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ABSTRACT 
Tuberculosis, primarily affecting the lungs and other organs, was the leading cause of 

death worldwide before the COVID-19 pandemic and continues to be a significant health 

concern. This research examined tuberculosis (TB) using a panel dataset. As a 
consequence, the datasets may contain outliers and contemporaneous correlations. A 

Robust Least Median of Square (LMS) model was developed in this research by combining 

Seemingly Unrelated Regression (SUR) with Generalized Least Square (GLS) on panel 

data to provide an analysis overview to overcome outliers and contemporaneous 
correlations. Based on secondary data obtained from the Central Bureau of Statistics of 

the Gorontalo Province and the Ministry of Health of the Gorontalo Province, this 

research examines TB cases between 2017 and 2021. The Chow test result suggests that 
CEM is the most appropriate model for analyzing panel data for TB cases in Gorontalo 

Province between 2017 and 2021. Due to the presence of outliers and influential 

observations in the data, robust LMS is employed. Furthermore, there is a problem of 

contemporaneous correlation in this research. Each regency or city can mitigate this 
problem by implementing robust LMS using SUR with GLS. 
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1. INTRODUCTION 

Tuberculosis (TB) is an infection caused by the bacteria Mycobacterium tuberculosis, primarily 

attacking the lungs and other body organs, with approximately 80% of cases worldwide being pulmonary TB 

[1][2]. According to [3], until the COVID-19 pandemic, TB was the foremost cause of death in the world, 

surpassing HIV/AIDS. TB accounted for 354 cases per 100,000 in Indonesia in 2021, and in Gorontalo 

province, the number fluctuated between 2019 and 2021 [3][4].  

Generally, the analysis uses three types of data: time-series, cross-sectional, and panel data [5]. 

Currently, most TB research utilizes cross-sectional data, in which one or more objects are collected 

simultaneously. Time-series data, on the other hand, are measurements taken over a period of time [6]. Panel 

data are a combination of these two datasets, encompassing samples made up of several individuals over a 

period of time [7][8]. Panel data offers several advantages, including studying more complex behavioral 

models that cannot be detected using time-series or cross-sectional data alone [9]. The panel data regression 

method can be used to model this behavior, namely an analysis that utilizes panel data to analyze the influence 

of several independent variables on a single dependent variable [10]. 

A panel dataset may, however, contain observations that are inconsistent with other datasets and can 

have a significant impact on the regression model, commonly referred to as outliers [11]. There is also a term 

for outliers in statistics, which describes observations whose values differ from those exhibited by the data 

group [12]. Outliers can result in significant and non-homogeneous residual variances, making obtaining the 

Best Linear Unbiased Estimators (BLUE) for regression models impossible [13]. Outliers can arise from 

various factors, including data entry errors, measurement system inaccuracies, or unforeseen events, such as 

crises or disasters. These factors can make an outlier an influential observation and can change the meaning 

of a regression model if the observation is discarded or rejected before analysis [12][14][15]. An approach 

that overcomes this issue is to use an analysis unlikely to be affected by outliers, namely robust regression 

analysis [13][16]. There are several robust regression estimates, including Maximum Likelihood (M), Method 

of Moment (MM), Scale (S), Least Trimmed Square (LTS), and Least Median of Squares (LMS) [17][18].  

In previous research, [15] researched simulation data and student's online test scores that compared 

linear regression using OLS (Ordinary Least Square), robust regression using LMS, and using M, finding that 

the robust LMS had a significantly higher R-square value than the two other regressions, demonstrating that 

robust LMS was an effective regression coefficient estimation model for data with outliers. Further, [19] 

compared robust regression using LMS and S (case: Budget Revenues and Expenditures data), where it was 

discovered that robust LMS would yield smaller AIC and SIC values than robust S when modeling data with 

outliers. In addition, prior research conducted by [12], comparing robust regression using LMS and linear 

regression using OLS in the context of stack loss data, found that the MAPE value for robust LMS is much 

lower than for linear OLS. Also, a comparison between robust regression using LMS and MM was conducted 

by [20] about rice production data, concluding that robust LMS is most suitable for modeling data with 

outliers because the RMSE value is lower than and the R-square is higher than the robust MM. Therefore, 

this research used robust regression using LMS to overcome the outlier problem on panel data. 

