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 ABSTRACT  

Article History: 
The East Java Province is one of Indonesia's regions grappling with a notably elevated 

poverty rate, accounting for 11.32% of the populace. A strategic approach to comprehending 

and redressing this issue involves applying spatial analysis, wherein spatial factors are 

intricately integrated into the modeling and cartographic representation of poverty data. The 

primary objective of this research is to discern the principal determinants influencing the 

incidence of poverty in East Java Province, employing data reflective of the population's 

poverty percentages within the province for the year 2021. The study incorporates six pivotal 

variables, namely the population poverty rate, open unemployment rate, labor force 

participation rate, average years of schooling, adjusted per capita expenditure, and the gross 

regional domestic product (GRDP), predicated on adjusted expenditure. Diverse weighting 

schemes are applied based on distance and contiguity. The optimal predictive model utilized 

is the Spatial Error Model (SEM) incorporating a Distance Band Weighing (DBW) 

mechanism with a designated maximum distance (𝑑𝑚𝑎𝑥) of 75000 meters. Outcomes indicate 

that the variable wielding the most substantial influence on the poverty percentage in East 

Java Province is the average years of schooling. Specifically, an increase in the pursuit of 

formal education manifests as a negative correlation to the poverty percentage, implying an 

inverse relationship. Moreover, the SEM model adheres to the requisite assumptions, 

encompassing the normality of residuals, homogeneity of residuals, and non-spatial 

autocorrelation of residuals. Comparative analyses show that the SEM model using DBW 

results in lower MAE, MSE, RMSE, AIC, and MAPE values compared to linear regression. 

Additionally, the SEM model has higher pseudo-R² values. Likelihood ratio tests highlight 

significant differences, with SEM being more efficient and providing better explanatory power 

for dataset variations. 
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1. INTRODUCTION 

Based on data retrieved from the Central Statistics Agency (BPS), there was an increase in the number 

of people living in poverty in the East Java Province in 2021, amounting to 153.63 thousand people. This 

number increased by 3.48% from the previous year. The impact of this increase worsened the poverty rate in 

East Java Province from 4.42 million people (11.02%) in 2020 to 4.57 million people (11.32%) in 2021, an 

increase of 0.30%, which made the province become the third poorest on the entire island of Java. Many 

factors can cause poverty, including unemployment, participation, level of formal education, and income [1].  

One of the analyses in statistics used for examining and modeling relationships between variables is 

regression analysis. The assumptions that must be met in regression analysis include: (1) the relationship 

between the dependent variable (y) and the predictor (x) is linear; (2) the error has a mean of zero; (3) the 

error has a constant variance; (4) the error is not correlated (autocorrelation or with response); and (5) the 

error is normally distributed [2]. But sometimes, these regression assumptions are not met. When related to 

data containing location, one method that can be used to analyze this data is spatial data analysis, including 

spatial regression, which is caused by spatial dependence, such as the spatial error model (SEM), spatial lag 

of X (SLX), spatial autoregressive (SAR), and so on [3], [4]. SAR is widely regarded as the most prevalent 

specification and the most universally applicable approach to conceptualizing spatial dependency. 

Alternatively, it is feasible to incorporate spatial correlation by including the error factor in the regression 

equation. While SAR considers spatial dependency to be of significant importance, SEM regards it as an 

unwanted factor. This model only tries to guess the regression parameters for the critical explanatory 

variables. It does not look at the possible importance of geographical clustering or spatial autocorrelation, 

which could mean more than just attributional dependency. Instead of assuming that a geographical lag affects 

the dependent variable, SEM estimates a model that relaxes the traditional regression model assumption that 

errors must be independent [5]. Meanwhile, spatial regression models caused by spatial heterogeneity can 

use Geographically Weighted Regression (GWR), Geographically Weighted Poisson Regression models, or 

other models [6], [7]. 

Several studies that use spatial analysis, including Sihombing [8], are conducting research on variables 

that are factors of poverty, such as income levels, consumption, health, education, and relationships in society 

using the SAR model. Tumanggor dan Simamora [9] identified factors that influence the Human 

Development Index using the SAR model. Safari [10] used the SEM model to determine the factors that 

influence food security in South Sulawesi province. Yulianto and Ayuwida [11] aimed to model the level of 

poverty in East Java Province using spatial regression. The data used in this research is the poverty level of 

East Java Province in 2015 as the dependent variable, as well as a number of independent variables including 

Female Head of Household, Number of out-of-school children aged 7-18 years, Number of disabled 

individuals, and six other independent variables. Through this research, using the Spatial Error Model (SEM) 

method using the Queen Contiguity weighing matrix, the most influential factors on the poverty rate in East 

Java Province in 2015 were determined to be the number of disabled individuals and unprotected drinking 

water sources. 

Apart from that, the research conducted by Jelita [12] carried out spatial modeling on Gini ratio data 

for 2015-2017 as a response variable as well as population size, number of poor people, per capita 

expenditure, and the district/city Human Development Index in East Java Province for 2015-2017 as a 

predictor variable using K-Nearest Neighbor and Distance Band as a spatial weight matrix. The results of this 

research, using the Spatial Error Model (SEM) as a spatial regression model and KNN as a weighing matrix, 

found that the number of people living in poverty was the factor that had the most influence on the Gini ratio 

of East Java Province in 2015-2017. Other research conducted by Aziah et al. [13] studied the influence of 

education, per capita income, and the population living in poverty in East Java Province using panel data 

regression. The results of this research show that education and per capita income have a significant, negative 

effect on the. Meanwhile, population size has a positive effect on the regency/city poverty in East Java 

Province.  

Based on these previous research, Muryani [14], Azizi [15], Alam [16], and Widiantari [17], this 

research aims to determine the factors that most influence the increase in the percentage of poor people in 

East Java Province in 2021. Several socio-economic factors are used, such as the open Unemployment Rate, 

labor force participation rate, average years of schooling, product per capita, and GRDP based on East Java 

Province expenditure in 2021. Moreover, this research considers different spatial weights when analyzing the 

distribution of poverty in East Java Province. Spatial weights can reflect location effects and spatial patterns 
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in the data [18], which can help understand the relationship between socio-economic factors and poverty 

levels in the region. This research anticipates that the East Java Provincial government take action to reduce 

the percentage of poverty by paying more attention to the factors that have the most significant influence. 

