range of dependency structures that are easy to implement. The Archimedean copula is defined by Equation 

(4) [18]. 

𝐶(𝑢, 𝑣) = 𝜑−1{𝜑(𝑢) + 𝜑(𝑣)} ∀ 𝑢, 𝑣 𝜖 [0, 1] (4) 

Where: 

𝜑(𝑢) : Archimedean copula generator function 𝑢. 

𝜑(𝑣) : Archimedean copula generator function 𝑣. 

𝜑−1 : inverse of 𝜑, with 𝜑−1: [0,1]. 

The type of Archimedean copula used is as follows. 

1. Clayton Copula 

The cumulative distribution function of the Clayton copula is defined in Equation (5). 

𝐶(𝑢, 𝑣) = (𝑢−𝜃 + 𝑣−𝜃 − 1)
−

1
𝜃 (5) 

2. Gumbel Copula 

The cumulative distribution function of the Gumbel copula is defined in Equation (6). 
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𝐶(𝑢, 𝑣) = exp (− ((−𝑙𝑛(𝑢))
𝜃

+ (−𝑙𝑛(𝑣))
𝜃

)

1
𝜃

) (6) 

3. Frank Copula 

The cumulative distribution function of the Frank copula is defined in Equation (7). 

𝐶(𝑢, 𝑣)  = −
1

𝜃
ln (1 +

(𝑒−𝜃𝑢 − 1) + (𝑒−𝜃𝑣 − 1)

𝑒−𝜃 − 1
) (7) 

For each type of Archimedean copula family which includes Clayton copula, Gumbel copula, and Frank 

copula, the dependency relationship with Kendall Tau is as follows. 

1. Clayton Copula 

The relationship of the Clayton copula with Kendall Tau's dependency is measured by Equation (8). 

𝜃 =
2𝜏

1 − 𝜏
, 𝜃 ≥ 0 (8) 

2. Gumbel Copula 

The relationship of the Gumbel copula with Kendall Tau’s dependency is measured by Equation (9). 

𝜃 =
1

1 − 𝜏
, 1 ≤ 𝜃 ≤ ∞  (9) 

3. Frank Copula 

The relationship of the Frank copula with Kendall Tau’s dependency is measured by Equation (10). 

𝐷𝑘(𝜃)  =
𝑘

𝜃𝑘
∫

𝑡𝑘

𝑒𝑡 − 1
𝑑𝑡

𝜃

0

, 𝑘 = 1,2, … (10) 

2.7. Maximum Likelihood Estimation 

The estimated value of copula parameters is obtained by Maximum Likelihood Estimation (MLE) and 

the MLE value for copula is obtained by maximizing the log-likelihood function. If ℵ = {𝑥1𝑡 , 𝑥2𝑡 , … , 𝑥𝑑𝑡}𝑡=1
𝑇  

is a sample data matrix that can be formulated in Equation (11) [19]. 

𝑙(𝜃) = ∑ ln  𝑐(𝐹1(𝑥1𝑡), 𝐹2(𝑥2𝑡), … , 𝐹𝑑(𝑥𝑑𝑡)) + ∑ ∑ ln 𝑓𝑗(𝑥𝑗𝑡)
𝑑

𝑗=1

𝑇

𝑡=1

𝑇

𝑡=1
(11) 

with 𝜃 are the parameters of the marginals and copula, 𝑐 is the probability density function of the copula. The 

maximum likelihood estimator can be expressed in Equation (12). 

𝜃𝑀𝐿𝐸 = max
𝜃∈Θ

𝑙(𝜃) (12) 

 

2.8. Value at Risk 

Value at Risk is a statistical risk measurement method that estimates the maximum loss that may occur 

on a portfolio at a certain level of confidence [20]. In portfolios, VaR is defined as an estimate of the 

maximum loss that a portfolio will experience in a certain period with a certain level of confidence so that 

there is a possibility that a loss that will be suffered by the portfolio during the ownership period will be lower 

than the limit formed by VaR [21]. The VaR value at the confidence level (1 − 𝛼) in a period of 𝑡 days on 

the single return and portfolio can be calculated with Equation (13) [22].  

