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 ABSTRACT  

Article History: 
Numerous studies have been conducted to develop concurrency control schemes that can be 

applied to client-server systems, such as the Extended Serial Graph-Validation Queue (SG-

VQ) scheme. Extended SG-VQ is a control concurrency scheme in the client-server system 

that implements object caching on the client side and a locking strategy on the server side. 

This scheme employs validation algorithms based on queues on the client side and graphs on 

the server side. This research focuses on the mathematical analysis of the correctness of the 

Extended SG-VQ scheme using serializability as the criterion that needs to be achieved. 

Implementing a cycle-free transaction graph is a necessary and sufficient condition to achieve 

serializability. In this research, the serializability of the Extended SG-VQ scheme has been 

proven through the exposition of ten definitions, two propositions, three lemmas, and one 

theorem. 
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1. INTRODUCTION 

Technology will continue to advance, making it easier for users to connect globally [1]. Work from 

Home (WFH) or Work from Anywhere (WFA) has rapidly emerged as a trend, supported by advancements 

in video conferencing applications, file sharing, and cloud-based systems [2]. Geographical distances often 

separate organizational members and differing work schedules, yet collaboration tools such as real-time 

collaboration applications are effective solutions [3]. The client-server system architecture can serve as a 

suitable foundation for applications supporting real-time collaboration [4]. When multiple clients 

simultaneously access data from the same database, and one of the clients makes changes to the data, this can 

lead to inconsistency of the data [5]. Therefore, in client-server systems, a mechanism is needed to manage 

traffic access to shared resources to ensure data consistency, known as concurrency control [6]. 

Bukhari and Shrivastava [7] introduced an optimistic concurrency control scheme in client-server 

systems that utilize object caching on the client side. This scheme is called Validation Queue (VQ). However, 

in the concurrency control of the VQ scheme, complexity may arise in completing transactions as transactions 

increase on the client side, posing a risk of increasing the server load and impacting the server's performance 

degradation [8]. Therefore, the VQ scheme is modified, particularly on the server side. This modification 

aimed to provide an alternative scheme that simplifies the transaction completion (commit) process. The 

modified scheme is the Extended Serial Graph-Validation Queue (SG-VQ) scheme. 

The Extended SG-VQ is a concurrency control scheme in a client-server system environment. Object 

caching is implemented on the client side, referred to as the cache side. Both the cache side and the server 

side have their validation algorithms. The Extended SG-VQ scheme retains most of the mechanisms applied 

in the VQ scheme. Modifications to the VQ scheme are focused on the server-side validation algorithm. In 

the VQ scheme, both the cache and server sides implement queue-based validation algorithms. In the 

Extended SG-VQ scheme, the cache side maintains the queue-based validation algorithm. In contrast, the 

server-side validation algorithm is modified to be graph-based with the implementation of locking strategies. 

After modifications are made to the scheme, proving its correctness is necessary to ensure that the 

modified scheme functions correctly. The expected processing or execution is free from overlapping 

transactions, also known as serial execution. Serial execution can be achieved by processing transactions one 

by one. Serial execution guarantees data consistency because there is no overlap between transactions; each 

transaction views data consistently and is not affected by changes made by other transactions. Therefore, 

serial execution is considered correct. However, in a concurrent transaction environment, the desired process 

involves the system's ability to execute multiple transactions simultaneously as if they were executed 

sequentially, as in serial execution. This process is known as serializable execution [9]. Thus, in systems 

supporting concurrent data processing, achieving serializable execution becomes a goal because it can 

improve efficiency and performance without sacrificing data consistency. Additionally, the effect of 

serializable execution is equivalent to serial execution, making serializable execution also considered correct 

[10]. Since serializability is an essential criterion for correctness [11], serializability becomes a mathematical 

tool for proving the correctness of the Extended SG-VQ scheme. A proof of correctness offers a mathematical 

assurance that an algorithm functions as intended; following its defined specifications and produced the 

expected outcomes under all possible circumstances. Therefore, this research focuses on proving the 

correctness of the Extended SG-VQ scheme. In the previous research by Jauhari [8], hypothetical cases have 

been used to validate the scheme’s capability. In this research, the correctness will be proven by 

demonstrating that the transaction execution produced by this scheme is serializable.  

 

2. RESEARCH METHODS 

This research employs formal proving methods to mathematically analyze the correctness of the 

Extended Serial Graph-Validation Queue scheme. The criterion used to prove the correctness of the Extended 

SG-VQ scheme is serializability. The serializability of this scheme is examined by: 

1. Characterizing History 𝐻 as a representation of possible executions that occur. 

2. Demonstrating that History 𝐻 is cycle-free, thus making it serializable. 



BAREKENG: J. Math. & App., vol. 18(2), pp. 1359 - 1368, June, 2024.     1361 

 

 

2.1 Extended Serial Graph-Validation Queue Scheme 

The scheme discussed in this research is the Extended Serial Graph-Validation Queue (Extended SG-

VQ) scheme developed by Jauhari [8]. This scheme is an optimistic concurrency control in client-server 

systems with the implementation of object caching on the client side, from now on referred to as the cache 

side. Please refer to Figure 1. 

