
 https://doi.org/10.30598/barekengvol18iss2pp1359-1368

June 2024 Volume 18 Issue 2 Page 1359–1368

P-ISSN: 1978-7227 E-ISSN: 2615-3017

BAREKENG: Journal of Mathematics and Its Applications

1359

PROVING THE CORRECTNESS OF THE EXTENDED SERIAL

GRAPH-VALIDATION QUEUE SCHEME IN THE CLIENT-

SERVER SYSTEM

 Fitra Nuvus Salsabila1*, Fahren Bukhari2, Sri Nurdiati3

1,2,3Department of Mathematics, Faculty of Mathematics and Natural Sciences, IPB University

Jln. Meranti Kampus, Babakan, Dramaga, Bogor 16680, Indonesia

Corresponding author’s e-mail: * fitrasalsabila@apps.ipb.ac.id

 ABSTRACT

Article History:
Numerous studies have been conducted to develop concurrency control schemes that can be

applied to client-server systems, such as the Extended Serial Graph-Validation Queue (SG-

VQ) scheme. Extended SG-VQ is a control concurrency scheme in the client-server system

that implements object caching on the client side and a locking strategy on the server side.

This scheme employs validation algorithms based on queues on the client side and graphs on

the server side. This research focuses on the mathematical analysis of the correctness of the

Extended SG-VQ scheme using serializability as the criterion that needs to be achieved.

Implementing a cycle-free transaction graph is a necessary and sufficient condition to achieve

serializability. In this research, the serializability of the Extended SG-VQ scheme has been

proven through the exposition of ten definitions, two propositions, three lemmas, and one

theorem.

Received: 28th February 2024

Revised: 20th March 2024

Accepted: 10th May 2024

Published: 1st June 2024

Keywords:

Client-Server;

Concurrency Control;

Graph;

 Locking;

 Serializability.

This article is an open access article distributed under the terms and conditions of the

Creative Commons Attribution-ShareAlike 4.0 International License.

How to cite this article:

F. N. Salsabila, F. Bukhari and S. Nurdiati., “PROVING CORRECTNESS OF THE EXTENDED SERIAL GRAPH-VALIDATION QUEUE

SCHEME WITH MATHEMATICAL ANALYSYS,” BAREKENG: J. Math. & App., vol. 18, iss. 2, pp. 1359-1368, June, 2024.

Copyright © 2024 Author(s)

Journal homepage: https://ojs3.unpatti.ac.id/index.php/barekeng/

Journal e-mail: barekeng.math@yahoo.com; barekeng.journal@mail.unpatti.ac.id

Research Article ∙ Open Access

http://creativecommons.org/licenses/by-sa/4.0/
https://ojs3.unpatti.ac.id/index.php/barekeng/
mailto:barekeng.math@yahoo.com
mailto:barekeng.journal@mail.unpatti.ac.id

1360 Salsabila et al. PROVING CORRECTNESS OF THE EXTENDED SERIAL GRAPH-VALIDATION…

1. INTRODUCTION

Technology will continue to advance, making it easier for users to connect globally [1]. Work from

Home (WFH) or Work from Anywhere (WFA) has rapidly emerged as a trend, supported by advancements

in video conferencing applications, file sharing, and cloud-based systems [2]. Geographical distances often

separate organizational members and differing work schedules, yet collaboration tools such as real-time

collaboration applications are effective solutions [3]. The client-server system architecture can serve as a

suitable foundation for applications supporting real-time collaboration [4]. When multiple clients

simultaneously access data from the same database, and one of the clients makes changes to the data, this can

lead to inconsistency of the data [5]. Therefore, in client-server systems, a mechanism is needed to manage

traffic access to shared resources to ensure data consistency, known as concurrency control [6].

Bukhari and Shrivastava [7] introduced an optimistic concurrency control scheme in client-server

systems that utilize object caching on the client side. This scheme is called Validation Queue (VQ). However,

in the concurrency control of the VQ scheme, complexity may arise in completing transactions as transactions

increase on the client side, posing a risk of increasing the server load and impacting the server's performance

degradation [8]. Therefore, the VQ scheme is modified, particularly on the server side. This modification

aimed to provide an alternative scheme that simplifies the transaction completion (commit) process. The

modified scheme is the Extended Serial Graph-Validation Queue (SG-VQ) scheme.