 

2. RESEARCH METHODS 

2.1 Data and Source of Data 

The data used is secondary data retrieved from the East Java Province Central Statistics Agency (BPS) 

Website in 2021 (https://jatim.bps.go.id/). This research data uses six (6) variables, which are: population 

poverty Rate (𝑌), open unemployment rate (𝑋1), labor force participation rate (𝑋2), average years of schooling 

(𝑋3), adjusted per capita expenditure (𝑋4), gross regional domestic product (GRDP) based on adjusted 

expenditure (𝑋5). The data used is presented in Table 1. 

Table 1. Research Data 

No Regency 𝒀 (%) 𝑿𝟏 (%) 𝑿𝟐(%) 𝑿𝟑(Year) 𝑿𝟒 (Million Rupiah) 𝑿𝟓 (Trillion Rupiah) 

1 Bangkalan 21.57 8.07 68.66 5.96 8673 17152779 

2 Banyuwangi 8.07 5.42 72.32 7.42 12217 55471065 

3 Batu 4.09 6.57 73.74 9.31 12887 11471435 

4 Blitar 9.65 3.66 70.44 7.5 10757 25700019 

5 Bojonegoro 13.27 4.82 71.84 7.38 10221 65839509 

6 Bondowoso 14.73 4.46 73.89 5.94 10690 13921654 

7 Gresik 12.42 8 69.43 9.56 13280 101318686 

8 Jember 10.41 5.44 68.97 6.49 9410 54688719 

9 Jombang 10 7.09 70.69 8.55 11394 28553448 

10 Kediri 11.64 5.15 69.34 8.08 11127 29361672 

11 Bllitar City 7.89 6.61 69.96 10.35 13816 4924572 

12 Kediri City 7.75 6.37 67.35 10.15 12359 86485594 

13 Madiun City 5.09 8.15 66.87 11.37 16095 10748101 

14 Malang City 4.62 9.65 67.59 10.41 16663 53309702 

15 Mojokerto City 6.39 6.87 67.09 10.47 13610 4976490 

16 Pasuruan City 6.88 6.23 71.66 9.33 13354 5914585 

17 Probolinggo City 7.44 6.55 69.71 8.95 12245 8361142 

18 Lamongan 13.86 4.9 70.72 8.04 11510 27896543 

19 Lumajang 10.05 3.51 66.19 6.67 9203 22623402 

20 Madiun 11.91 4.99 67.77 7.82 11658 13372330 

21 Magetan 10.66 3.86 73.31 8.36 11833 13417032 

22 Malang 10.5 5.4 68.49 7.43 10163 68619103 

23 Mojokerto 10.62 5.54 70.47 8.64 12844 60198699 

24 Nganjuk 11.85 4.98 64.24 7.78 12172 18640685 

25 Ngawi 15.57 4.25 72.88 7.26 11459 13823456 

26 Pacitan 15.11 2.04 80.57 7.61 8887 11107402 

27 Pamekasan 15.3 3.1 65.88 6.7 8804 11496236 

28 Pasuruan 9.7 6.03 69.03 7.41 10297 107630268 

29 Ponorogo 10.26 4.38 72.63 7.55 9851 14619969 

30 Probolinggo 18.91 4.55 73.24 6.12 10969 23664388 

31 Sampang 23.76 3.45 70.19 4.86 8790 13984568 

32 Sidoarjo 5.93 10.87 66.47 10.72 14578 141000359 

33 Situbondo 12.63 3.68 71.63 6.62 9996 13715834 

34 Sumenep 20.51 2.31 75.63 5.92 9000 24161351 

35 Surabaya 5.23 9.68 67.3 10.5 17862 407726799 

36 Trenggalek 12.14 3.53 72.36 7.56 9743 12959018 

37 Tuban 16.31 4.68 73.77 7.18 10380 43984689 

38 Tulungagung 7.51 4.91 72.26 8.34 10807 27390424 

 

2.2 Spatial Weight Matrix 

The spatial weighting matrix (𝑊𝑛×𝑛) is a crucial component in spatial analysis, providing a 

standardized representation of the relationships between n locations concerning a specified row or constant. 

https://jatim.bps.go.id/


1320 Maulana, et. al.    SPATIALLY INFORMED INSIGHTS: MODELING PERCENTAGE POVERTY IN EAST…  

 

Notably, the diagonal elements of matrix W, denoted as 𝑤𝑖𝑖, are set to zero under the assumption that no 

spatial unit is contiguous with itself, signifying an absence of influence from a location onto itself [19]. The 

determination of matrix W typically involves one of two methods: (1) reliance on the distance between 

locations or (2) consideration of contiguity. In the context of spatial analysis, the distance measure (𝑑𝑖𝑗) 

between the centroid of location-i with coordinates (𝑢𝑖, 𝑣𝑖) and location-j with coordinates (𝑢𝑗, 𝑣𝑗) can be 

computed using various metrics, including Minkowski, Euclidean, and Manhattan distances. Here, 𝑢𝑖 and 𝑣𝑖 

represent the latitude and longitude coordinates of location-i, while 𝑢𝑗 and 𝑣𝑗 denote the corresponding 

coordinates for location-j [20]. The general formulation of the spatial weighting matrix, accommodating n 

locations, is succinctly expressed through Equation (1) [21].  This matrix serves as a fundamental tool for 

comprehending the intricate spatial relationships inherent in the dataset, contributing to the robustness of 

spatial analyses within the framework of geographic information systems and statistical modeling. 

𝑾 = [

𝑤11 𝑤12 … 𝑤1𝑛

𝑊21 𝑊22 ⋯ 𝑤2𝑛

⋮
𝑊𝑛1

⋮
𝑊𝑛2

⋱
…

⋮
𝑤𝑛𝑛

] (1) 

The various weighting matrices utilized in this study are presented in Table 2 [22]. 

Table 2. Variation in Spatial Weighting Matrices 

No 

Basis of 

spatial 

weighting 

matrix 

calculation 

Types of 

weighting 

matrices 

Concept Equation 

1.  Based on 

contiguity. 

Queen 

Contiguity 

(Contiguity 

of sides and 

angles) 

The weight 𝑤𝑖𝑗  is designated as 1 for 

locations that exhibit both side and 

angle adjacency with the observed 

location, and as 0 otherwise 

𝑤𝑖𝑗 = {
1,   if i and j are neighbors

0,   𝑖f i and j are not neighbors
 

2.  Based on 

distance. 

Inverse 

Distance 

Weight 

(IDW) 

The distance serves as a measure of 

spatial proximity. As the distance 𝑑𝑖𝑗  

diminishes, the weight 𝑤𝑖𝑗  

proportionally increases, signifying 

that the weight is inversely related to 

the distance. 