 
Figure 1. Extended SG-VQ Scheme 

On the server side, all objects are stored. Objects accessed by each client connected to that cache are 

stored on the cache side. Based on Figure 1, we will examine the process of transaction 1 from cache 𝑇1,0, 

denoted as transaction 𝑇1,1. Transaction 𝑇1,1 updates the red square object to green. This update will first be 

validated locally on the cache side. If it passes cache-side validation, then the red square object in cache 𝑇1,0 

will change to green according to the update from transaction 𝑇1,1. This update is then sent to the server via 

a commit request message. If it passes server-side validation, then the red square object stored on the server 

will be updated to green according to the changes made by transaction 𝑇1,1. Then, the cache version of the 

object will be updated. Transaction 𝑇1,1 concludes. However, the server still has another task: propagating 

the update results to other caches that also store the square object. By receiving the Update Propagation 

element, all caches holding the red square object will update it to green. 

Here are the validation algorithms for the cache side and the server side: 

1. Cache-side validation algorithm 

The cache-side validation algorithm in the Extended SG-VQ scheme is called the VQ algorithm. The 

VQ algorithm serves as a tool for recording the sequence of local executions. VQ consists of Read, Commit, 

Validated, Local Validated, and Update Propagation. Before a transaction completes its execution, a commit 

request is sent to the local cache manager. Upon receiving the commit request, the local cache manager creates 

a commit element, places it in the VQ, and then the transaction is validated. 

Consider the following queue structure: 

 
Figure 2. Queue Structure [10] 
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Transaction 𝑇𝑖 comprises a range of elements 𝑒𝑖,0 through 𝑒𝑖,𝑛, where 𝑛 denotes the number of elements 

in the transaction. Based on Figure 2, these elements can exist in one or more collections 𝐸₁, 𝐸₂, . . . , 𝐸𝑛 that 

consist of elements between 𝑒𝑖,𝑗−1 and 𝑒𝑖,𝑗. Suppose there is a particular element 𝑒′ in collection 𝐸𝑘 that splits 

𝐸𝑘 into two parts, 𝑀 and 𝑁, such that 𝐸𝑘  =  𝑀; 𝑒′;  𝑁, where 𝑀 and/or 𝑁 can be empty sequences. 

For the transaction 𝑇𝑖 to successfully pass the validation process, it must satisfy either of two of the 

following conditions: 

a. Condition I: For each 𝑗 = 0, 1, . . . , 𝑛 − 1, an element or the combined elements 𝑒𝑖,0 ∪ 𝑒𝑖,1 ∪ … ∪ 𝑒𝑖,𝑗 

doesn't conflict with any element in the sequence 𝐸𝑗+1. 

b. Condition II: The elements 𝑒𝑖,0 ∪ 𝑒𝑖,1 ∪ … ∪ 𝑒𝑖,𝑗 (where 𝑗 = 0, 1, … , 𝑘 − 1) must not conflict with 

any element in the sequence 𝐸𝑗+1, and all elements in 𝑀, except for 𝑒′. For 𝑘 = 1, 2, … , 𝑛, the 

combined elements 𝑒𝑖,𝑛 or 𝑒𝑖,0 ∪ 𝑒𝑖,1 ∪ … ∪ 𝑒𝑖,𝑗 (where 𝑗 = 𝑛, 𝑛 − 1, … 𝑘 + 1) must not conflict 

with any element in the sequence 𝐸𝑗. Additionally, the combined elements 𝑒𝑖,𝑛 ∪ 𝑒𝑖,𝑛−1 ∪ … ∪

𝑒𝑖,𝑘−1 ∪ 𝑒𝑖,𝑘 must not conflict with the element 𝑒′ and all elements in 𝑁. 

If read-only transactions successfully pass the validation process, all of their elements are merged into 

Validated elements. Read-only transactions pass the validation process if they satisfy either condition I or 

condition II. Otherwise, they fail 

If update transactions successfully pass the validation process, all elements are merged into Local 

Validated elements, and the local cache manager sends a commit request to the server. If the server response 

is positive, Local Validated elements are changed to Validated elements. The local elements are discarded if 

the server response is an abort message. Update transactions successfully pass the validation process if they 

satisfy only condition I. Otherwise, they fail. 