𝑉𝑎𝑅1−𝛼(𝑡) = 𝑊0𝑅∗√𝑡 (13) 

where  

𝑊0 : Initial investment fund portfolio. 

𝑅∗ : The 𝛼-quantile value of the portfolio return distribution. 

𝑡 : Time period. 



1784 Saifullah, et. al.    VALUE AT RISK ESTIMATION FOR STOCK PORTFOLIO USING THE ARCHIMEDEAN... 

 

 

2.9. Backtesting 

The main problem in building a risk model is to validate the model. When a model is formed, it is 

important to validate it beforehand. Backtesting is a statistical procedure in which actual returns are 

systematically compared to corresponding VaR estimates [23]. The method used in validating risk models is 

known as the backtesting method [24]. Testing backtesting on the VaR method can use the Kupiec Test [25]. 

The test is conducted with the Proportional of Failures (POF) method based on the proportion of violations, 

namely by comparing the Likelihood Ratio (LR) value with the Critical Value (CV) based on the Chi-Square 

distribution (𝜒(𝑑𝑓;𝛼)
2 ) with a degree of freedom of 1. If the LR value < (𝜒(𝑑𝑓;𝛼)

2 ), then accept 𝐻0 which means 

that the VaR method is valid. The chi-square value for a 90% confidence level is 2.706, for a 95% confidence 

level is 3.841, and for a 99% confidence level is 6.635. The Likelihood Ratio (LR) value is obtained based 

on Equation (14). 

𝐿𝑅 = −2𝑙𝑛 (
(1−𝑝)(𝑇−𝑁)𝑝𝑁

[1−(𝑁
𝑇⁄ )]

(𝑇−𝑁)
(𝑁

𝑇⁄ )
𝑁) (14)  

where:  

𝑁 : Number of failures between VaR value and actual loss, 

𝑇 : Number of observation data, 

𝑝 : Probability (1 − 𝛼), 𝛼 is the confidence level. 

 

3. RESULTS AND DISCUSSION 

The data used in this study are secondary data on the closing price of daily shares of PT Bank Rakyat 
Indonesia Tbk (BBRI) and PT Telekomunikasi Indonesia Tbk (TLKM) for the period September 1, 2021, to 
August 31, 2023, obtained from www.finance.yahooo.com. 

3.1. Data Normality Testing 

The initial step in the data processing process is to calculate BBRI and TLKM stock returns. Then 

normality testing is carried out to see whether the data is normally distributed or not. This normal distribution 

test is carried out on BBRI and TLKM stock return data using the Kolmogorov-Smirnov test with the 

following hypothesis.  

Hypothesis: 
𝐻0: Return data is normally distributed. 
𝐻1: Return data is not normally distributed. 

Table 1. Normal Distribution Test of Stock Returns 

Stock Return 𝑫𝑪𝒐𝒖𝒏𝒕 p-value Decision 

BBRI 
TLKM 

0.059562 
0.062046 

0.0002908 
0.0001227 

Reject 𝐻0 
Reject 𝐻0 

 
The results in Table 1 show the 𝐷𝐶𝑜𝑢𝑛𝑡  and 𝑝-value on both stock returns when compared to the 

Kolmogorov-Smirnov table value of 0.0612, which would result in a decision to reject 𝐻0. This is because 
the 𝑝-value is smaller than the Kolmogorov-Smirnov table value at 𝛼 =  0.05, which means that both stock 
returns are not normally distributed. 

3.2. ARIMA Modeling Process 

The identification of the ARIMA model is carried out through the process of checking stationarity and 
estimating the ARIMA model from the BBRI and TLKM stock return data. This data stationarity check is 
carried out using the Augmented Dickey-Fuller (ADF) test shown in Table 2. 