𝑤𝑖𝑗 = 𝑑𝑖𝑗
−𝛼, where 𝛼 = 1. 

If 𝛼 = 2, 𝑐ommonly known as the Power 

Distance Weight 

3.  k-Nearest 

Neighbor 

(k-NN) 

Let 𝑑𝑖𝑗  denote the distance between 

the centroids of location-i and 

location-j, where 𝑖 ≠ 𝑗. Subsequently, 

these distances, denoted as 𝑑𝑖𝑗(1) ≤

𝑑𝑖𝑗(2)  ≤ ⋯ ≤ 𝑑𝑖𝑗(n−1), are arranged in 

ascending order. Subsequently, the k-

NN locations from location-i are 

established, denoted as 𝑁𝑘(𝑖) =
{𝑗(1), 𝑗(2), … , 𝑗(𝑘)}, with k taking 

values from 1 to n-1. 

Subsequently, it is considered 

neighbors if the distance between 

those locations is among the-k nearest 

neighbors. 

The k-nearest neighbor locations from 

location-i are assigned values according 

to the following criteria. 

𝑤𝑖𝑗 = {
1,   𝑗 ∈ 𝑁𝑘(𝑖)

0,   other.
 

4.  Threshold 

Weight/ 

Distance 

Band 

Weight 

(DBW) 

In the threshold weight approach, a 

predetermined threshold distance, 

denoted as 𝑑𝑚𝑎𝑥 , is established. This 

value signifies the maximum distance 

for determining spatial dependence 

between location-i and location-j. 

Locations with distances smaller than 

the threshold are considered 

neighbors. 

𝑤𝑖𝑗 = {
1, 0 ≤ 𝑑𝑖𝑗 ≤ 𝑑𝑚𝑎𝑥  

0, 𝑑𝑖𝑗 > 𝑑𝑚𝑎𝑥
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No 

Basis of 

spatial 

weighting 

matrix 

calculation 

Types of 

weighting 

matrices 

Concept Equation 

5.  Uniform 

Weight 

Uniform weighing allocates equal 

weight to all observed areas, providing 

each region with the same weight 

value, irrespective of its relationship 

to other areas. This approach is 

commonly adopted when the observed 

area exhibits homogeneity with other 

regions [23]. The uniform weighing 

matrix is defined as follows." 

𝑊𝑖𝑗 =
1

𝑛𝑖

 

where 𝑛𝑖 is the area around area 𝑖. 
 

 

2.3 Testing for Spatial Dependence 

The determination of a suitable spatial dependence model for the research data is initiated by a thorough 

examination of spatial dependence. Broadly, two (2) primary tests for spatial dependence are employed: (1) 

Moran's Index and (2) Lagrange Multiplier Test (LM). Moran's Index is utilized to discern the Spatial Error 

Model (SEM), whereas the LM test is deployed to identify models such as Spatial Autoregressive (SAR), 

SEM, or Generalized Spatial Model (GSM). In spatial econometrics, the LM test was introduced by Anselin 

[24] for the Spatial Autoregressive (SAR) and Generalized Spatial Model (GSM). Subsequently, Burridge 

[25] extended the LM test for the Spatial Error Model (SEM). Anselin et al. [26] developed a robust LM test. 

Both the LM test and the robust LM test operate under the assumption of normally distributed errors. For the 

SEM model, Kelejian and Robinson [27] proposed a computationally straightforward test that circumvents 

the need for normality assumptions contingent upon a sufficiently large sample size.  

The equations for the Lagrange Multiplier (LM) and robust LM tests for the SAR, SEM, and GSM are 

presented in Equations (2)-(6). In the SAR model, the null hypothesis (𝐻0) assumes the absence of spatial 

lag dependence (ρ=0), with the alternative hypothesis (𝐻1) proposing the existence of spatial dependence 

(ρ≠0). The test statistics for LM in SAR (𝐿𝑀𝑆𝐴𝑅) and robust LM (𝑅𝐿𝑀𝑆𝐴𝑅) are articulated in Equations (2) 

and (3). 

𝐿𝑀𝑆𝐴𝑅 =
(

𝒆′𝑾𝒚
�̂�2

𝑀𝐿
)

2

(𝑾𝑿∗𝜷∗̂)
′
𝑴𝑾𝑿∗𝜷∗̂

�̂�2
𝑀𝐿

+ 𝑡𝑟[𝑾𝟐 + 𝑾′𝑾]

 (2) 

𝑅𝐿𝑀𝑆𝐴𝑅 =
(

𝒆′𝑾𝒚 − 𝒆′𝑾𝒆
�̂�2

𝑀𝐿
)

2

(
(𝑾𝑿∗𝜷∗̂)

′
𝑴𝑾𝑿∗𝜷∗̂ + 𝑡𝑟[𝑾�̂� + 𝑾′𝑾]

�̂�2
𝑀𝐿

) + 𝑡𝑟[𝑾𝟐 + 𝑾′𝑾]

 

 

 

(3) 

 

 

 

where e is the error vector from the regression model, y is the dependent variable vector, W is the spatial 

weighting matrix, X is the predictor matrix, �̂� is the estimated regression parameter, tr [.] is the trace of a 

matrix, and 𝑴 = 𝑰 − 𝑿∗(𝑿∗′𝑿∗)
−𝟏

𝑿′, and �̂�2
𝑀𝐿 is the maximum likelihood function for the error variance 

of the regression model. 𝑿∗ = (𝒊𝑛, 𝑥1, ⋯ , 𝑥𝑝) is a matrix of constants and predictors of size 𝑛 × (𝑝 + 1) and 

𝜷∗ = (𝛽0, 𝛽1, ⋯ , 𝛽𝑝)′ is the coefficient vector of regression parameters of size (𝑝 + 1) × 1. The test criteria 

are that 𝐻0 is rejected if 𝑀𝑆𝐴𝑅 > 𝜒(1),𝛼
2  or 𝑅𝐿𝑀𝑆𝐴𝑅 > 𝜒(1),𝛼

2 . For the SEM model, the hypotheses under 

investigation are: 𝐻0: 𝜆 = 0  (no spatial error dependence) and 𝐻1: 𝜆 ≠ 0 (there is spatial error dependence). 

The test statistics for LM and robust LM for the SEM model are presented in Equations (4) and (5). 