The Extended SG-VQ is a concurrency control scheme in a client-server system environment. Object

caching is implemented on the client side, referred to as the cache side. Both the cache side and the server

side have their validation algorithms. The Extended SG-VQ scheme retains most of the mechanisms applied

in the VQ scheme. Modifications to the VQ scheme are focused on the server-side validation algorithm. In

the VQ scheme, both the cache and server sides implement queue-based validation algorithms. In the

Extended SG-VQ scheme, the cache side maintains the queue-based validation algorithm. In contrast, the

server-side validation algorithm is modified to be graph-based with the implementation of locking strategies.

After modifications are made to the scheme, proving its correctness is necessary to ensure that the

modified scheme functions correctly. The expected processing or execution is free from overlapping

transactions, also known as serial execution. Serial execution can be achieved by processing transactions one

by one. Serial execution guarantees data consistency because there is no overlap between transactions; each

transaction views data consistently and is not affected by changes made by other transactions. Therefore,

serial execution is considered correct. However, in a concurrent transaction environment, the desired process

involves the system's ability to execute multiple transactions simultaneously as if they were executed

sequentially, as in serial execution. This process is known as serializable execution [9]. Thus, in systems

supporting concurrent data processing, achieving serializable execution becomes a goal because it can

improve efficiency and performance without sacrificing data consistency. Additionally, the effect of

serializable execution is equivalent to serial execution, making serializable execution also considered correct

[10]. Since serializability is an essential criterion for correctness [11], serializability becomes a mathematical

tool for proving the correctness of the Extended SG-VQ scheme. A proof of correctness offers a mathematical

assurance that an algorithm functions as intended; following its defined specifications and produced the

expected outcomes under all possible circumstances. Therefore, this research focuses on proving the

correctness of the Extended SG-VQ scheme. In the previous research by Jauhari [8], hypothetical cases have

been used to validate the scheme’s capability. In this research, the correctness will be proven by

demonstrating that the transaction execution produced by this scheme is serializable.

2. RESEARCH METHODS

This research employs formal proving methods to mathematically analyze the correctness of the

Extended Serial Graph-Validation Queue scheme. The criterion used to prove the correctness of the Extended

SG-VQ scheme is serializability. The serializability of this scheme is examined by:

1. Characterizing History 𝐻 as a representation of possible executions that occur.

2. Demonstrating that History 𝐻 is cycle-free, thus making it serializable.

BAREKENG: J. Math. & App., vol. 18(2), pp. 1359 - 1368, June, 2024. 1361

2.1 Extended Serial Graph-Validation Queue Scheme

The scheme discussed in this research is the Extended Serial Graph-Validation Queue (Extended SG-

VQ) scheme developed by Jauhari [8]. This scheme is an optimistic concurrency control in client-server

systems with the implementation of object caching on the client side, from now on referred to as the cache

side. Please refer to Figure 1.

Figure 1. Extended SG-VQ Scheme

On the server side, all objects are stored. Objects accessed by each client connected to that cache are

stored on the cache side. Based on Figure 1, we will examine the process of transaction 1 from cache 𝑇1,0,

denoted as transaction 𝑇1,1. Transaction 𝑇1,1 updates the red square object to green. This update will first be

validated locally on the cache side. If it passes cache-side validation, then the red square object in cache 𝑇1,0

will change to green according to the update from transaction 𝑇1,1. This update is then sent to the server via

a commit request message. If it passes server-side validation, then the red square object stored on the server

will be updated to green according to the changes made by transaction 𝑇1,1. Then, the cache version of the

object will be updated. Transaction 𝑇1,1 concludes. However, the server still has another task: propagating

the update results to other caches that also store the square object. By receiving the Update Propagation

element, all caches holding the red square object will update it to green.

Here are the validation algorithms for the cache side and the server side:

1. Cache-side validation algorithm

The cache-side validation algorithm in the Extended SG-VQ scheme is called the VQ algorithm. The

VQ algorithm serves as a tool for recording the sequence of local executions. VQ consists of Read, Commit,

Validated, Local Validated, and Update Propagation. Before a transaction completes its execution, a commit

request is sent to the local cache manager. Upon receiving the commit request, the local cache manager creates

a commit element, places it in the VQ, and then the transaction is validated.