In this research, the case study is TB cases in Gorontalo Province. Previous research on TB cases on 

cross-sectional data with outliers has been conducted by [13], [16] using quantile regression, robust M and 

LTS regression. Additionally, TB cases have also been analyzed using panel data by [7], [8], [28] using panel 

data regression. 

Aside from outliers, contemporaneous correlation can also pose a problem in panel data regression 

models. The contemporaneous correlation refers to the correlation between the panel data regression model 

and the individual residuals [21]–[23]. It is also referred to as cross-sectional dependence in residuals and 

occurs when residuals are correlated between individuals or units, resulting in deviations from the model 

[21]. Seemingly Unrelated Regression (SUR) is used to address this problem [21][24]. The SUR method is a 

development of linear OLS regression and is used when residuals of several regression models (in which each 

model has a different dependent variable and/or an independent variable) are correlated between one residual 

and the residuals of another equation [25][26]. A Generalized Least Square (GLS) estimator is used in SUR, 

a modification of OLS estimation, and does not disregard the correlation between blocks when estimating 

this technique. Moreover, parameter estimation in SUR is carried out simultaneously through 

contemporaneous correlation. As a result, SUR can handle any correlation, including peer correlation, and 

produce a BLUE estimator rather than linear regression, which was carried out on each block separately [21]–
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[25], [27]. Hence, SUR with GLS was employed in this research to tackle contemporaneous correlation on 

panel data. 

Previously, there has been research about SUR using GLS, including research on panel data by [21], 

panel data and outliers by [22] with robust LTS, and by [24] with robust MM and S. Until now, no research 

has been conducted about robust LMS using SUR with GLS on panel data and outliers. Thus, this research 

used robust LMS using SUR with GLS on panel data with outliers. 

However, no studies on TB cases using panel data with outlier and contemporaneous correlation have 

been conducted. Hence, this research aims to conduct robust LMS modeling using SUR with GLS on panel 

data to provide an analysis overview to overcome outlier and contemporaneous correlation. This research 

studied a TB case from the Province of Gorontalo. 

 

2. RESEARCH METHODS 

2.1 Data 

This study relies on secondary data from the Central Bureau of Statistics of Gorontalo Province and 

the Ministry of Health of Gorontalo Province between 2017 and 2021. In this research, all five regencies and 

one city of Gorontalo Province, namely Boalemo (BR), Gorontalo (GR), Pohuwato (PR), Bone Bolango (NR), 

Gorontalo Utara (UR), and Gorontalo (GC), were analyzed as samples. Based on the data collected, the 

dependent variable used is the number of TB cases (𝑌), while the independent variables are the number of 

doctors (𝑋1), population density (𝑋2), and the number of poor individuals (𝑋3). 

2.2 Methods 

2.2.1. Robust Regression using LMS 

The algorithm of robust regression using LMS minimizes the median of the squared residuals of the 

linear regression using OLS, which has been sorted [12]. Robust regression using LMS (Robust LMS) is a 

robust regression with a high breakdown point, defined as the proportion of observations that can be resolved 

before influencing the regression model [12][29]. As a result of this regression, a robust and outlier-resistant 

model is obtained [12][19][30][31].  

The median of the squared residuals of the linear regression using OLS is given in Equation (1):  

𝑀𝑗 = median 𝜀𝑖
2 (1) 

thus, the 𝑀1, 𝑀2, . . . , 𝑀𝑆 value will be obtained, which is the median 𝜀𝑖
2 of every iteration [12][30][31]. A 

robust LMS consists of the following steps [12], [29]–[31]:  

a. Calculate the 𝛽 parameter of linear regression using OLS based on Equation (2); 