𝐿𝑀𝐸𝑅𝑅 =
(

𝒆′𝑾𝒆
�̂�2

𝑀𝐿
)

2

𝑡𝑟[𝑾𝟐 + 𝑾′𝑾]
 

(4) 
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𝑅𝐿𝑀𝐸𝑅𝑅 =

(
𝒆′𝑾𝒆
�̂�2

𝑀𝐿
− 𝑡𝑟[𝑾𝟐 + 𝑾′𝑾] (

(𝑾𝑿∗𝜷∗̂)
′
𝑴𝑾𝑿∗𝜷∗̂

�̂�2
𝑀𝐿

+ 𝑡𝑟[𝑾𝟐 + 𝑾′𝑾])

−1

(
𝒆′𝑾𝒚
�̂�2

𝑀𝐿
))

2

𝑡𝑟[𝑾𝟐 + 𝑾′𝑾] − (𝑡𝑟[𝑾𝟐 + 𝑾′𝑾])2
(𝑾𝑿∗𝜷∗̂)

′
𝑴𝑾𝑿∗𝜷∗̂

�̂�2
𝑀𝐿

+ 𝑡𝑟[𝑾𝟐 + 𝑾′𝑾]

 
(5) 

The testing criteria dictate the rejection of the null hypothesis (𝐻0) if either 𝐿𝑀𝑆𝐸𝑀 > 𝜒(1),𝛼
2  or 

𝑅𝐿𝑀𝑆𝐸𝑀 > 𝜒(1),𝛼
2 . In the Generalized Spatial Model (GSM), the hypotheses under scrutiny are as follows: 

𝐻0: 𝜌 = 0 or 𝜆 = 0 (signifying no spatial dependence), and 𝐻1: 𝜌 ≠ 0 or 𝜆 = 0 (indicating spatial dependence 

in lag and error terms). The test statistic for LM in GSM is delineated by Equation (6). 

𝐿𝑀𝐺𝑆𝑀 =
(

𝒆′𝑾𝒚
�̂�2

𝑀𝐿
−

𝒆′𝑾𝒆
�̂�2

𝑀𝐿
)

2

(
(𝑾𝑿∗𝜷∗̂)

′
𝑴𝑾𝑿∗𝜷∗̂

�̂�2
𝑀𝐿

+ 𝑡𝑟[𝑾𝟐 + 𝑾′𝑾]) − 𝑡𝑟[𝑾𝟐 + 𝑾′𝑾]

+
(

𝒆′𝑾𝒆
�̂�2

𝑀𝐿
)

2

𝑡𝑟[𝑾𝟐 + 𝑾′𝑾]
 (6) 

The test criteria are that 𝐻0 is rejected if 𝐿𝑀𝐺𝑆𝑀 > 𝜒(2),𝛼
2 .  

 

2.4 Spatial Dependency Model 

In linear regression models, the assumption that must be met is that observations are independent. 

Regression analysis is an analytical approach that characterizes the linear relationship between two or more 

variables: the independent variable and the dependent variable. The primary goal of regression analysis is to 

estimate the variability in the dependent variable influenced by the independent variable in a given 

observation [28]. As outlined by Supanggat [29], the regression model is defined by Equation (7). 

𝒚 = 𝑿𝜷 + 𝜺 (7)  

In instances characterized by spatial dependence in observations, it becomes imperative to augment the 

regression model with a weight matrix that encapsulates the interdependence among locations. Such 

dependencies may manifest in the dependent variable, predictors, errors, or their combinations. The 

Generalized Spatial Nested (GNS) model can be formally expressed through Equation (8) [30]. 

𝒚 = 𝜌𝑾𝟏𝒚 + 𝑿∗𝜷∗ + 𝑾𝟐𝑿𝜸 + 𝒖, where 𝒖 = 𝑾𝟑𝒖 + 𝜺 (8)  

 Assuming 𝜺 follows a normal distribution with a mean (μ) equal to 0 and a variance (𝜎2) equal to 𝜎2 𝑰, 

where 𝑰 is the identity matrix of size 𝑛 × 𝑛, then 𝜀 is a random variable distributed as 𝑁(0, 𝜎2𝑰), y is a 

dependent variable vector of size 𝑛 × 1, 𝜌 is the autoregressive coefficient of the lagged dependent variable, 

𝑾𝟏 is the spatial weighting matrix for the dependent variable of size 𝑛 × 𝑛, 𝑿∗ = (𝒊𝑛, 𝑥1, ⋯ , 𝑥𝑝) is a matrix 

of constants and predictors of size 𝑛 × (𝑝 + 1), 𝒊𝑛 is a vector with elements valued as one of size 𝑛 × 1, 𝜷∗ =
(𝛽0, 𝛽1, ⋯ , 𝛽𝑝)′ is the coefficient vector of regression parameters of size (𝑝 + 1) × 1, 𝑾𝟐 is the spatial 

weighting matrix for predictors of size 𝑛 × 𝑛, 𝑿 = (𝑥1, ⋯ , 𝑥𝑝) is the matrix of predictors of size 𝑛 × 𝑝, 𝜸 is 

the autoregressive coefficient vector of size 𝑝 × 1, 𝑾𝟑 is the spatial weighting matrix for errors of size 𝑛 × 𝑛, 

u is the assumed autocorrelated error vector of size 𝑛 × 1, 𝜆 is the autoregressive coefficient of errors, and I 

is the identity matrix of size 𝑛 × 𝑛. The determination of the spatial regression model can be observed in 

Figure 1. 
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Figure 1. Taxonomy Spatial Dependence Model [30] 

Based on Figure 1 and Equation (8) several spatial models that may be employed, such as the SAR, SEM, 

SLX,  and GSM are presented in Table 3. 

Table 3. Spatial Model Variations 

No Model Model equation Description 

1 Spatial Autoregressive 

Model (SAR) 

𝒚 = 𝜌𝑾𝟏𝒚 + 𝑿∗𝜷∗ + 𝜺 o 𝜀𝑖 is assumed to follow a normal distribution, be 

stochastically independent, identically centered 

around zero with a variance of ragam 𝜎2 

(𝜀~𝑁(0, 𝜎2𝑰)). 

o SAR is a linear regression model wherein spatial 

autocorrelation is present in the dependent variable. 

2 Spatial Error Model (SEM) 𝒚 = 𝑿∗𝜷∗ + 𝒖 

𝒖 = 𝐖𝟑𝐮 + 𝛆 

o SEM is a linear regression model characterized by 

spatial autocorrelation in its error term. 

o The prediction in SEM involves three components: 

(1) the smoothing factor (𝑿𝜷), referred to as the 

trend, (2) the spatial factor (𝝀𝑾𝒖 ) or signal, and (3) 

the Fit, representing the summation of the trend and 

signal [31]. 