Consider the following queue structure:

Figure 2. Queue Structure [10]

1362 Salsabila et al. PROVING CORRECTNESS OF THE EXTENDED SERIAL GRAPH-VALIDATION…

Transaction 𝑇𝑖 comprises a range of elements 𝑒𝑖,0 through 𝑒𝑖,𝑛, where 𝑛 denotes the number of elements

in the transaction. Based on Figure 2, these elements can exist in one or more collections 𝐸₁, 𝐸₂, . . . , 𝐸𝑛 that

consist of elements between 𝑒𝑖,𝑗−1 and 𝑒𝑖,𝑗. Suppose there is a particular element 𝑒′ in collection 𝐸𝑘 that splits

𝐸𝑘 into two parts, 𝑀 and 𝑁, such that 𝐸𝑘 = 𝑀; 𝑒′; 𝑁, where 𝑀 and/or 𝑁 can be empty sequences.

For the transaction 𝑇𝑖 to successfully pass the validation process, it must satisfy either of two of the

following conditions:

a. Condition I: For each 𝑗 = 0, 1, . . . , 𝑛 − 1, an element or the combined elements 𝑒𝑖,0 ∪ 𝑒𝑖,1 ∪ … ∪ 𝑒𝑖,𝑗

doesn't conflict with any element in the sequence 𝐸𝑗+1.

b. Condition II: The elements 𝑒𝑖,0 ∪ 𝑒𝑖,1 ∪ … ∪ 𝑒𝑖,𝑗 (where 𝑗 = 0, 1, … , 𝑘 − 1) must not conflict with

any element in the sequence 𝐸𝑗+1, and all elements in 𝑀, except for 𝑒′. For 𝑘 = 1, 2, … , 𝑛, the

combined elements 𝑒𝑖,𝑛 or 𝑒𝑖,0 ∪ 𝑒𝑖,1 ∪ … ∪ 𝑒𝑖,𝑗 (where 𝑗 = 𝑛, 𝑛 − 1, … 𝑘 + 1) must not conflict

with any element in the sequence 𝐸𝑗. Additionally, the combined elements 𝑒𝑖,𝑛 ∪ 𝑒𝑖,𝑛−1 ∪ … ∪

𝑒𝑖,𝑘−1 ∪ 𝑒𝑖,𝑘 must not conflict with the element 𝑒′ and all elements in 𝑁.

If read-only transactions successfully pass the validation process, all of their elements are merged into

Validated elements. Read-only transactions pass the validation process if they satisfy either condition I or

condition II. Otherwise, they fail

If update transactions successfully pass the validation process, all elements are merged into Local

Validated elements, and the local cache manager sends a commit request to the server. If the server response

is positive, Local Validated elements are changed to Validated elements. The local elements are discarded if

the server response is an abort message. Update transactions successfully pass the validation process if they

satisfy only condition I. Otherwise, they fail.

2. Server-side validation algorithm

The SG algorithm is the validation algorithm on the server side of the Extended SG-VQ scheme. The

SG algorithm consists of the commit request process and the validation process. When the server receives a

commit request message, it checks whether the message carries the latest cache version. If the cache version

carried by the message does not match the latest one, a message will be sent to the original cache manager to

verify the cache version of the message and update it first. Then, if the cache version matches the latest one,

the validation process will proceed. Before delving further, it's important to clarify the terms writeset and

readset. In the context of transaction processing, a writeset (𝑊𝑠𝑒𝑡) refers to the collection of elements that a

transaction intends to modify or write to during its execution. Conversely, a readset (𝑅𝑠𝑒𝑡) represents the

collection of elements that a transaction intends to read from during its execution.

On the server side, a lock-based protocol is employed. In this validation process, note that 𝑇𝑖𝑗 represents

the transaction undergoing validation on the server side. The server maintains a list containing objects and

the transactions holding locks on each object. In this scheme, the status of an object is divided into LOCK

and UNLOCK. If the status of an object is LOCK, it means that a transaction currently holds an exclusive

lock on that object. If the status is UNLOCK, it indicates that any transaction does not exclusively lock the

object and can be accessed by anyone.