2. Server-side validation algorithm 

The SG algorithm is the validation algorithm on the server side of the Extended SG-VQ scheme. The 

SG algorithm consists of the commit request process and the validation process. When the server receives a 

commit request message, it checks whether the message carries the latest cache version. If the cache version 

carried by the message does not match the latest one, a message will be sent to the original cache manager to 

verify the cache version of the message and update it first. Then, if the cache version matches the latest one, 

the validation process will proceed. Before delving further, it's important to clarify the terms writeset and 

readset. In the context of transaction processing, a writeset (𝑊𝑠𝑒𝑡) refers to the collection of elements that a 

transaction intends to modify or write to during its execution. Conversely, a readset (𝑅𝑠𝑒𝑡) represents the 

collection of elements that a transaction intends to read from during its execution. 

On the server side, a lock-based protocol is employed. In this validation process, note that 𝑇𝑖𝑗 represents 

the transaction undergoing validation on the server side. The server maintains a list containing objects and 

the transactions holding locks on each object. In this scheme, the status of an object is divided into LOCK 

and UNLOCK. If the status of an object is LOCK, it means that a transaction currently holds an exclusive 

lock on that object. If the status is UNLOCK, it indicates that any transaction does not exclusively lock the 

object and can be accessed by anyone. 

The validation process begins with checking the status of objects, aiming to prevent multiple 

transactions from updating the same object simultaneously. If the status of an object is LOCK and another 

transaction attempts to update the same object, the later arriving transaction will be returned to its originated 

cache. 

If the object accessed by transaction 𝑇𝑖𝑗 is not in LOCK status, then 𝑇𝑖𝑗 will be inserted into the serial 

graph, this means a node containing information about transaction 𝑇𝑖𝑗 will be formed. The direction of the 

edge for transaction 𝑇𝑖𝑗 will be determined to indicate its execution sequence. For example, if transaction 𝑇𝑘𝑙 

exists in the serial graph and 𝑊𝑠𝑒𝑡(𝑇𝑖𝑗) ∩ 𝑅𝑠𝑒𝑡(𝑇𝑘𝑙) ≠ ∅ , a serial graph will be formed as shown in Figure 

3. This serial graph indicates that transaction 𝑇𝑖𝑗 will be executed after transaction 𝑇𝑘𝑙. 
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Figure 3. Transaction 𝑻𝒌𝒍 Precedes 𝑻𝒊𝒋 in Serial Graph 

Furthermore, if 𝑊𝑠𝑒𝑡(𝑇𝑘𝑙) ∩ 𝑅𝑠𝑒𝑡(𝑇𝑖𝑗) ≠ ∅, a serial graph will be formed as shown in Figure 4. This 

serial graph indicates that transaction 𝑇𝑖𝑗 will be executed before transaction 𝑇𝑘𝑙. 

 

Figure 4. Transaction 𝑻𝒊𝒋 Precedes 𝑻𝒌𝒍 in Serial Graph 

2.2 Serializability 

One way to ensure serializability is by requiring that access to an object be done by applying 

exclusivity. This means that while a transaction is accessing an object, no other transaction can change that 

object. The commonly used method to achieve this is the lock-based protocol [12]. Two basic types of locks 

are used in this method: shared (S) and exclusive (X). In shared locking, a transaction can read an object but 

not modify it. In exclusive locking, a transaction can both read and modify an object [13]. 

It is generally accepted that serializability is the strongest property that can define the standard notion 

of correctness in a database management system (DBMS) [14]. The serializability theory is a mathematical 

tool used to prove whether a sequence of transaction executions is correct [15]. In serializability theory, the 

representation of a concurrent execution of a series of transactions is structurally called a history. An 

execution is considered serializable if it is equivalent to a serial execution of the same transactions. Two 

histories, H and H', are equivalent if, 

1. both histories contain identical transactions and operations, 

2. for conflicting operations 𝑟𝑖 from transaction 𝑇𝑖 and 𝑠𝑗 from transaction 𝑇𝑗, where 𝑎𝑖 , 𝑎𝑗  ∉  𝐻 and 𝑎𝑖 ≔ 

aborted element of transaction 𝑇𝑖, 𝑎𝑗 ≔ aborted element of transaction 𝑇𝑗, if 𝑟𝑖  <𝐻  𝑠, then 𝑟𝑖 <𝐻′  𝑠𝑗. In 

other words, in a serializable execution, if operation 𝑟𝑖 precedes operation 𝑠𝑗 in history 𝐻, then operation 

𝑟𝑖 precedes operation 𝑠𝑗 in history 𝐻′ as well. 