3 Spatial lag of X (SLX) 𝒚 = 𝑿∗𝜷∗ + 𝑾𝟐𝑿𝜸 + 𝜺 SLX is a regression model characterized by spatial 

autocorrelation among the predictor variables. 

4 General Spatial Model 

(GSM)/ Spatial 

Autoregressive 

Confused (SAC)/ 

Spatial Autoregressive 

Moving Average (SARMA) 

𝒚 = 𝜌𝑾𝟏𝒚 + 𝑿∗𝜷∗ + 𝒖 

𝒖 = 𝐖𝟑𝐮 + 𝛆 

SAC consists of an autoregressive component in the 

dependent variable (𝜌) and an autoregressive 

component in the error term (𝜆). 

 

2.5 Testing Assumptions and Goodness of Fit Test 

Subsequent to obtaining an appropriate model, the subsequent phase involves scrutinizing the 

assumptions inherent in the derived model. Assumptions for spatial models encompass (1) normally 

distributed residuals, (2) homogeneity of residual variances, and (3) the absence of spatial autocorrelation in 

residuals [32], [33]. The normality of residuals is assessed through the Kolmogorov-Smirnov test [34]. The 

homogeneity of residual variances is tested using the Breusch-Pagan test [35], whereas the absence of spatial 

autocorrelation in residuals is examined through Moran's index [36]. 

A goodness-of-fit test for the regression model is essential to assess the model's effectiveness in 

predicting the relationship between the independent and dependent variables, both overall and for each 

utilized independent variable [37]. The goodness-of-fit test involves employing various measures, namely: 

(1) Mean Absolute Error (MAE), (2) Mean Square Error (MSE), (3) Root Mean Square Error (RMSE), (4) 

pseudo-𝑅2, (5) Akaike Information Criterion (AIC), and (6) Mean Absolute Percentage Error (MAPE) [38]. 

A good model is characterized by lower values of MAE, MSE, RMSE, AIC, and MAPE. This is because a 
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smaller difference between predictions and actual data indicates greater accuracy in the generated predictions 

[39]. Similarly, models with lower AIC values are considered more optimal as they efficiently organize data 

explanations with the minimum number of parameters [40]. Meanwhile, a higher pseudo-𝑅2 value elucidates 

a better-fitting model [41]. The accuracy of the prediction percentage for forecast error (MAPE) is presented 

in Table 4 [42]. 

Table 4. MAPE Criteria for Model Evaluation 

No MAPE Value Prediction Accuracy 

1 MAPE ≤ 10% Precise prediction 

2 10% <𝑀𝐴𝑃𝐸 ≤ 20% Reliable prediction 

3 20% <𝑀𝐴𝑃𝐸 ≤ 50% Prudent prediction 

4 𝑀𝐴𝑃𝐸 > 50% Poor forecasting 

Next, to compare whether a spatial model significantly differs from a linear model, the likelihood ratio 

(LR) test can be conducted. Additionally, LR can be employed to assess the suitability of the formed model. 

The LR test criterion is 𝐻0 is rejected if 𝜒𝐿𝑅
2 > 𝜒𝛼;𝑝

2  or p-value < 𝛼, where 𝐻0 defines that the alternative 

model is not deemed suitable [43]. 

 

2.6 Research Flow 

The research flowchart is depicted in  

Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Research Flow Diagram [19] 
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3. RESULTS AND DISCUSSION 

3.1 Descriptive Statistics 

The primary objective of conducting descriptive analysis is to articulate data in a manner that is both 

accessible and engaging for readers, facilitating the retrieval of pertinent information. In this study, a 

comprehensive descriptive analysis was undertaken on the Population Poverty Rate data for East Java 

Province in 2021. The data was stratified into three distinct categories: Low, Medium, and High. Figure 3 

visually illustrates the distribution of poverty levels. 

 

 
 

Figure 3. Percentage Poverty in the East Java Province at Regency/ City Level 

Figure 3 presents a comparison of the poverty rate by regency/city in East Java Province in 2021. In 

2021, the average poverty rate in East Java Province was 11.32%, where Batu City was the area with the 

lowest poverty rate in East Java Province at 4.09%, as Batu City is a tourist area. Meanwhile, Sampang 

Regency was the area with the highest poverty in East Java Province at 23.76%. The number is associated 

with farmers making up the majority of Sampang Regency residents. Farmers in this area have relatively low 

incomes, so they are unable to improve the population welfare. The subsequent step involves the examination 

of multicollinearity. Multicollinearity testing is carried out through the computation of Variance Inflation 

Factor (VIF) values, with the results presented in Table 5. 

Table 5. Variance Inflation Factor (VIF) values 

Variable 𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 𝑿𝟓 

VIF Value 3.31 1.37 4.56 5.76 1.53 

 

According to Table 5, the Variance Inflation Factor (VIF) values for all five predictors are sufficiently 

low (less than 10) [44]. Consequently, it can be inferred that there is an absence of multicollinearity among 

all employed predictors. Following this, linear regression modeling ensues, accompanied by tests for the 

significance of its parameters. A backward stepwise regression elimination test [45] is executed to ensure the 

retention of only significant variables. Initially encompassing five (5) variables, subsequent elimination 

reveals a sole significant variable, namely the Average Years of Schooling variable (𝑋3). In line with 

Equation (7), the regression model equation is elucidated in Equation (9). 
�̂� = 31.048 − 2.447(𝑋3) (9) 

3.2 Estimation of Spatial Model Parameters 

Preceding the computation of the spatial regression model, the formulation of a spatial weighting 

matrix takes precedence. In this study, the spatial weighting matrix incorporates varied weights, as delineated 

in Table 2. As illustrated in Figure 4 (a), a visual representation of the contiguity chain plot is presented 

utilizing the Queen-contiguity approach. Modification of the contiguity criteria was necessary; hence, 
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Surabaya City and Bangkalan District were deemed contiguous, facilitated by the direct connection through 

the Surabaya-Madura Bridge (Suramadu), as elucidated in Figure 4 (b). 

 

 

 

(a) (b) 

Figure 4. Chain Plot of Spatial Adjacency between Locations Based on Contiguity (a) Queen Contiguity 

Approach, (b) Modified Queen Contiguity Approach 
 

In the computation of the distance-weighted matrix, it is imperative to ensure that coordinates are 

represented in a projective coordinate system for computational efficiency. In this study, the Universal 

Transverse Mercator (UTM) coordinate system for zone 49S was employed, and the conversion from 

geographic coordinates to projective coordinates was facilitated using QGIS software [46].  Subsequently, 

the Euclidean distance metric was applied. The distance (𝑑𝑖𝑗) between the central point of location-i with 

coordinates (𝑢𝑖, 𝑣𝑖) and location-j with coordinates (𝑢𝑗, 𝑣𝑗) is detailed in Equation (10). 