The validation process begins with checking the status of objects, aiming to prevent multiple

transactions from updating the same object simultaneously. If the status of an object is LOCK and another

transaction attempts to update the same object, the later arriving transaction will be returned to its originated

cache.

If the object accessed by transaction 𝑇𝑖𝑗 is not in LOCK status, then 𝑇𝑖𝑗 will be inserted into the serial

graph, this means a node containing information about transaction 𝑇𝑖𝑗 will be formed. The direction of the

edge for transaction 𝑇𝑖𝑗 will be determined to indicate its execution sequence. For example, if transaction 𝑇𝑘𝑙

exists in the serial graph and 𝑊𝑠𝑒𝑡(𝑇𝑖𝑗) ∩ 𝑅𝑠𝑒𝑡(𝑇𝑘𝑙) ≠ ∅ , a serial graph will be formed as shown in Figure

3. This serial graph indicates that transaction 𝑇𝑖𝑗 will be executed after transaction 𝑇𝑘𝑙.

BAREKENG: J. Math. & App., vol. 18(2), pp. 1359 - 1368, June, 2024. 1363

Figure 3. Transaction 𝑻𝒌𝒍 Precedes 𝑻𝒊𝒋 in Serial Graph

Furthermore, if 𝑊𝑠𝑒𝑡(𝑇𝑘𝑙) ∩ 𝑅𝑠𝑒𝑡(𝑇𝑖𝑗) ≠ ∅, a serial graph will be formed as shown in Figure 4. This

serial graph indicates that transaction 𝑇𝑖𝑗 will be executed before transaction 𝑇𝑘𝑙.

Figure 4. Transaction 𝑻𝒊𝒋 Precedes 𝑻𝒌𝒍 in Serial Graph

2.2 Serializability

One way to ensure serializability is by requiring that access to an object be done by applying

exclusivity. This means that while a transaction is accessing an object, no other transaction can change that

object. The commonly used method to achieve this is the lock-based protocol [12]. Two basic types of locks

are used in this method: shared (S) and exclusive (X). In shared locking, a transaction can read an object but

not modify it. In exclusive locking, a transaction can both read and modify an object [13].

It is generally accepted that serializability is the strongest property that can define the standard notion

of correctness in a database management system (DBMS) [14]. The serializability theory is a mathematical

tool used to prove whether a sequence of transaction executions is correct [15]. In serializability theory, the

representation of a concurrent execution of a series of transactions is structurally called a history. An

execution is considered serializable if it is equivalent to a serial execution of the same transactions. Two

histories, H and H', are equivalent if,

1. both histories contain identical transactions and operations,

2. for conflicting operations 𝑟𝑖 from transaction 𝑇𝑖 and 𝑠𝑗 from transaction 𝑇𝑗, where 𝑎𝑖 , 𝑎𝑗 ∉ 𝐻 and 𝑎𝑖 ≔

aborted element of transaction 𝑇𝑖, 𝑎𝑗 ≔ aborted element of transaction 𝑇𝑗, if 𝑟𝑖 <𝐻 𝑠, then 𝑟𝑖 <𝐻′ 𝑠𝑗. In

other words, in a serializable execution, if operation 𝑟𝑖 precedes operation 𝑠𝑗 in history 𝐻, then operation

𝑟𝑖 precedes operation 𝑠𝑗 in history 𝐻′ as well.

A precedence graph, or serialization graph, is commonly used to test for serializability. The

serialization graph for 𝐻, denoted as 𝑆𝐺(𝐻), is a directed acyclic graph (dag) 𝐺 = (𝑉, 𝐸), where 𝑉 is a

collection of vertices 𝑣 and 𝐸 is a collection of edges 𝑒 [15]. A directed graph, also known as a digraph is a

graph in which its edges have a direction from one vertex to another [16]. Consider 𝑣1, 𝑣2 ∈ 𝑉, if (𝑣1, 𝑣2)

indicates that there is a directed edge from vertex 𝑣1 to vertex 𝑣2, and (𝑣2, 𝑣1) indicates an edge directed

from vertex 𝑣2 to vertex 𝑣1. In a directed graph, the pairs (𝑣1, 𝑣2) and (𝑣2, 𝑣1) are considered different

because they have opposite directions, in other words, (𝑣1, 𝑣2) ≠ (𝑣2, 𝑣1) , whereas in an undirected graph,

they are considered the same. Applying a cycle-free transaction graph is a necessary and sufficient condition

to achieve serializability [9].