A precedence graph, or serialization graph, is commonly used to test for serializability. The 

serialization graph for 𝐻, denoted as 𝑆𝐺(𝐻), is a directed acyclic graph (dag) 𝐺 = (𝑉, 𝐸), where 𝑉 is a 

collection of vertices 𝑣 and 𝐸 is a collection of edges 𝑒 [15]. A directed graph, also known as a digraph is a 

graph in which its edges have a direction from one vertex to another [16]. Consider 𝑣1, 𝑣2 ∈ 𝑉, if (𝑣1, 𝑣2) 

indicates that there is a directed edge from vertex 𝑣1 to vertex 𝑣2, and (𝑣2, 𝑣1) indicates an edge directed 

from vertex 𝑣2 to vertex 𝑣1. In a directed graph, the pairs (𝑣1, 𝑣2) and (𝑣2, 𝑣1) are considered different 

because they have opposite directions, in other words, (𝑣1, 𝑣2) ≠ (𝑣2, 𝑣1) , whereas in an undirected graph, 

they are considered the same. Applying a cycle-free transaction graph is a necessary and sufficient condition 

to achieve serializability [9]. 

 

2.3 Definitions and Propositions 

 Here are the definitions and propositions used to prove the serializability of the Extended SG-VQ 

scheme. 

Definition 1. [10] An element 𝑒𝑚𝑛 is the 𝑛-th element of transaction 𝑇𝑚, where: 

1. 𝑒𝑚𝑛 ∈ {𝑟𝑚𝑛(𝑥), 𝑤𝑚𝑛(𝑥)|𝑟(𝑥) ≔ read operation, 𝑤(𝑥) ≔ write operation, 𝑥 ≔ object}; 

2. 𝑅𝑠𝑒𝑡(𝑒𝑚𝑛 ) ∩ 𝑊𝑠𝑒𝑡(𝑒𝑚𝑛) = ∅, 𝑅𝑠𝑒𝑡(𝑒𝑚𝑛) ∶= readset, 𝑊𝑠𝑒𝑡(𝑒𝑚𝑛) ≔ writeset. 
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Definition 2. [10] If element 𝑒𝑖𝑝 is a compound element formed by merging element 𝑒𝑖𝑚 and 𝑒𝑖𝑛, then 

𝑅𝑠𝑒𝑡(𝑒𝑖𝑝) = 𝑅𝑠𝑒𝑡(𝑒𝑖𝑚) ∪ 𝑅𝑠𝑒𝑡(𝑒𝑖𝑛) and 𝑊𝑠𝑒𝑡(𝑒𝑖𝑝) = 𝑊𝑠𝑒𝑡(𝑒𝑖𝑚) ∪ 𝑊𝑠𝑒𝑡(𝑒𝑖𝑛) 

Definition 3. [10] Element 𝒆𝒎𝒏 and 𝒆𝒓𝒔 are in conflict if and only if 𝒎 ≠ 𝒓 and satisfy one of the following 

conditions: 

1. 𝑊𝑠𝑒𝑡(𝑒𝑚𝑛) ∩ 𝑊𝑠𝑒𝑡(𝑒𝑟𝑠) ≠ ∅; 

2. 𝑊𝑠𝑒𝑡(𝑒𝑚𝑛) ∩ 𝑅𝑠𝑒𝑡(𝑒𝑟𝑠) ≠ ∅; 

3. 𝑅𝑠𝑒𝑡(𝑒𝑚𝑛) ∩ 𝑊𝑠𝑒𝑡(𝑒𝑟𝑠) ≠ ∅. 

Based on Definition 3, it can be concluded that two elements are considered to conflict if and only if 

they do not originate from the same transaction (𝒎 ≠  𝒓), both access the same object, and at least one 

transaction performs an update such that the element from the related transaction is a write operation. For 

example, let 𝑻𝟏𝟏 = {𝒓(𝒙), 𝒘(𝒚)} and 𝑻𝟐𝟏 = {𝒓(𝒛), 𝒘(𝒚)}. There is an intersection of write operations in 

transactions 𝑻𝟏𝟏 and 𝑻𝟐𝟏, resulting in a write-write conflict as per Definition 3 (1). Furthermore, let 𝑻𝟏𝟏 =
{𝒓(𝒙), 𝒘(𝒚)} and 𝑻𝟐𝟏 = {𝒓(𝒚), 𝒘(𝒛)}. Transaction 𝑻𝟏𝟏 updates an object read by transaction 𝑻𝟐𝟏, resulting 

in a write-read conflict per Definition 3 (2). Conversely, if 𝑻𝟏𝟏 = {𝒓(𝒙), 𝒘(𝒛)} and 𝑻𝟐𝟏 = {𝒓(𝒚), 𝒘(𝒙)}, 

then a write-read conflict occurs as per Definition 3 (3) because transaction 𝑻𝟏𝟏 reads an object updated by 

transaction 𝑻𝟐𝟏. 

Definition 4. [10] Transaction 𝑻𝒎 and 𝑻𝒏  conflict if and only if their elements or compound elements 

conflict. 