�̂� = (𝑋′𝑋)−1𝑋′𝑦 (2) 

b. Calculate the residual (𝜀𝑖) value of linear regression using OLS, which 𝜀𝑖 = 𝑦 − 𝑋𝛽; 

c. Square the 𝜀𝑖 value (𝜀𝑖
2); 

d. Sort the 𝜀𝑖
2 value; 

e. Calculate the 𝑀𝑗 value based on the Equation (1); 

f. Calculate the ℎ𝑘 value, which ℎ𝑘 = (
𝑛+𝑝+1

2
) and an integer, ℎ𝑘 is rounded up if the result obtained 

is not an integer; 

g. Create new samples of ℎ𝑘 samples (consisting of dependent and independent variables data) based 

on the sorted 𝜀𝑖
2 value ; 

h. Using the new sample obtained from (f), repeat step (a) and stop at the 𝑘th iteration, where ℎ𝑘 =
ℎ𝑘+1;  

i. Determine the minimum value of all 𝑀𝑗 (min𝑀𝑗 , 𝑗 = 1,2, . . . , 𝑠); 
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j. Calculate the initial weight value (𝑤0𝑖) for each observation based on Equation (3): 

 

𝑤0𝑖 = {

1 ; |
𝜀𝑖

𝑆0
| ≤ 2.5

0 ; |
𝜀𝑖

𝑆0
| > 2.5

(3) 

which 𝑆0 is the initial value, where 𝑆0 = 1.4826 (1 +
5

(𝑛−𝑝)
)√min𝑀𝑗 [12][32];  

k. Calculate the final weight (𝑤𝑖) for each observation based on Equation (4):  

 

𝑤𝑖 = {
1 ; |

𝜀𝑖

�̂�
| ≤ 2.5

0 ; |
𝜀𝑖

�̂�
| > 2.5

(4) 

which �̂� is a robust parameter, where 

�̂� = √
(∑ 𝑤𝑖𝜀𝑖

2𝑛
𝑖=1 )

(∑ 𝑤𝑖 − 𝑝𝑛
𝑖=1 )

 

and 𝑝 is the number of parameters in the model (including intercept); 

l. Calculate the 𝛽 parameter of robust LMS based on Equation (5): 

�̂� = (𝑋′𝑊𝑋)−1𝑋′𝑊𝑦 (5) 

which 

�̂� =

[
 
 
 
 
�̂�0

�̂�1

⋮
�̂�𝑝]

 
 
 
 

;  𝑦 = [

𝑦1

𝑦2

⋮
𝑦𝑛

] ; 𝑋 = [

1 𝑥11 𝑥12
⋯ 𝑥1𝑘

1 𝑥21 𝑥22 ⋯ 𝑥2𝑘

⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑘

] ;𝑊 = [

𝑤1 0 ⋯ 0
0 𝑤2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑤𝑛

] 

 

2.2.2. Seemingly Unrelated Regression 

A SUR model consists of 𝑞 equations interconnected by residuals from different equations, referred 

to as blocks [23], [24]. The Equation (6) represents the SUR model as a linear regression equation [24][33].  

 
𝑦1 = 𝑋1𝛽1 + 𝜀1

𝑦2 = 𝑋2𝛽2 + 𝜀2

⋮
𝑦𝑞 = 𝑋𝑞𝛽𝑞 + 𝜀𝑞

(6) 

In matrix notation, Equation (6) can be expressed by Equation (7) [24][27].  

𝑦 = 𝑋𝛽 + 𝜀 (7) 

The Equation (7) is represented by the matrix design shown below:  

 

𝑦 = [

𝑦1

𝑦2

⋮
𝑦𝑞

] ; 𝑋 = [

𝑋1 0 0 0
0 𝑋2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑋𝑞

] ; 𝛽 = [

𝛽0

𝛽1

⋮
𝛽𝑞

] ; 𝜀 =  [

𝜀1

𝜀2

⋮
𝜀𝑞

] 

 

with 𝑦 represents the dependent variable as a (𝑛 × 1) column vector; 𝑋 represents the independent variable 

as a (𝑛 × 𝑝𝑖) matrix, and each block may have a different number of independent variables; 𝛽represents the 

unknown parameter as a (𝑝𝑖 × 1) column vector; 𝜀 represents the residual as a (𝑛 × 1) column vector; and 

suppose 𝐸(𝜀𝑖) = 0 and 𝑣𝑎𝑟(𝜀𝑖) = 𝜎𝑖𝑖𝐼𝑛, for each question (𝑖 = 1, . . . , 𝑞) [24][34]. A particular characteristic 

of the SUR model is that 𝑐𝑜𝑣(𝜀𝑖 , 𝜀𝑗) = 𝜎𝑖𝑗𝐼𝑛(𝑖, 𝑗 = 1, . . . , 𝑞) [33]. Equation (8) depicts the estimation of 

parameters 𝛽 for the SUR model using GLS:  

�̂� = (𝑋′𝑉−1
𝑋)−1𝑋′𝑉−1

𝑦 (8) 
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which 𝑉 = 𝜮 ⊗ 𝐼𝑛 = 𝑣𝑎𝑟(𝜀); thus, the Equation (9) can be expressed by Equation (9) [24][26]. 