2.3 Definitions and Propositions

 Here are the definitions and propositions used to prove the serializability of the Extended SG-VQ

scheme.

Definition 1. [10] An element 𝑒𝑚𝑛 is the 𝑛-th element of transaction 𝑇𝑚, where:

1. 𝑒𝑚𝑛 ∈ {𝑟𝑚𝑛(𝑥), 𝑤𝑚𝑛(𝑥)|𝑟(𝑥) ≔ read operation, 𝑤(𝑥) ≔ write operation, 𝑥 ≔ object};

2. 𝑅𝑠𝑒𝑡(𝑒𝑚𝑛) ∩ 𝑊𝑠𝑒𝑡(𝑒𝑚𝑛) = ∅, 𝑅𝑠𝑒𝑡(𝑒𝑚𝑛) ∶= readset, 𝑊𝑠𝑒𝑡(𝑒𝑚𝑛) ≔ writeset.

1364 Salsabila et al. PROVING CORRECTNESS OF THE EXTENDED SERIAL GRAPH-VALIDATION…

Definition 2. [10] If element 𝑒𝑖𝑝 is a compound element formed by merging element 𝑒𝑖𝑚 and 𝑒𝑖𝑛, then

𝑅𝑠𝑒𝑡(𝑒𝑖𝑝) = 𝑅𝑠𝑒𝑡(𝑒𝑖𝑚) ∪ 𝑅𝑠𝑒𝑡(𝑒𝑖𝑛) and 𝑊𝑠𝑒𝑡(𝑒𝑖𝑝) = 𝑊𝑠𝑒𝑡(𝑒𝑖𝑚) ∪ 𝑊𝑠𝑒𝑡(𝑒𝑖𝑛)

Definition 3. [10] Element 𝒆𝒎𝒏 and 𝒆𝒓𝒔 are in conflict if and only if 𝒎 ≠ 𝒓 and satisfy one of the following

conditions:

1. 𝑊𝑠𝑒𝑡(𝑒𝑚𝑛) ∩ 𝑊𝑠𝑒𝑡(𝑒𝑟𝑠) ≠ ∅;

2. 𝑊𝑠𝑒𝑡(𝑒𝑚𝑛) ∩ 𝑅𝑠𝑒𝑡(𝑒𝑟𝑠) ≠ ∅;

3. 𝑅𝑠𝑒𝑡(𝑒𝑚𝑛) ∩ 𝑊𝑠𝑒𝑡(𝑒𝑟𝑠) ≠ ∅.

Based on Definition 3, it can be concluded that two elements are considered to conflict if and only if

they do not originate from the same transaction (𝒎 ≠ 𝒓), both access the same object, and at least one

transaction performs an update such that the element from the related transaction is a write operation. For

example, let 𝑻𝟏𝟏 = {𝒓(𝒙), 𝒘(𝒚)} and 𝑻𝟐𝟏 = {𝒓(𝒛), 𝒘(𝒚)}. There is an intersection of write operations in

transactions 𝑻𝟏𝟏 and 𝑻𝟐𝟏, resulting in a write-write conflict as per Definition 3 (1). Furthermore, let 𝑻𝟏𝟏 =
{𝒓(𝒙), 𝒘(𝒚)} and 𝑻𝟐𝟏 = {𝒓(𝒚), 𝒘(𝒛)}. Transaction 𝑻𝟏𝟏 updates an object read by transaction 𝑻𝟐𝟏, resulting

in a write-read conflict per Definition 3 (2). Conversely, if 𝑻𝟏𝟏 = {𝒓(𝒙), 𝒘(𝒛)} and 𝑻𝟐𝟏 = {𝒓(𝒚), 𝒘(𝒙)},

then a write-read conflict occurs as per Definition 3 (3) because transaction 𝑻𝟏𝟏 reads an object updated by

transaction 𝑻𝟐𝟏.