Definition 5. [10] Transaction 𝑻𝒎 is partial order with ordering relation <𝒊, where: 

1. 𝑇𝑚 = {𝑒𝑚1, 𝑒𝑚2, … , 𝑒𝑚𝑛} ∪ {𝑎𝑚, 𝑐𝑚|𝑎𝑚: = abort, 𝑐𝑚: = commit}; 

2. 𝑐𝑚 ∈ 𝑇𝑚 only if 𝑎𝑚 ∉ 𝑇𝑚, vice versa; 

3. if 𝑡 is 𝑐𝑚  or 𝑎𝑚, then 𝑒𝑚𝑛 <𝑚 𝑡 for all 𝑒𝑚𝑛 in 𝑇𝑚; 

4. if 𝑟𝑚𝑛(𝑥) ∈ 𝑒𝑚𝑛 and 𝑤𝑚ℓ(𝑥) ∈ 𝑒𝑚ℓ, then 𝑒𝑚𝑛 <𝑚 𝑒𝑚ℓ is applied. 

Definition 6. [15] A complete history 𝑯 over 𝑻 is a partial order with ordering relations <𝑯, where: 

1. 𝐻 = ⋃𝑚=1
𝑘 𝑇𝑚; 

2. <𝐻⊇ ⋃𝑚=1
𝑘 <𝑚; 

3. for any two elements 𝑖, 𝑗 ∈ 𝐻 in conflict, then either 𝑖 <𝐻 𝑗 or 𝑗 <𝐻 𝑖. 

Definition 7. [15] The Serialization Graph SG for a complete history 𝑯 involving a set of transactions 𝑻 =
 𝑻𝟏, . . . , 𝑻𝒌 is denoted as a directed graph 𝑺𝑮(𝑯). The nodes correspond to the transactions in 𝑻, while the 

edges consist of 𝑻𝒎  →  𝑻𝒏 where 𝒎 ≠  𝒏 indicating that one of 𝑻𝒎’s elements precedes and conflicts with 

one of 𝑻𝒏’s elements in 𝑯. 

Definition 8. [17] Distributed serialization order: A global history 𝑯 is serializable if a total ordering of 𝑻 

exists in such a way that for every conflicting element  𝒆𝒎 ∈  𝑻𝒎 and 𝒆𝒏 ∈  𝑻𝒏 where 𝒎 ≠  𝒏 , 𝒆𝒎 precedes 

𝒆𝒏  in any 𝑯𝟏, … , 𝑯𝒌 if and only if  𝑻𝒎 precedes 𝑻𝒏  in the total ordering. 

The history contains records of committed transactions. Aborted transactions are not recorded in the 

history. In this study, the overall history is referred to as global history, while the history on the client side is 

called local history. Definition 8 explains that a transaction is said to be serial if transaction 𝑇𝑚 precedes 𝑇𝑛 

in the global history (total order), then the serial execution with the same order also occurs in all local histories 

that involve both transactions (partial order). For example, if there exists a set of elements 𝐸 and a total order 

<𝐻 over 𝐸, then for elements 𝑒1 and 𝑒2 in 𝐸, if 𝑒1  <𝐻  𝑒2, then 𝑒1  <𝐻ℓ  𝑒2 also applies. 

Definition 9. [10] Suppose 𝑯𝓵 is a complete history at cache side 𝓵, where 𝓵 = 𝟏, 𝟐, … , 𝒏 is partial order of 

𝑻𝓵 = {𝑻𝓵𝟏, 𝑻𝓵𝟐, … , 𝑻𝓵𝒏} with ordering relation <𝐇𝓵 where: 

1. 𝐻ℓ =  𝑇ℓ1 ∪ 𝑇ℓ2 ∪ … 𝑇ℓ𝑛ℓ
; 

2. <𝐻ℓ⊇ <1∪ <2∪ … ∪ <𝑛ℓ; 

3. for any two elements in conflict such as 𝑚, 𝑛 ∈ 𝐻ℓ, then 𝑚 <𝐻𝑘 𝑛 or 𝑛 <𝐻𝑘 𝑚. 

Definition 10. [10] Suppose 𝑻 = {𝑻𝟏, 𝑻𝟐, … } is a set of transaction, 𝑯 is a complete history generated by 

Extended SG-VQ algorithm, and there exists 𝐤 cache side in the system. History 𝑯 is a partial order over 𝑻 

with ordering relation <𝑯, where: 
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1. 𝐻 = 𝐻1 ∪ 𝐻2 … ∪ 𝐻𝑘, where 𝐻ℓ is complete history at cache side ℓ and 𝐻ℓ is partial order over 

transaction 𝑇; 

2. <𝐻 ⊇  <𝐻1 ∪ <𝐻2 ∪ … ∪ <𝐻𝑘; 

3. for any two elements in conflict such as 𝑚, 𝑛 ∈ 𝐻, then 𝑚 <𝐻 𝑛 or 𝑛 <𝐻 𝑚.   

Proposition 1. [10] Suppose 𝑯𝓵 is the local history on cache side 𝓵 produced by the cache-side algorithm of 

the Extended SG-VQ scheme. If  𝑻𝒎 participates on cache side 𝓵, then the execution of element 𝑻𝒎 on cache 

side 𝓵 is equivalent to the single element 𝒆𝒎.  