�̂� = (𝑋′(𝜮⊗𝐼𝑛)−1
𝑋)

−1
𝑋′(𝜮⊗𝐼𝑛)−1

𝑦

�̂� = (𝑋′(𝜮−1⊗𝐼𝑛)𝑋)
−1

𝑋′(𝜮−1⊗𝐼𝑛)
−1

𝑦
(9) 

The design matrix of 𝜮 is represented by Equation (10) [22][33].  

 

𝜮 = [

𝜎11 𝜎12 ⋯ 𝜎1𝑞

𝜎21 𝜎22 ⋯ 𝜎2𝑞

⋮ ⋮ ⋱ ⋮
𝜎𝑞1 𝜎𝑞2 ⋯ 𝜎𝑞𝑞

] (10) 

 

The Equation (9) is used when the 𝑉 value is known, and as 𝑉 is seldom known, an estimator that can 

be calculated is presented in the Equation (11): 

 

�̂�𝑐 = (𝑋′(�̂�−1⊗𝐼𝑛)𝑋)
−1

𝑋′(�̂�−1⊗𝐼𝑛)
−1

𝑦 (11) 

 

which �̂� is a consistent estimator of 𝜮 [33], [34]. A matrix of residuals is used to compute �̂� as shown in 

Equation (12) [33][34]. 

 

�̂� = [𝜎𝑖𝑗]𝑖,𝑗=1,…,𝑞
=

𝜀𝑖 ′𝜀𝑗

𝑛
(12) 

 

In the SUR model, Kronecker (⊗) multiplication is used (for each matrix 𝐴𝑘×𝑙 , 𝐵𝑚×𝑛, 𝐴 ⊗ 𝐵 = 𝐶𝑘𝑚 x 𝑙𝑛) 

[21]. 

2.3 Analysis Steps 

R software is used for all steps, which the research involves the following steps: 

(a) Identify multicollinearity; 

A VIF (Variance Inflation Factor) test statistic is used to identify this, which is illustrated by 

Equation (13): 

 
1

𝑉𝐼𝐹𝑗
= (1 − 𝑅𝑗

2) = 𝑇𝑂𝐿𝑗 (13) 

which 𝑅𝑗
2 is a coefficient of determination (𝑅2 =

𝐸𝑆𝑆

𝑇𝑆𝑆
, where ESS is "Explained Sum of Squares" and 

TSS is "Total Sum of Squares") in the regression of 𝑋𝑗  on the remaining regression (there are [𝑘 − 1] 

regressors in the k-variable regression model) [35]. In this test, those whose VIF exceeds 10, which 

occurs when 𝑅𝑗
2 exceeds 0.90, reject the null hypothesis [21][35]. 

(b) Identify outliers; 

Boxplot graphs are used to identify outliers. An observation is considered an outlier if it is outside 

the boxplot [36]. 

(c) Conduct panel data regression; 

Panel data regression utilizes the Chow test to determine whether CEM or FEM provides the best 

model [28]. In Equation (14), the statistics of the Chow test are presented: 

 

𝐹 =

(𝑅𝑅𝑆𝑆 − 𝑈𝑅𝑆𝑆)
(𝑁 − 1)
𝑈𝑅𝑆𝑆

(𝑁𝑇 − 𝑁 − 𝑝)

(14) 
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which 𝑅𝑅𝑆𝑆 is CEM's Restricted Residual Sum of Squares; 𝑈𝑅𝑆𝑆 is FEM's Unrestricted Residual 

Sum of Squares; 𝑁 is the total unit of cross-section; 𝑇 is the total unit of time-series; and 𝑝 is the total 

estimated parameter including intercept [37]. It is rejected the null hypothesis if either the 𝐹value is 

greater than 𝐹𝑁−1;𝑁(𝑇−1)−𝑝 or the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼, implying that the best model is FEM [37][38]. 