𝑑𝑖𝑗 = √(𝑢𝑖 − 𝑢𝑗)
2

+ (𝑣𝑖 − 𝑣𝑖)2 (10) 

The variable 𝑢𝑖 denotes the latitude coordinate of location-i, while 𝑢𝑗 corresponds to the latitude 

coordinate of location-j. Similarly, 𝑣𝑖 signifies the longitude coordinate of location-i, and 𝑣𝑗 represents the 

longitude coordinate of location-j. Utilizing Equation  (10) in conjunction with Table 2. 

The weighting assignment in the k-NN matrix will be performed by first determining the value of 𝑘, 

then calculating the Euclidean distance. Subsequently, the region with the nearest distances will be assigned 

a weight of 
1

𝑘
 for the specified k value. In Figure 5 (a) using 𝑘 = 3 as an example. Like k-NN, the weighting 

assignment in the radial distance matrix is initially determined by establishing a threshold (𝑑𝑚𝑎𝑥) as a 

reference for weight assignment. Subsequently, Euclidean distances are calculated, and weights are assigned 

to areas with distances less than the specified threshold. As an example, in Figure 5 (b) a threshold value of 

75000 m is used. 

 

 
 

(a) (b) 

Figure 5. Chain Plot of Spatial Adjacency between Locations Based on Distance  

(a) k-NN (k=3), (b) DBW (𝒅𝒎𝒂𝒙=75000 m) 

 

After obtaining the spatial weighting matrices as depicted in Figure 4 and Figure 5, the subsequent 

step involves conducting the Lagrange Multiplier (LM) test using Equations (2) through Equations (6). In 
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the SAR model, the test criteria dictate rejecting the null hypothesis (𝐻0) if 𝑀𝑆𝐴𝑅 > 𝜒(1),𝛼
2  or 𝑅𝐿𝑀𝑆𝐴𝑅 >

𝜒(1),𝛼
2 , or if the p-value is less than 𝛼. Meanwhile, for SEM, the criteria include rejecting 𝐻0 if 𝐿𝑀𝑆𝐸𝑀 >

𝜒(1),𝛼
2  or 𝑅𝐿𝑀𝑆𝐸𝑀 > 𝜒(1),𝛼

2 . A significance level of 5% is applied, resulting in 𝜒(1),𝛼
2 = 3.841 The LM test 

results are detailed in Table 6. 
Table 6. The LM Test Results 

No 

Spatial 

weighting 

matrix 

SAR SEM GSM 
 

Decisions 

 

Conclusion 

𝑳𝑴𝑺𝑨𝑹 
p-

val 
𝑹𝑳𝑴𝑺𝑨𝑹 

p-

val 
𝑳𝑴𝑬𝑹𝑹 

p-

val 
𝑹𝑳𝑴𝑬𝑹𝑹 p-val GSM 

p-

val 
  

1.  
Queen 

Contiguity 
3.00 0.08 0.05 0.82 6.56 0.01 3.61 0.06 6.61 0.04 

Do not reject 𝐻0 in 

𝐿𝑀SAR, but reject 

𝐻0 in 𝐿𝑀𝐸𝑅𝑅 and 

GSM 

SEM 

2.  Modified 

Queen 

Contiguity 

0.71 0.39 2.04 0.15 5.19 0.02 6.52 0.011 7.23 0.03 Do not reject 𝐻0 in 

𝐿𝑀SAR, but reject 

𝐻0 in 

𝐿𝑀ERR, 𝑅𝐿𝑀𝐸𝑅𝑅, and 

GSM 

SEM 

3.  IDW 0.35 0.55 0.22 0.64 1.53 0.21 1.40 0.24 1.75 0.42 All examinations of 

LM do not lead to 

the rejection of the 

null hypothesis (𝐻0) 

Linear 

Regression 

4.  k-NN (k=1) 0.33 0.57 0.92 0.34 0.06 0.81 0.65 0.42 0.98 0.61 All examinations of 

LM do not lead to 

the rejection of the 

null hypothesis (𝐻0) 

Linear 

Regression 

5.  k-NN (k=3) 3.06 0.08 0.15 0.70 10.63 0.00 7.72 0.00 10.78 0.00 Do not reject 𝐻0 in 

𝐿𝑀SAR, but reject 

𝐻0 in 

𝐿𝑀ERR, 𝑅𝐿𝑀𝐸𝑅𝑅, and 

GSM 

SEM 

6.  k-NN (k=5) 0.58 0.45 4.22 0.04 14.01 0.00 17.65 2.6E-

05 

18.23 0.00 Do not reject 𝐻0 in 

𝐿𝑀SAR, but reject 

𝐻0 in 

𝐿𝑀ERR, 𝑅𝐿𝑀𝐸𝑅𝑅, and 

GSM 

SEM  

7.  DBW 

(𝑑𝑚𝑎𝑥 =
55000𝑚) 

0.88 0.35 1.14 0.29 7.38 0.01 7.64 0.01 8.52 0.01  

Do not reject 𝐻0 in 

𝐿𝑀SAR, but reject 

𝐻0 in 

𝐿𝑀ERR, 𝑅𝐿𝑀𝐸𝑅𝑅, and 

GSM 

SEM  

8.  DBW 

(𝑑𝑚𝑎𝑥 =
60000𝑚) 

1.36 0.24 0.56 0.45 7.42 0.01 6.62 0.01 7.98 0.02  

Do not reject 𝐻0 in 

𝐿𝑀SAR, but reject 

𝐻0 in 

𝐿𝑀ERR, 𝑅𝐿𝑀𝐸𝑅𝑅, and 

GSM 

SEM  

9.  DBW 

(𝑑𝑚𝑎𝑥 =
65000𝑚) 

4.39 0.03 0.12 0.73 15.41 0.00 11.13 0.00 15.53 0.00 Reject 𝐻0 in 𝐿𝑀SAR, 

𝐿𝑀𝐸𝑅𝑅,𝑅𝐿𝑀𝐸𝑅𝑅, and 

GSM 

SEM or 

GSM 

10.  DBW 

(𝑑𝑚𝑎𝑥 =
70000𝑚) 

3.68 0.05 0.14 0.70 13.75 0.00 10.22 0.00 13.90 0.00 Do not reject 𝐻0 in 

𝐿𝑀SAR, but reject 

𝐻0 in 

𝐿𝑀ERR, 𝑅𝐿𝑀𝐸𝑅𝑅, and 

GSM 

SEM 

11.  DBW 

(𝑑𝑚𝑎𝑥 =
75000𝑚) 