Proposition 1 states that if element 𝑻𝒎 participates on cache side 𝓵, the execution of element 𝑻𝒎 on 

that cache side is equivalent to a single element 𝒆𝒎. This indicates that when element 𝑻𝒎 is processed on the 

cache side, it is considered a single transaction or atomic unit from the execution perspective on that cache 

side. 

This proposition affirms that the operations performed on the cache side regarding element 𝑻𝒎 are 

indivisible or cannot be further broken down. In transactional database systems, atomicity ensures that a 

transaction either completes entirely or does not start at all. Thus, in this proposition, when 𝑻𝒎 is executed 

on the cache side, it behaves like an atomic transaction that must be completed fully to maintain data 

consistency and integrity. 

Proposition 2. [10] Suppose 𝑯𝓵 be the local history on the cache side 𝓵 (𝓵 = 𝟏, 𝟐, … , 𝒏), 𝑯 is the global 

history, and 𝑻 = {𝑻𝟏, 𝑻𝟐, … } is a set of transactions. Let 𝑻𝒎 and 𝑻𝒏 are form cache side 𝓵. If 𝒆𝒎 <𝑯𝓵 𝒆𝒏, 

then 𝒆𝒎 <𝑯 𝒆𝒏. 

 

3. RESULTS AND DISCUSSION 

In proving the correctness of the Extended SG-VQ validation algorithm, it is necessary to characterize 

the set of histories generated by the Extended SG-VQ algorithm, which represents possible executions of 

transactions synchronized by the Extended SG-VQ algorithm. Therefore, a model needs to be created to 

characterize the Extended SG-VQ history. Let 𝑇 = {𝑇1, . . . , 𝑇𝑛}  be the set of transactions in the system, and 

𝐻 be the global history of  𝑇. Then, there are n clients in the system. Each client caches the required objects. 

Each client has a local cache manager that handles local requests. This study defines the local history 𝐻𝑘 for 

client 𝑘 as a set of partial orders of  𝑇. 

Lemma 1. Suppose 𝑻 = {𝑻𝟏, 𝑻𝟐, 𝑻𝟑 … } is a set of transactions and there are 𝐧 clients in the system. Based 

on Extended SG-VQ scheme, each client executes a serial local history 𝑯𝟏, … , 𝑯𝒏. If 𝒆𝒎 <𝑯 𝒆𝒏, then 

𝒆𝒎 <𝑯𝒌
𝒆𝒏 for client 𝒌 that generates both transactions (𝒌 = 𝟏, … , 𝓵)  

Proof. Let 𝑚 and 𝑛 be two clients, each making transactions 𝑇𝑚 and 𝑇𝑛, respectively. Then, 𝑒𝑚 ∈  𝑇𝑚  

and 𝑒𝑛 ∈  𝑇𝑛. We aim to prove that if 𝑒𝑚 <𝐻  𝑒𝑛 holds in the global history, then 𝑒𝑚 <𝐻𝑘  𝑒𝑛 holds in all 

local histories of client 𝑘 that generate both transactions. If 𝑒𝑚 <𝐻𝑘  𝑒𝑛, it means 𝑒𝑚 conflicts with 𝑒𝑛. Based 

on Definition 3, three cases indicate 𝑒𝑚 conflicts with 𝑒𝑛:  

1. 𝑊𝑠𝑒𝑡(𝑒𝑚) ∩ 𝑊𝑠𝑒𝑡(𝑒𝑛) ≠ ∅ 

 
Figure 5. Serialization Graph of Case 1 

Based on Figure 5, client 𝑚 reads object 𝑦 (denoted as 𝑟𝑚(𝑦)) to update object 𝑥 (denoted as 𝑤𝑚(𝑥)), 

while client 𝑛 reads object 𝑧 (denoted as 𝑟𝑛(𝑧)) to update object 𝑥 (denoted as 𝑤𝑛(𝑥)). Both clients 𝑚 and 𝑛 



1366 Salsabila et al.     PROVING CORRECTNESS OF THE EXTENDED SERIAL GRAPH-VALIDATION…  

 

update the same object, resulting in a write-write conflict. Since 𝑒𝑚 <𝐻𝑛  𝑒𝑛, it implies that at the time when 

the transactions are still active and undergoing validation, client 𝑚 already holds an exclusive lock on object 

𝑥. As a result, client 𝑛 must wait until object 𝑥 returns to the UNLOCK state. 

In the serialization graph 𝑆𝐺(𝐻), the commit of 𝑇𝑚 on the server precedes the commit of 𝑇𝑛 to ensure 

that the Update Propagation element of 𝑇𝑚 is received by 𝑇𝑛. The cache version of the object 𝑥 brought by 

transaction 𝑇𝑛 remains valid. Thus, the commit of 𝑇𝑚 on the server precedes that of 𝑇𝑛, leading to 𝑒𝑚 <𝐻𝑛  𝑒𝑛. 