Meanwhile, to determine whether REM of FEM provides the best model, the Hausman test is used  

[8]. In Equation (15), the statistics of the Hausman test are presented [37]. 

𝑚1 = �̂�1
𝜄 [var(�̂�1)]

−1�̂�1

�̂�1 = �̂�𝑅𝐸𝑀 − �̂�𝐹𝐸𝑀

(15) 

Equation (15) is asymptotically distributed as chi-square distribution (𝜒𝐾
2), which 𝐾 indicates the 

dimension of the slope vector 𝛽 [37]. Either 𝑚1 value is greater than 𝜒𝐾;𝛼
2  or 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼 will 

reject 𝐻0, suggesting that FEM is the most suitable model [10][28][37]. 

(d) Identify influential observations in the regression model; 

As illustrated in Equation (16), DFFITS can be computed as follows: 

 

𝐷𝐹𝐹𝐼𝑇𝑆𝑖 = 𝑡𝑖 (
ℎ𝑖𝑗

1 − ℎ𝑖𝑗
)

1
2

; 𝑡𝑖 =
𝜀𝑖

√𝑠(𝑖)
2 (1 − ℎ𝑖𝑗)

; 𝑠(𝑖)
2 =

(𝑛 − 𝑝)𝑠2 −
𝜀𝑖

2

(1 − ℎ𝑖𝑗)

𝑛 − 𝑝𝑖 − 1
(16) 

which 𝑖 = 1,2, . . . , 𝑛; ℎ𝑖𝑗 are the diagonal elements of the matrix 𝐻 = (𝑋′𝑋)−1𝑋′ (𝑛 × 𝑛 matrix); 𝑡𝑖is 

the R-student or studentized deleted residual; 𝜀𝑖 is the 𝑖𝑡ℎ residual; and 𝑠2 = ∑
(𝑦𝑖−�̂�𝑖)

2

𝑛−𝑝
𝑛
𝑖=1  [29][39]. 

When |𝐷𝐹𝐹𝐼𝑇𝑆| exceeds 2√
𝑝𝑖

𝑛
, the 𝑖𝑡ℎ observation is considered influential, which 𝑝𝑖 denotes the 

number of regression parameters, including the intercept [11][31][39]. 

(e) Identify assumptions of residuals in the regression model (normal distribution, homoscedasticity, and 

autocorrelation); 

In order to determine whether residuals are from a normal population, the Kolmogorov-Smirnov 

test is employed [39]–[41]. Equation (17) presents the statistics of the Kolmogorov-Smirnov test: 

 

𝐷 = max𝑋|𝐹∗(𝑋) − 𝑆𝑁(𝑋)| (17) 

 

which 𝑆𝑁(𝑋) is the sample cumulative distribution function, 𝐹∗(𝑋) is the cumulative normal 

distribution function with the sample mean 𝜇 = 𝑋, and the sample variance 𝜎2 = 𝑠2, defined with a 

denominator 𝑛 − 1 [40]. The null hypothesis (observations are from a normal population) is rejected 

if the value 𝐷 exceeds the critical value in the table or if 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼 [40][41]. 

Identifying whether the residuals are independent of one another is the next assumption; otherwise, 

an autocorrelation condition will occur; thus, the Breusch-Godfrey test is used [5][35][42]. The 

Breusch-Godfrey is illustrated in Equation (18) [35]. 

𝐵𝐺 = (𝑛 − 𝑝)𝑅2 (18) 

 

The (𝑛 − 𝑝)𝑅2 value follows the chi-square distribution with 𝑝 degrees of freedom (𝜒𝑝
2) [5][35]. H0 

(no serial correlation of any order) is rejected if the chi-square computed is greater than the critical 

chi-square value at the chosen significance level, or if 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼 [5][35]. 

One method for detecting homoscedasticity (which assumes an equal variance of the residual) is the 

Breusch-Pagan-Godfrey test, which can be seen in Equation (19) [35]. 