Definition 4. [10] Transaction 𝑻𝒎 and 𝑻𝒏 conflict if and only if their elements or compound elements

conflict.

Definition 5. [10] Transaction 𝑻𝒎 is partial order with ordering relation <𝒊, where:

1. 𝑇𝑚 = {𝑒𝑚1, 𝑒𝑚2, … , 𝑒𝑚𝑛} ∪ {𝑎𝑚, 𝑐𝑚|𝑎𝑚: = abort, 𝑐𝑚: = commit};

2. 𝑐𝑚 ∈ 𝑇𝑚 only if 𝑎𝑚 ∉ 𝑇𝑚, vice versa;

3. if 𝑡 is 𝑐𝑚 or 𝑎𝑚, then 𝑒𝑚𝑛 <𝑚 𝑡 for all 𝑒𝑚𝑛 in 𝑇𝑚;

4. if 𝑟𝑚𝑛(𝑥) ∈ 𝑒𝑚𝑛 and 𝑤𝑚ℓ(𝑥) ∈ 𝑒𝑚ℓ, then 𝑒𝑚𝑛 <𝑚 𝑒𝑚ℓ is applied.

Definition 6. [15] A complete history 𝑯 over 𝑻 is a partial order with ordering relations <𝑯, where:

1. 𝐻 = ⋃𝑚=1
𝑘 𝑇𝑚;

2. <𝐻⊇ ⋃𝑚=1
𝑘 <𝑚;

3. for any two elements 𝑖, 𝑗 ∈ 𝐻 in conflict, then either 𝑖 <𝐻 𝑗 or 𝑗 <𝐻 𝑖.

Definition 7. [15] The Serialization Graph SG for a complete history 𝑯 involving a set of transactions 𝑻 =
 𝑻𝟏, . . . , 𝑻𝒌 is denoted as a directed graph 𝑺𝑮(𝑯). The nodes correspond to the transactions in 𝑻, while the

edges consist of 𝑻𝒎 → 𝑻𝒏 where 𝒎 ≠ 𝒏 indicating that one of 𝑻𝒎’s elements precedes and conflicts with

one of 𝑻𝒏’s elements in 𝑯.

Definition 8. [17] Distributed serialization order: A global history 𝑯 is serializable if a total ordering of 𝑻

exists in such a way that for every conflicting element 𝒆𝒎 ∈ 𝑻𝒎 and 𝒆𝒏 ∈ 𝑻𝒏 where 𝒎 ≠ 𝒏 , 𝒆𝒎 precedes

𝒆𝒏 in any 𝑯𝟏, … , 𝑯𝒌 if and only if 𝑻𝒎 precedes 𝑻𝒏 in the total ordering.

The history contains records of committed transactions. Aborted transactions are not recorded in the

history. In this study, the overall history is referred to as global history, while the history on the client side is

called local history. Definition 8 explains that a transaction is said to be serial if transaction 𝑇𝑚 precedes 𝑇𝑛

in the global history (total order), then the serial execution with the same order also occurs in all local histories

that involve both transactions (partial order). For example, if there exists a set of elements 𝐸 and a total order

<𝐻 over 𝐸, then for elements 𝑒1 and 𝑒2 in 𝐸, if 𝑒1 <𝐻 𝑒2, then 𝑒1 <𝐻ℓ 𝑒2 also applies.

Definition 9. [10] Suppose 𝑯𝓵 is a complete history at cache side 𝓵, where 𝓵 = 𝟏, 𝟐, … , 𝒏 is partial order of

𝑻𝓵 = {𝑻𝓵𝟏, 𝑻𝓵𝟐, … , 𝑻𝓵𝒏} with ordering relation <𝐇𝓵 where:

1. 𝐻ℓ = 𝑇ℓ1 ∪ 𝑇ℓ2 ∪ … 𝑇ℓ𝑛ℓ
;

2. <𝐻ℓ⊇ <1∪ <2∪ … ∪ <𝑛ℓ;

3. for any two elements in conflict such as 𝑚, 𝑛 ∈ 𝐻ℓ, then 𝑚 <𝐻𝑘 𝑛 or 𝑛 <𝐻𝑘 𝑚.