 For client 𝑘, it is observed that the Update Propagation element of 𝑇𝑚 is received before that of 

transaction 𝑇𝑛. This indicates that for clients 𝑘 =  1, … , ℓ with the same transactions, 𝑒𝑚 <𝐻𝑘  𝑒𝑛 holds. 

2. 𝑊𝑠𝑒𝑡(𝑒𝑚) ∩ 𝑅𝑠𝑒𝑡(𝑒𝑛) ≠ ∅ 

 
Figure 6. Serialization Graph of Case 2 

Based on Figure 6, client 𝑚 reads object 𝑦 (denoted as 𝑟𝑚(𝑦)) to update object 𝑥 (denoted as 𝑤𝑚(𝑥)), 

while client 𝑛 performs a read-only transaction, merely reading object 𝑥 (denoted as 𝑟𝑛(𝑥)). A write-read 

conflict arises because client 𝑚 updates an object being read by client 𝑛, which is object 𝑥. While the 

transactions are active, transaction 𝑇𝑚 obtains an exclusive lock on object 𝑥 during validation at the server. 

 In the serialization graph, since 𝑒𝑚 <𝐻𝑛  𝑒𝑛, it implies that client 𝑛 reads object 𝑥 after receiving the 

Update Propagation element from transaction 𝑇𝑚. Thus, the object 𝑥 read by client 𝑛 is the latest version of 

the object 𝑥. Globally, 𝑒𝑚 <𝐻𝑛  𝑒𝑛 holds; locally in client 𝑛, 𝑒𝑚 <𝐻𝑛  𝑒𝑛 holds; and locally in client  𝑘 =
 1, … , ℓ , 𝑒𝑚 <𝐻𝑘  𝑒𝑛 does not hold because transaction 𝑇𝑛 is read-only and therefore does not affect client 𝑘. 

3. 𝑅𝑠𝑒𝑡(𝑒𝑚) ∩ 𝑊𝑠𝑒𝑡(𝑒𝑛) ≠ ∅ 
 

 
Figure 7. Serialization Graph of Case 3 

Based on Figure 7 client 𝑚 performs a read-only transaction, merely reading object 𝑥 (denoted as 

𝑟𝑚(𝑥)), while client 𝑛 reads object 𝑦 (denoted as 𝑟𝑛(𝑦)) to update object 𝑥 (denoted as 𝑊𝑛(𝑥)). A read-write 

conflict arises because client 𝑚 reads an object being updated by client 𝑛. 

While the transactions are active, transaction 𝑇𝑛 does a local update while client 𝑚 still reads object 𝑥. 

However, transaction 𝑇𝑛 can only obtain an exclusive lock on object 𝑥 when validated at the server after 

client 𝑚 finished reading object 𝑥 because no transaction is allowed to make changes if an object is being 

locked. In the serialization graph, globally 𝑒𝑚 <𝐻𝑛  𝑒𝑛 holds; locally in client 𝑛, 𝑒𝑚 <𝐻𝑛  𝑒𝑛 holds, but 

locally in client 𝑘 =  1, … , ℓ, 𝑒𝑚 <𝐻𝑘  𝑒𝑛 does not hold because transaction 𝑇𝑚 is a read-only transaction 

and therefore does not affect client 𝑘. 
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Based on the three cases, if 𝑒𝑚 <𝐻𝑛  𝑒𝑛 holds for client 𝑛, then 𝑒𝑚 <𝐻𝑘  𝑒𝑛 holds for client 𝑘 =
 1, … , ℓ that have the same transactions. 

Lemma 2. Let 𝑻 =  {𝑻𝟏, 𝑻𝟐, 𝑻𝟑 . . . } be a set of transactions, the Extended SG-VQ algorithm produces a 

complete history of 𝑯 over 𝑻, and the serialization graph 𝑺𝑮(𝑯) is defined. If  𝑻𝒎  →  𝑻𝒏  exists in 𝑺𝑮(𝑯), 

then 𝒆𝒎  <𝑯  𝒆𝒏 due to a conflict between validated elements 𝒆𝒎 ∈  𝑻𝒎 and 𝒆𝒏 ∈ 𝑻𝒏 in 𝑯. 

Proof. Based on Definition 8, if  𝑇𝑚  →  𝑇𝑛 holds in the total order 𝐻, then there exists 𝑒𝑚 ∈  𝑇𝑚 conflicting 

with 𝑒𝑛 ∈  𝑇𝑛. Consequently, 𝑒𝑚  <𝐻  𝑒𝑛. 