𝛩 =
1

2
(𝐸𝑆𝑆) (19) 

The 𝛩 value follows the chi-square distribution with (𝑝 − 1) degrees of freedom (𝜒𝑝−1
2 ) [9][35]. One 

can reject the null hypothesis (which states that homoscedasticity occurs in the model) if the 

computed 𝛩 value exceeds the critical value (𝜒𝑝−1
2 ) or when 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼 [9][35][43]. 
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(f) Conduct robust LMS; 

The algorithm of robust regression is explained in section 2.2.1. Furthermore, the 𝛽 parameter of 

robust LMS is based on Equation (5). 

(g) Identify contemporaneous correlation; 

A Lagrange Multiplier test is conducted to detect contemporaneous correlation in the regression 

analysis of panel data [21][23][24]. As demonstrated in Equation (20) Lagrange Multiplier can be 

calculated in the following way: 

𝐿𝑀 = 𝑛 ∑∑𝑟𝑖𝑗
2

𝑖−1

𝑗=1

𝑝

𝑖=2

;  𝑟𝑖𝑗
2 =

𝜀𝑖′𝜀𝑗

√(𝜀𝑖 ′𝜀𝑖)(𝜀𝑗 ′𝜀𝑗)

(20) 

which 𝑟𝑖𝑗
2  denotes the sample correlation matrix elements derived from the residual vectors [24][34]. 

Equation (20) follows a 𝜒
(𝑝

(𝑝−1)

2
)

2  distribution asymptotically under the null hypothesis, which is that 

there is no contemporaneous correlation [21][22][24][34]. If the computed 𝐿𝑀 value is greater than 

the critical value (𝜒
(𝑝

(𝑝−1)

2
)

2 ) or when 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼, then the null hypothesis is rejected; otherwise, 

it failed to reject [21][24][34]. 

(h) Conduct robust LMS using SUR with GLS; 

Robust LMS using SUR with GLS is explained in section 2.2.2. The estimation of parameters 𝛽is 

illustrated in Equation (8). 

(i) Conclude. 

 

3. RESULTS AND DISCUSSION 

3.1 Identify Multicollinearity 

An analysis of multicollinearity identification using Equation (13) is summarized in Table 1. 

Table 1. Identify Multicollinearity 

Variable VIF 

𝑋1 and 𝑋2 2.37751 

𝑋1 and 𝑋3 1.00206 

𝑋2 and 𝑋3 1.25194 

Multicollinearity occurs when there is a linearly strong relationship between explanatory variables, and 

if multicollinearity exists, the standard errors of each coefficient are increased, which changes the outcome 

of the analysis [21][44]. Table 1 shows that the value of VIF is less than 10 (VIF < 10) for all independent 

variables. This result indicates that the independent variables do not exhibit highly collinear relationships. 

3.1 Identify Outliers 

Figure 1 illustrates the boxplot graphs for four variables, including the dependent variable.  
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Figure 1. Boxplot Graph for Four Variables 

Figure 1 shows that there are observations that are outside of the boxplot. Therefore, those 

observations indicate outliers. 

3.2 Panel Data Regression 

According to the result of the Chow test using Equation (14), the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is 0.05312 (𝑝 − 𝑣𝑎𝑙𝑢𝑒 >
𝛼), which indicates that it fails to reject the null hypothesis. Therefore, CEM is this research's most 

appropriate model for panel data regression. The model for the panel data regression of TB cases from 2017 

to 2021 in the Province of Gorontalo is shown in Equation (21). 

 

𝑦 = 2.133 + 0.474𝑋1𝑖𝑡 + 0.099𝑋2𝑖𝑡 + 0.445𝑋3𝑖𝑡 + 𝜀𝑖𝑡 (21) 

The Hausman test in Equation (15) is no longer needed as CEM is the most suitable model in this 

research. 

3.3 Identify Influential Observations 

 As a result of the DFFITS test using Equation (16), two observations (8th and 28th) were identified as 

influential since their |𝐷𝐹𝐹𝐼𝑇𝑆| values (0.76885 and 0.87050, respectively) exceeded the 2√
𝑝𝑖

𝑛
= 2√

4

30
=

0.73030. Thus, a further analysis of the outlier and influential observations is needed.  

3.4 Identify Assumptions of Residuals 

 Equation (17), Equation (18), and Equation (19) are used to identify assumptions of residuals. The 

results are presented in Table 2. 