Definition 10. [10] Suppose 𝑻 = {𝑻𝟏, 𝑻𝟐, … } is a set of transaction, 𝑯 is a complete history generated by

Extended SG-VQ algorithm, and there exists 𝐤 cache side in the system. History 𝑯 is a partial order over 𝑻

with ordering relation <𝑯, where:

BAREKENG: J. Math. & App., vol. 18(2), pp. 1359 - 1368, June, 2024. 1365

1. 𝐻 = 𝐻1 ∪ 𝐻2 … ∪ 𝐻𝑘, where 𝐻ℓ is complete history at cache side ℓ and 𝐻ℓ is partial order over

transaction 𝑇;

2. <𝐻 ⊇ <𝐻1 ∪ <𝐻2 ∪ … ∪ <𝐻𝑘;

3. for any two elements in conflict such as 𝑚, 𝑛 ∈ 𝐻, then 𝑚 <𝐻 𝑛 or 𝑛 <𝐻 𝑚.

Proposition 1. [10] Suppose 𝑯𝓵 is the local history on cache side 𝓵 produced by the cache-side algorithm of

the Extended SG-VQ scheme. If 𝑻𝒎 participates on cache side 𝓵, then the execution of element 𝑻𝒎 on cache

side 𝓵 is equivalent to the single element 𝒆𝒎.

Proposition 1 states that if element 𝑻𝒎 participates on cache side 𝓵, the execution of element 𝑻𝒎 on

that cache side is equivalent to a single element 𝒆𝒎. This indicates that when element 𝑻𝒎 is processed on the

cache side, it is considered a single transaction or atomic unit from the execution perspective on that cache

side.

This proposition affirms that the operations performed on the cache side regarding element 𝑻𝒎 are

indivisible or cannot be further broken down. In transactional database systems, atomicity ensures that a

transaction either completes entirely or does not start at all. Thus, in this proposition, when 𝑻𝒎 is executed

on the cache side, it behaves like an atomic transaction that must be completed fully to maintain data

consistency and integrity.

Proposition 2. [10] Suppose 𝑯𝓵 be the local history on the cache side 𝓵 (𝓵 = 𝟏, 𝟐, … , 𝒏), 𝑯 is the global

history, and 𝑻 = {𝑻𝟏, 𝑻𝟐, … } is a set of transactions. Let 𝑻𝒎 and 𝑻𝒏 are form cache side 𝓵. If 𝒆𝒎 <𝑯𝓵 𝒆𝒏,

then 𝒆𝒎 <𝑯 𝒆𝒏.

3. RESULTS AND DISCUSSION

In proving the correctness of the Extended SG-VQ validation algorithm, it is necessary to characterize

the set of histories generated by the Extended SG-VQ algorithm, which represents possible executions of

transactions synchronized by the Extended SG-VQ algorithm. Therefore, a model needs to be created to

characterize the Extended SG-VQ history. Let 𝑇 = {𝑇1, . . . , 𝑇𝑛} be the set of transactions in the system, and

𝐻 be the global history of 𝑇. Then, there are n clients in the system. Each client caches the required objects.

Each client has a local cache manager that handles local requests. This study defines the local history 𝐻𝑘 for

client 𝑘 as a set of partial orders of 𝑇.

Lemma 1. Suppose 𝑻 = {𝑻𝟏, 𝑻𝟐, 𝑻𝟑 … } is a set of transactions and there are 𝐧 clients in the system. Based

on Extended SG-VQ scheme, each client executes a serial local history 𝑯𝟏, … , 𝑯𝒏. If 𝒆𝒎 <𝑯 𝒆𝒏, then

𝒆𝒎 <𝑯𝒌
𝒆𝒏 for client 𝒌 that generates both transactions (𝒌 = 𝟏, … , 𝓵)