Lemma 3. Let 𝑯 be a complete history generated by the Extended SG-VQ algorithm and there exists a path 

𝑻𝟏 → 𝑻𝟐 → ⋯ → 𝑻𝒏 in 𝑺𝑮(𝑯) with 𝒏 > 𝟏. Element 𝒆𝟏 precedes 𝒆𝒏 in 𝑯, or 𝒆𝟏 <𝑯 𝒆𝒏. 

Proof. Mathematical induction is used to prove this statement: 

1. Induction Basis: Since 𝑛 > 1, we take 𝑛 = 2 as the induction basis. Based on Lemma 2, on the path 

𝑇1 → 𝑇2 in 𝑆𝐺(𝐻), there exists 𝑒1 ∈ 𝑇1 conflicting with 𝑒2 ∈ 𝑇2. Consequently, 𝑒1 <𝐻 𝑒2, therefore 

Lemma 3 holds true for 𝑛 = 2.  

2. Induction Hypothesis: It is assumed that Lemma 3 holds for the case 𝑛 = 𝑘 where 𝑘 ≥ 2 and 𝑘 ∈ ℤ+. 

Based on Lemma 2, in the total order 𝐻, 𝑒1 ∈ 𝑇1 conflicts with 𝑒𝑘 ∈ 𝑇𝑘. As a result, 𝑒1  <𝐻  𝑒𝑘 because 

there is a path 𝑇1 →  𝑇2 → ⋯ →  𝑇𝑘 in 𝑆𝐺(𝐻).  

3. Induction Step: We will prove that Lemma 3 also holds for 𝑛 = 𝑘 + 1 based on the induction hypothesis. 

This means, we will prove that on the path 𝑇1 →  𝑇2 → ⋯ →  𝑇𝑘 →  𝑇(𝑘+1) in 𝑆𝐺(𝐻), 𝑒1 precedes 𝑒𝑘+1 

in the total order 𝐻, or can be denoted as 𝑒1  <𝐻  𝑒𝑘+1. Assuming that the statement of Lemma 3 holds 

for 𝑛 =  𝑘, then based on Lemma 2, it is known that in the total order  𝐻, 𝑒𝑘 ∈  𝑇𝑘 conflicts with 𝑒𝑘+1 ∈
 𝑇𝑘+1, therefore 𝑒𝑘  <𝐻  𝑒𝑘+1 because there is a path 𝑇𝑘 →  𝑇𝑘+1 in 𝑆𝐺(𝐻). 

Since 𝒆𝟏 precedes 𝒆𝒌 and 𝒆𝒌 precedes 𝒆𝒌+𝟏, then based on the transitive property of total order, it can 

be concluded that 𝒆𝟏 precedes 𝒆𝒌+𝟏 in the total order 𝑯, or can be denoted as 𝒆𝟏  <𝑯  𝒆𝒌+𝟏. By proving this 

inductively, it has been shown that if Lemma 3 holds for 𝒏 =  𝒌, then it also holds for 𝒏 =  𝒌 +  𝟏, thus 

proving that Lemma 3 holds for all 𝒏 >  𝟏. 

Theorem 1. Every history 𝑯 of the Extended SG-VQ scheme is serializable. 

Proof. Proof by Contradiction: If there exists a cycle in 𝑆𝐺(𝐻), it means 𝑇1 →  𝑇2 → ⋯ → 𝑇𝑛 →  𝑇1, where 

𝑛 >  1. Based on Lemma 3, one element from 𝑇1 conflicts with another element from 𝑇1 in history 𝐻; this 

contradicts Proposition 1, which implies that the execution of transaction 𝑇1 is equivalent to a single element. 

Therefore, 𝑆𝐺(𝐻) does not have cycles, and 𝐻 is serializable. 

  
 

4. CONCLUSIONS 

In proving the correctness of transaction execution generated by the Extended SG-VQ scheme, ten 

definitions, and two propositions have been outlined, along with the proof of three lemmas to establish 

Theorem 1. Lemma 1 proves that if 𝑒𝑚  <𝐻  𝑒𝑛 holds, then locally on client 𝑘 generating both transactions, 

𝑒𝑚  <𝐻𝑘  𝑒𝑛 holds. Lemma 2 proves that if 𝑇𝑚  →  𝑇𝑛 exists in 𝑆𝐺(𝐻), then 𝑒𝑚  <𝐻  𝑒𝑛. Lemma 3 proves 

that on the path 𝑇1 → ⋯ →  𝑇𝑛, 𝑒1 <𝐻 𝑒𝑛 holds for all 𝑛 >  1. The Serializability Theorem of the Extended 

SG-VQ scheme demonstrates that transactions produced are cycle-free. Based on this proof, it can be 

concluded that every history 𝐻 generated by the Extended SG-VQ scheme is serializable. Therefore, it has 

been theoretically proven that the Extended Serial Graph-Validation Queue scheme can execute transactions 

correctly. 
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