Table 2. Residual Assumptions 

Test p-value 

Kolmogrov-Smirnov 0.15500 

Breusch-Godfrey 0.07450 

Breusch-Pagan-Godfrey 0.58050 
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As it is illustrated in Table 2, all 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 are greater than 𝛼, suggesting that it failed to reject the 

null hypothesis. Hence, the residuals are from a normally distributed population, have no autocorrelation, and 

have constant variance (no heteroscedasticity). 

3.5 Robust LMS 

The first step in a robust regression using LMS is calculating the linear regression parameter 𝛽 using 

OLS based on the Equation (2). The results are presented in Table 3.  

Table 3. �̂� of Linear Regression using OLS 

City / Regency 
�̂� 

�̂�0 �̂�1 �̂�2 �̂�3 

Boalemo (Regency) -1.77180 0.21980 1.63570 -0.24120 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
Gorontalo (City) 31.55570 0.87180 -0.20430 -11.11950 

 

Table 3 shows the �̂� value for each regency and city using linear regression. The value is then applied 

to the next step. 

Calculating the residual value of linear regression (𝜀𝑖) is the next step, followed by squaring the 𝜀𝑖 

value (𝜀𝑖
2) and sorting it to determine its median. The median of the 𝜀𝑖

2 value is referred to as the 𝑀𝑗 value, 

as expressed in Equation (1). The ℎ𝑘 value should then be calculated ℎ𝑘 = (
𝑛+𝑝+1

2
). Table 4 shows the 

results. 

Table 4. Linear Regression's Residual and Squared Residual, Median of the Squared Residual, and 𝒉𝒌 

City/Regency 𝜀𝑖 𝜀𝑖
2 𝑀𝑗 ℎ𝑘 

Boalemo (Regency) 

-0.00578 0.00003 

0.00033 ℎ𝐵𝑅 = (
5 + 4 + 1

2
) = 5 

0.02440 0.00060 

0.00438 0.00002 

0.01830 0.00033 

-0.04130 0.00170 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

Gorontalo (City) 

-0.23800 0.05680 

0.05680 ℎ𝐺𝐶 = (
5 + 4 + 1

2
) = 5 

0.11000 0.01210 

0.28300 0.07990 

-0.30900 0.09560 

0.15400 0.02400 

 

Table 4 shows the ℎ𝑘 value for each regency and city, which is 5. Since the value ℎ2 = ℎ1+1 = ℎ1 =
5, the iteration stops (at ℎ2). The value is then applied to the next step. Therefore, the 𝑀𝑗 value in Table 4 is 

the minimum value of all median residuals for each regency and city.  

Afterward, each observation's initial weight value (𝑤0𝑖) and final weight (𝑤𝑖) value will be calculated 

based on Equation (3) and Equation (4). The results are presented in Table 5. 

Table 5. The Minimum Value, Initial Weight Value, and Final Weight Value 

City / Regency 𝑀𝑗 𝑆0 𝑤0𝑖  �̂� 𝑤𝑖 

Boalemo (Regency) 0.00033 0.16293 

1 

0.05190 

1 

⋮ ⋮ 

1 1 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

Gorontalo (City) 0.05680 2.11939 

1 

0.51795 

1 

⋮ ⋮ 

1 1 
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The last step in robust LMS is calculating the 𝛽 parameter based on Equation (5). Results are shown in Table 

6. 

Table 6. �̂� of Robust LMS 

City / Regency 
�̂� 

�̂�0 �̂�1 �̂�2 �̂�3 

Boalemo (Regency) -1.77175 0.21977 1.63570 -0.24121 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
Gorontalo (City) 31.55600 0.87200 -0.20400 -11.11900 

Using robust LMS, the value �̂� for each regency and city is presented in Table 6. Afterward, the value is 

applied to the next step. 

3.6 Identify Contemporaneus Correlation 

Accordingly, the Lagrange Multiplier test using Equation (20) result is 0.00472 (𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼), so 

it rejects the null hypothesis, which provides evidence that residuals are correlated between units. SUR is 

used when contemporaneous correlation happens; hence, Robust LMS using SUR is performed.  