 
 

http://www.finance.yahooo.com/
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Table 2. Stationary Test of Stock Return 

Stock Return 𝒑-value 

BBRI 
TLKM 

0.01 
0.01 

 
Table 2 shows that the p-value of each data is less than 𝛼 =  0.05 which means reject 𝐻0. This means 

that the data is stationary. Because the data is stationary, there is no need to transform or differentiate the two 
BBRI and TLKM stock return data. Stationary testing can also be done by looking at the plot on each stock 
return data. If the plot graph has a constant average and variance, then the data is stationary. 

 

 
Figure 1. Stationary Data Plot of BBRI and TLKM Stock Returns 

 
After the data is stationary, the next stage is to determine the presence of autocorrelation in the data 

through the Ljung-Box test with the results in Table 3. 

Table 3. Ljung-Box Test 

Stock 
Return 

Ljung-Box 

Lag 2 4 6 8 

BBRI 
TLKM 

𝒑-value 
𝒑-value 

0.0044 
0.0001 

0.0223 
0.0010 

0.0331 
0.0032 

0.0303 
0.0002 

In Table 3, the 𝑝-value on all lags is less than 𝛼 =  0.05, thus, it can be concluded that 𝐻0 is rejected, 
so there is autocorrelation in the BBRI and TLKM stock return data. The next step is to identify the ARIMA 
model with ACF and PACF plots. 

Figure 2. ACF and PACF Plot of BBRI Stock Return 
 

The ACF and PACF plots of BBRI stock returns can be seen in Figure 2. The ACF and PACF patterns 
of BBRI stock returns cut off at lag 1, so the initial model estimation for BBRI stock is ARIMA(1,0,0) or 
ARIMA(0,01). 
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Figure 3. ACF and PACF Plot of TLKM Stock Return 

 
The ACF and PACF plots of TLKM stock returns can be seen in Figure 3. The ACF and PACF patterns 

of TLKM stock returns cut off at lag 1 or 2, so the initial model estimation for TLKM is ARIMA(1,0,0), 
ARIMA(1,0,2), or ARIMA(0,0,2). After determining the possible models, a model verification test is 
conducted and the best model with the smallest AIC value is selected. Then it produces the best ARIMA 
model for two stock returns. 

BBRI:     ARIMA(1, 0, 0)  
𝑟𝑡    = 0.00133 − 0.19738𝑟𝑡−1 + 𝑎𝑡. 

TLKM:    ARIMA(2, 0, 0)  
𝑟𝑡    = 0.00057 − 0.12448𝑟𝑡−1 − 0.12886𝑟𝑡−2 + 𝑎𝑡 . 

 

3.3. GARCH Modeling 

After getting the best ARIMA model for BBRI and TLKM stock returns, the next step is to conduct a 

Lagrange Multiplier test on the squared residuals to determine the presence of heteroscedasticity effects with 

the hypothesis:  

𝐻0: 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑚 = 0 or there is no ARCH/GARCH effect.   
𝐻1: there is at least one 𝛼𝑖 ≠ 0 for 𝑖 = 1,2, … , 𝑚 or there is an ARCH-GARCH effect. 

 Table 4. Lagrange Multiplier Test 

Stock Return 𝒑-value 

BBRI 
TLKM 

0.000 
0.000 

 
The LM test results in Table 4 show that BBRI and TLKM stock returns have a p-value = 0.000 so it 

can be concluded that all ARIMA models have heterogeneous residuals or have ARCH / GARCH effects. 
Furthermore, GARCH modeling is carried out to eliminate the effects of heteroscedasticity. GARCH model 
selection based on the smallest AIC value with GARCH models used are GARCH(1,0), GARCH(1,1), 
GARCH(1,2), and GARCH(2,1). From the model, the identification of each parameter value and AIC is 
carried out with the help of R software. The best ARIMA-GARCH model for BBRI and TLKM stocks is 
obtained as follows. 