4.93 0.03 0.03 0.85 16.24 0.00 11.34 0.00 16.27 0.00 Reject 𝐻0 in 𝐿𝑀SAR, 

𝐿𝑀𝐸𝑅𝑅,𝑅𝐿𝑀𝐸𝑅𝑅, and 

GSM 

SEM or 

GSM 

12.  Uniform 

Weight 

0.51 0.47 0.00 1.00 0.51 0.47 0.00 1.00 0.51 0.77 All examinations of 

LM do not lead to the 

rejection of the null 

hypothesis (𝐻0) 

Linear 

regression 

 

According to Table 6, among the various feasible weightings considered, the spatial regression model 

was established utilizing 9 specific weightings: Queen Contiguity, Modified Queen Contiguity, 𝑘-NN (𝑘 =
3, and 𝑘 = 5), and DBW (𝑑𝑚𝑎𝑥=55000 m, 𝑑𝑚𝑎𝑥=60000 m, 𝑑𝑚𝑎𝑥=65000 m, 𝑑𝑚𝑎𝑥=70000 m, and 

𝑑𝑚𝑎𝑥=75000 m). In Table 6, the use of the number of k nearest neighbors is done by trial and error and is 

assumed to use The First Law of Geography from Tobler which relates that the closer the object is, the greater 

the influence it will have [47]. While the determination of the 𝑑𝑚𝑎𝑥 values was performed iteratively, 

commencing with a distance of 55000m. This was necessitated by the minimum threshold required to 

generate an invertible weighting matrix. If the distance falls below this threshold, a row in the weighting 

matrix contains elements that are all zero or lack neighboring regions, resulting in a matrix with a determinant 

of 0. Consequently, the weighting matrix becomes non-invertible, rendering it incapable of solving the 

equation [48]. From these 9 weightings, AIC values were computed and are presented in Table 7. 
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Table 7. Comparison of AIC Values among Various Spatial Regression Models 

Evaluations Models 
Queen 

Contiguity 

Modified 

Queen 

Contiguity 

k-NN 

(𝒌 = 𝟑) 

 

k-NN 

(𝒌 =
𝟓) 

 

DBW 

(𝒅𝑴𝒂𝒙= 

55000 

m) 

DBW 

(𝒅𝑴𝒂𝒙= 

60000 

m) 

DBW 

(𝒅𝑴𝒂𝒙= 

65000 

m) 

DBW 

(𝒅𝑴𝒂𝒙= 

70000 

m) 

DBW 

(𝒅𝑴𝒂𝒙= 75000 

m) 

AIC Value 

SEM 184.23 

 

185.50 

 

182.85 

 

181.38 

 

183.32 

 

184.22 

 

181.05 181.63 180.98 

 
GSM - - - - - - 182.60 - 182.85 

Based on the findings presented in Table 7, the SEM model incorporating DBW weighting 

(𝑑𝑚𝑎𝑥=75000 m) emerges as the model with the most favorable AIC value. Subsequent analyses will 

therefore focus on the application of SEM spatial regression with DBW weighting (𝑑𝑚𝑎𝑥=75000). The 

formulation of the SEM model is detailed in Equation (11). The components derived from the SEM are 

presented in Table 8. 

�̂� = 31.27 − 2.45( X3) + 𝜀𝑖 , with 𝜀𝑖 = 0.64 ∑ 𝑊𝑖𝑗𝜀𝑗

𝑛

𝑗=1

 (11) 

Table 8. The Components of the SEM with DBW Weighting (𝒅𝒎𝒂𝒙=75000 m) 

No Regency/ City Fit Trend Signal 

1 Bangkalan 17.53 16.69 0.85 

2 Banyuwangi 11.09 13.12 -2.03 

3 Batu 7.91 8.49 -0.58 

4 Blitar 12.39 12.92 -0.53 

5 Bojonegoro 13.78 13.21 0.56 

6 Bondowoso 15.15 16.74 -1.59 

7 Gresik 8.28 7.88 0.40 

8 Jember 13.92 15.39 -1.47 

9 Jombang 10.26 10.35 -0.09 

10 Kediri 10.99 11.50 -0.51 

11 Bllitar City 5.11 5.95 -0.83 

12 Kediri City 5.97 6.44 -0.46 

13 Madiun City 3.38 3.45 -0.07 

14 Malang City 5.02 5.80 -0.78 

15 Mojokerto City 5.78 5.65 0.12 

16 Pasuruan City 8.21 8.44 -0.23 

17 Probolinggo City 7.97 9.37 -1.40 

18 Lamongan 12.44 11.60 0.84 

19 Lumajang 13.54 14.95 -1.41 

No Regency/ City Fit Trend Signal 

20 Madiun 12.01 12.14 -0.13 

21 Magetan 11.08 10.82 0.27 

22 Malang 12.08 13.09 -1.01 

23 Mojokerto 10.10 10.13 -0.03 

24 Nganjuk 12.17 12.24 -0.06 

25 Ngawi 13.33 13.51 -0.17 

26 Pacitan 12.38 12.65 -0.27 

27 Pamekasan 17.67 14.88 2.79 

28 Pasuruan 12.74 13.14 -0.40 

29 Ponorogo 12.98 12.80 0.18 

30 Probolinggo 14.27 16.30 -2.02 

31 Sampang 20.78 19.38 1.40 

32 Sidoarjo 4.90 5.04 -0.14 

33 Situbondo 12.49 15.07 -2.59 

34 Sumenep 18.33 16.79 1.55 

35 Surabaya 6.07 5.58 0.49 

36 Trenggalek 12.63 12.77 -0.14 

37 Tuban 14.75 13.70 1.04 

38 Tulungagung 10.72 10.87 -0.14 

The test statistics for each parameter of Equation (11) are detailed in Table 9. Criteria for parameter 

testing (𝛽0 and 𝛽1) involve rejecting the null hypothesis (𝐻0) if |𝑍𝑐𝑎𝑙| > 𝑍𝑡𝑎𝑏 or if the p-value is less than 𝛼. 

With 𝛼 set at 5%, the critical 𝑍𝑡𝑎𝑏 value is 1.96. The coefficients of the autoregressive error are tested using 

the Wald test, with the null hypothesis rejected if the Wald value surpasses 𝜒𝛼,1
2  (3.841) [49]. 