3.7 Robust LMS using SUR with GLS 

Since panel data exhibit a contemporaneous correlation, robust LMS using SUR with GLS is conducted 

in this analysis. Firstly, calculate the �̂� value in Equation (12) using the result of Robust LMS in Table 6. 

The result is illustrated in Equation (22). 

 

�̂� = [

𝜎11 … 𝜎1𝑞

⋮ ⋱ ⋮
𝜎𝑞1 … 𝜎𝑞𝑞

] =

[
 
 
 
 
𝜀1′𝜀1

5
…

𝜀1′𝜀6

5
⋮ ⋱ ⋮

𝜀6′𝜀1

5
…

𝜀6′𝜀6

5 ]
 
 
 
 

= [
0.00054 … −0.00135

⋮ ⋱ ⋮
−0.00135 … 0.05360

] (22) 

 

Secondly, calculate the �̂�−1 ⊗ 𝐼𝑛 value. Equation (23) presented the �̂�−1value and the �̂�−1 ⊗ 𝐼𝑛 

value, which is a (30x30) matrix referred to as a 𝑉 matrix. 

�̂�−1 = [
30.60602 … −11.04690

⋮ ⋱ ⋮
−11.04690 … 22.33947

]

�̂�−1 ⊗ 𝐼𝑛 = [
30.60602 … −11.04690

⋮ ⋱ ⋮
−11.04690 … 22.33947

] ⊗ [
1 … 0
⋮ ⋱ ⋮
0 … 1

]

�̂�6×6
−1 ⊗ 𝐼5×5 = 𝑉30×30 = [

30.60602 … 0.00000
⋮ ⋱ ⋮

0.00000 … 22.33947
]

(23) 

 

Finally, based on the Equation (11), calculate the 𝛽 parameter of robust LMS using SUR with GLS. 

Table 7 summarizes the results. 

Table 7. �̂� of Robust LMS using SUR with GLS 

City / Regency 
�̂� 

�̂�0 �̂�1 �̂�2 �̂�3 

Boalemo  (Regency) 0.45018 0.10004 11.29399 -2.83803 

Gorontalo  (Regency) 0.55373 1.35182 -0.78715 1.04621 

Pohuwato  (Regency) 1.61068 0.00343 1.88613 -3.98042 

Bone Bolango  (Regency) 1.10680 -0.09795 1.72387 1.57233 

Gorontalo Utara (Regency) 1.33749 0.26049 -0.10992 -2.19965 

Gorontalo  (City) -1.11663 0.15239 -0.72172 2.64162 
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Based on Robust LMS using SUR with GLS, Table 6 illustrates the �̂� value for each regency and city. 

For example, the model of robust LMS using SUR with GLS for TB cases in Boalemo Regency, Gorontalo 

Province, from 2017 to 2021 can be expressed in Equation (24). 

 �̂�𝑩𝑹 = 𝟎. 𝟒𝟓𝟎 + 𝟎. 𝟏𝟎𝟎𝑿𝟏 + 𝟏𝟏. 𝟐𝟗𝟒𝑿𝟐 − 𝟐. 𝟖𝟑𝟖𝑿𝟑 (24) 

 

Models of robust LMS using SUR with GLS are developed for each regency or city to overcome 

contemporaneous correlation in panel data. Since outliers and influential observations are presented in the 

data, robust LMS is used. Moreover, there is a problem of contemporaneous correlation in the panel data used 

in this research. Each regency or city can mitigate this problem by implementing robust LMS using SUR with 

GLS. The result aligns with previous research that said that when contemporaneous correlation happens, SUR 

can be used as an alternative [21][24]. 

Nevertheless, the model is better suited when outliers exist in the panel data within each regency and 

city. A similar finding was made by [22], who found that robust regression alone is impractical when each 

panel data consists of outliers and in the data and contemporaneous correlation between different equations 

individuals/units. 

4. CONCLUSIONS 

According to the findings of this research, it appears that CEM is the most suitable model to use for 

the regression analysis of panel data for TB cases in Gorontalo Province from 2017 to 2021. However, outliers 

and influential observations are present in this research, necessitating robust LMS. Additionally, 

contemporaneous correlation poses a problem in TB cases panel data, which can be compensated using robust 

LMS using SUR with GLS.  
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