BBRI:     ARIMA(1, 0, 0) GARCH(1, 2) 
𝑟𝑡    = 0.00133 − 0.19738𝑟𝑡−1 + 𝑎𝑡. 
𝑎𝑡   = 𝜎𝑡𝑍𝑡 . 
𝜎𝑡

2 = 0.00002 + 0.09622𝑎𝑡−1
2 + 0.00000𝜎𝑡−1

2 + 0.80370𝜎𝑡−2
2. 

  𝜎𝑡
2 = 0.00002 + 0.09622𝑎𝑡−1

2 + 0.80370𝜎𝑡−2
2
. 

TLKM:    ARIMA(2, 0, 0) GARCH(1, 0) 
𝑟𝑡    = 0.00057 − 0.12448𝑟𝑡−1 − 0.12886𝑟𝑡−2 + 𝑎𝑡 . 
𝑎𝑡   = 𝜎𝑡𝑍𝑡 . 
 𝜎𝑡

2 =  0.00020 + 0.11940𝑎𝑡−1
2. 

3.4. Kendall Tau Correlation 

The Kendall Tau test is conducted to determine the correlation value of dependence between stocks, 
which would then be used in Archimedean copula modeling. The calculation result of Kendall Tau's value 
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on the residual return of BBRI and TLKM shares is 0.124. Based on the Kendall Tau correlation test, the 
value of 𝑍𝑐𝑜𝑢𝑛𝑡 = 4.0927 > 𝑍0.05 = 1.96, it can be concluded that the residuals of BBRI and TLKM shares 
are correlated. 

3.5. Archimedean Copula 

After obtaining the Kendall Tau value, modeling with Archimedean copulas consisting of Clayton 
copula, Gumbel copula, and Frank copula is then performed. By using the Kendall Tau value of 0.124, the 
value of θ in each copula is obtained, namely the Clayton copula of 0.2206, the Gumbel copula of 1.141, and 
the Frank copula of 1.135. Then modeling is done on each Archimedean copula as follows. 

1. Clayton Copula 

𝐶(𝑢, 𝑣) = (𝑢−0.2206 + 𝑣−0.2206 − 1)−
1

0.2206. 
 
2. Gumbel Copula 

𝐶(𝑢, 𝑣) = 𝑒𝑥𝑝 (− ((−𝑙𝑛(𝑢))
1.141

+ (−𝑙𝑛(𝑣))
1.141

)

1
1.141

). 

 
3. Frank Copula 

𝐶(𝑢, 𝑣) = −
1

1.135
𝑙𝑛 (1 +

(𝑒−1.135𝑢 − 1) + (𝑒−1.135𝑣 − 1)

𝑒−1.135 − 1
). 

Furthermore, the calculation of the Log-likelihood value of each Archimedean copula model on the 

ARIMA residual data of BBRI and TLKM stocks aims to determine the best Archimedean copula model. 

The selection of the best Archimedean copula model is based on the largest log-likelihood value. With the 

help of R software, the log-likelihood value is obtained in Table 5. 

Table 5. Log Likelihood Value of Archimedean Copula 

Copula Type Log Likelihood Value 

Clayton 
Gumbel 
Frank 

7.958 
6.663 
8.398 

 
Based on Table 5, the Frank copula has the largest log-likelihood value of 8.398. So, Frank's copula is 

the best Archimedean copula model to describe the dependency and model the dependency structure on the 
BBRI and TLKM stock residual data. This means that there is a close relationship between the two stocks 
when both are of low value or high value. 

3.6. Value at Risk 

The selected copula model based on the largest log-likelihood value is used to estimate VaR on BBRI 

and TLKM stock data. Value at Risk estimation is performed using the Monte Carlo simulation method by 

generating 1000 random numbers that follow the Frank copula model and using the parameter  𝜃 which is 

1.135. VaR estimation is carried out for the next 21-day period at 90%, 95%, and 99% confidence levels with 

the same stock portfolio weight. VaR estimation is done with the help of R software which is shown in Table 

6. 