Table 9. Significance Testing of Each Parameter 

Parameters 𝒁𝒄𝒂𝒍 p-val Decisions Conclusions  

𝛽0 = 31.27 13.15 < 2.2e-16 Rejected 𝐻0 Significant parameters 

𝛽1 = −2.45 -8.96 < 2.2e-16 Rejected 𝐻0 Significant parameters 

𝜆 = 0.64 Wald statistic (15.25) 9.38e-05 Rejected 𝐻0 Significant parameters 

 

According to Equation  (11), the variable (𝑋3) demonstrates a negative coefficient of -2.45 

concerning the poverty rate in East Java Province. This implies that an increase in the level of formal 

education pursued by residents in the area is associated with a reduction in the poverty rate.  The results of 

this study are in line with several other studies, including Hofmarcher [50], Brown [51], and Tilak [52]. In 

essence, a higher attainment of formal education by the population in East Java Province is correlated with a 

decreased poverty percentage in the region. This finding suggests practical implications, such as optimizing 

compulsory education for children, particularly up to the high school level, especially in areas identified as 

high-risk in Figure 3. Moreover, the mandate for compulsory education could gradually be extended to 

encompass diploma and bachelor's levels. This emphasis on education extends beyond formal schooling to 

include the familial environment. Undoubtedly, the family plays a pivotal role in shaping the educational 

trajectory of a child [53]. Equation (11) yields an autoregressive error coefficient (λ=0.64), signifying that 
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the error in a district/city will increase by 0.64 times the average error of its neighboring areas, assuming 

other variables remain constant. This finding is followed by an assessment of the SEM model assumptions, 

as detailed in Table 10. 

 
Table 10. Testing the Assumptions of the SEM Model. 

No 

Testing the 

Assumptions of 

the SEM Model 

Test 

statistics 

value and p-

value 

Test criteria Decisions Conclusions 

1.  Residual Normality 

using the 

Kolmogorov-

Smirnov test. 

D = 0.127 

p-val= 0.123 

The null hypothesis (𝐻0) is 

rejected if 𝐷𝑐𝑎𝑙 > 𝐷𝑡𝑎𝑏  b or if the 

p-val is less than α. In this context, 

𝐻0 posits that the residuals adhere 

to a normal distribution [54].  

𝐵𝑃 = 0.127
< 0.210 = 𝐷𝑡𝑎𝑏  

or 

p-val=
0.123 >
0.05 = 𝛼 

 

There is insufficient 

evidence to reject 𝐻0; 

thus, it can be 

concluded that the 

residuals in the SEM 

model exhibit a normal 

distribution. 

2.  Homogeneity of 

residuals using the 

Breusch-Pagan 

(BP) test. 

BP = 0.832 

p-val = 0.361 

The null hypothesis (𝐻0) is 

rejected if  𝐵𝑃 > 𝜒(𝑑𝑓),𝛼
2  or p-val 

< 𝛼, 
𝐻0 posits the assumption of 

homogeneity of residual variances 

is satisfied [55].  

𝐵𝑃 = 0.832
< 3.841
= 𝜒(1),0.05

2  

or 

p-val=
0.361 >
0.05 = 𝛼 

 

There is insufficient 

evidence to reject 𝐻0; 

thus, it can be 

concluded that the 

variance of residuals in 

the SEM model is 

homogeneous 

3.  Non-autocorrelation 

of residuals using 

Moran's Index. 

𝑍𝑐𝑎𝑙

= 0.714 

p-val=0.237 

The null hypothesis (𝐻0) is 

rejected if 𝑍𝑐𝑎𝑙  >  𝑍𝑡𝑎𝑏 or p-val < 

α, 

𝐻0: defines the absence of spatial 

autocorrelation in the residuals 

[31].   

 

𝑍𝑐𝑎𝑙 = 0.714
< 1.96 = 𝑍𝑡𝑎𝑏 

or 

p-val=
0.237 >
0.05 = 𝛼 

 

There is insufficient 

evidence to reject 𝐻0; 

thus, it can be 

concluded that there is 

no spatial 

autocorrelation in the 

residuals. 

Next, the determination of model goodness is continued, as presented in Table 11. 
 

Table 11. Determination of Model Goodness 

Model MAE MSE RMSE Pseudo-𝑹𝟐 AIC MAPE (%) 

SEM using DBW (𝑑𝑚𝑎𝑥 =75000 m) 1.85 5.16 2.27 76.19% 180.98 18.77 

Linear Regression 2.17 7.20 2.68 66.81 188.85 21.70 

 

Based on Table 11, the SEM model using DBW yields smaller values for MAE, MSE, RMSE, AIC, 

and MAPE compared to the linear regression model. Similarly, the pseudo-𝑅2 value obtained for SEM is 

larger than that of the linear regression model. Thus, based on these metrics, the SEM model outperforms 

linear regression. According to Table 4, the MAPE value for the SEM model falls within the category of 

good forecasting. Furthermore, from the analysis of the likelihood ratio (LR) test, a LR value of 𝜒𝐿𝑅
2 =7.614 

is obtained, which is greater than 𝜒0.05;1
2 = 3.841, or 𝑝𝑉𝑎𝑙𝑢𝑒 = 0.005<0.05=α. Therefore, it can be stated that 

the SEM model with DBW (𝑑𝑚𝑎𝑥=75000 m) is more efficient than the linear regression model and provides 

a significant improvement in the model's ability to explain variation in the data. 

 

4. CONCLUSION 

Based on spatial analysis, among the twelve simulated weightings considering both distance and 

contiguity variations, the best model for analyzing the poverty rate in East Java Province is the Spatial Error 

Model (SEM) using Distance Band Weight (DBW) with a maximum distance value of 75000 m. After 

conducting backward stepwise regression elimination, only one predictor variable is found to be significant 

out of the initial five, namely, Average Years of Schooling (𝑋3), with the SEM model equation being �̂� =
31.27 − 2.45( X3) + 𝜀𝑖 where 𝜀𝑖 = 0.64 ∑ 𝑊𝑖𝑗𝜀𝑗

𝑛
𝑗=1 . The variable 𝑋3 has a negative influence on the 

Population Poverty Rate, implying that a higher level of formal education pursued by residents in East Java 
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Province tends to reduce the poverty percentage in the region. The SEM model yields smaller values for 

MAE, MSE, RMSE, AIC, and MAPE compared to the linear regression model. Similarly, the pseudo-𝑅2 

value obtained for SEM is larger, indicating that SEM outperforms linear regression based on these metrics. 

The likelihood ratio test also reveals a significant difference between the SEM and linear regression models, 

with the SEM model showing superior performance. 
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