Table 6. Value at Risk Estimation 

Period 
daily 

      Level of confidence (𝟏 − 𝜶) 

 99%    95%  90% 

1 
2 
3 
4 
5 
6 
7 
8 

-0.0527 
-0.0541 
-0.0578 
-0.0535 
-0.0524 
-0.0524 
-0.0489 
-0.0510 

   -0.0367 
-0.0370 
-0.0378 
-0.0365 
-0.0354 
-0.0365 
-0.0367 
-0.0384 

-0.0289 
-0.0295 
-0.0284 
-0.0269 
-0.0266 
-0.0271 
-0.0254 
-0.0277 
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Period 
daily 

      Level of confidence (𝟏 − 𝜶) 

 99%    95%  90% 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

-0.0496 
-0.0523 
-0.0508 
-0.0569 
-0.0502 
-0.0535 
-0.0556 
-0.0535 
-0.0539 
-0.0486 
-0.0509 
-0.0533 
-0.0493 

-0.0342 
-0.0368 
-0.0352 
-0.0335 
-0.0367 
-0.0363 
-0.0361 
-0.0359 
-0.0324 
-0.0384 
-0.0352 
-0.0363 
-0.0359 

-0.0289 
-0.0264 
-0.0279 
-0.0279 
-0.0255 
-0.0283 
-0.0284 
-0.0301 
-0.0262 
-0.0270 
-0.0296 
-0.0269 

    -0.0284 

Mean -0.0516 -0.0363 -0.0277 

 
From the results of the VaR calculation in Table 6, VaR at the 90% confidence level is -0.0277, 

meaning that there is a maximum loss of 2.77% of the invested funds for the period 1 day ahead of August 
31, 2023. At the 95% confidence level of -0.0363, it means that there is a maximum loss of 3.63% of the 
funds invested for the period 1 day ahead of August 31, 2023. And at the 99% confidence level of -0.0516, 
meaning that there is a maximum loss of 5.16% of the funds invested for the period 1 day ahead of August 
31, 2023. So, the higher the level of confidence, the higher the resulting VaR. 

3.7. Backtesting 

After obtaining VaR, then the backtesting test is carried out to see whether VaR is acceptable (valid) 

or not (invalid). The results of backtesting on VaR with 90%, 95%, and 99% confidence levels for stock 

portfolios with the same weight are shown in Table 7. 

Table 7. VaR Backtesting 

VaR LR CV Conclusion Description 

90% 
95% 
99% 

0.662 
0.942 
0.682 

2.706 
3.841 
6.635 

Accept 𝐻0 
Accept 𝐻0 
Accept 𝐻0 

Valid 
Valid 
Valid 

 
In Table 7, it is obtained that the LR value at each confidence level is smaller than the CV value so it 

can be concluded that VaR with the Frank copula method is valid for use at the 90%, 95%, and 99% 

confidence levels for BBRI and TLKM stock portfolios. 

 

4. CONCLUSIONS 

Based on the results of the analysis and discussion, it is concluded that Frank copula is the best type of 

Archimedean copula with a log-likelihood value of 8.398. With the Frank copula model, Value at Risk 

estimation was carried out. The Value at Risk estimation results based on the Frank copula model show a 

maximum loss of -0.0277 at the 90% confidence level, -0.0363 at the 95% confidence level, and -0.0516 at 

the 99% confidence level. This shows that the higher the confidence level, the higher the VaR. Through the 

backtesting procedure, VaR is proven to have very good accuracy in predicting risk, this is evidenced by the 

Likelihood Ratio (LR) value at each confidence level being smaller than the Critical Value (CV) value. 

Suggestions for further research in estimating the Value at Risk value of the portfolio should be made. 

More VaR calculations so that it can be seen the range of VaR results includes the upper limit and lower limit 

of the VaR value. In addition, VaR estimation can be done using other copula models, because other copula 

models may produce better VaR estimates, such as 𝑡 −student copula, Joe copula, Gaussian copula, and other 

types of copula models. 
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