Proof. Let 𝑚 and 𝑛 be two clients, each making transactions 𝑇𝑚 and 𝑇𝑛, respectively. Then, 𝑒𝑚 ∈ 𝑇𝑚

and 𝑒𝑛 ∈ 𝑇𝑛. We aim to prove that if 𝑒𝑚 <𝐻 𝑒𝑛 holds in the global history, then 𝑒𝑚 <𝐻𝑘 𝑒𝑛 holds in all

local histories of client 𝑘 that generate both transactions. If 𝑒𝑚 <𝐻𝑘 𝑒𝑛, it means 𝑒𝑚 conflicts with 𝑒𝑛. Based

on Definition 3, three cases indicate 𝑒𝑚 conflicts with 𝑒𝑛:

1. 𝑊𝑠𝑒𝑡(𝑒𝑚) ∩ 𝑊𝑠𝑒𝑡(𝑒𝑛) ≠ ∅

Figure 5. Serialization Graph of Case 1

Based on Figure 5, client 𝑚 reads object 𝑦 (denoted as 𝑟𝑚(𝑦)) to update object 𝑥 (denoted as 𝑤𝑚(𝑥)),

while client 𝑛 reads object 𝑧 (denoted as 𝑟𝑛(𝑧)) to update object 𝑥 (denoted as 𝑤𝑛(𝑥)). Both clients 𝑚 and 𝑛

1366 Salsabila et al. PROVING CORRECTNESS OF THE EXTENDED SERIAL GRAPH-VALIDATION…

update the same object, resulting in a write-write conflict. Since 𝑒𝑚 <𝐻𝑛 𝑒𝑛, it implies that at the time when

the transactions are still active and undergoing validation, client 𝑚 already holds an exclusive lock on object

𝑥. As a result, client 𝑛 must wait until object 𝑥 returns to the UNLOCK state.

In the serialization graph 𝑆𝐺(𝐻), the commit of 𝑇𝑚 on the server precedes the commit of 𝑇𝑛 to ensure

that the Update Propagation element of 𝑇𝑚 is received by 𝑇𝑛. The cache version of the object 𝑥 brought by

transaction 𝑇𝑛 remains valid. Thus, the commit of 𝑇𝑚 on the server precedes that of 𝑇𝑛, leading to 𝑒𝑚 <𝐻𝑛 𝑒𝑛.

 For client 𝑘, it is observed that the Update Propagation element of 𝑇𝑚 is received before that of

transaction 𝑇𝑛. This indicates that for clients 𝑘 = 1, … , ℓ with the same transactions, 𝑒𝑚 <𝐻𝑘 𝑒𝑛 holds.

2. 𝑊𝑠𝑒𝑡(𝑒𝑚) ∩ 𝑅𝑠𝑒𝑡(𝑒𝑛) ≠ ∅

Figure 6. Serialization Graph of Case 2

Based on Figure 6, client 𝑚 reads object 𝑦 (denoted as 𝑟𝑚(𝑦)) to update object 𝑥 (denoted as 𝑤𝑚(𝑥)),

while client 𝑛 performs a read-only transaction, merely reading object 𝑥 (denoted as 𝑟𝑛(𝑥)). A write-read

conflict arises because client 𝑚 updates an object being read by client 𝑛, which is object 𝑥. While the

transactions are active, transaction 𝑇𝑚 obtains an exclusive lock on object 𝑥 during validation at the server.

 In the serialization graph, since 𝑒𝑚 <𝐻𝑛 𝑒𝑛, it implies that client 𝑛 reads object 𝑥 after receiving the

Update Propagation element from transaction 𝑇𝑚. Thus, the object 𝑥 read by client 𝑛 is the latest version of

the object 𝑥. Globally, 𝑒𝑚 <𝐻𝑛 𝑒𝑛 holds; locally in client 𝑛, 𝑒𝑚 <𝐻𝑛 𝑒𝑛 holds; and locally in client 𝑘 =
 1, … , ℓ , 𝑒𝑚 <𝐻𝑘 𝑒𝑛 does not hold because transaction 𝑇𝑛 is read-only and therefore does not affect client 𝑘.

3. 𝑅𝑠𝑒𝑡(𝑒𝑚) ∩ 𝑊𝑠𝑒𝑡(𝑒𝑛) ≠ ∅

Figure 7. Serialization Graph of Case 3

Based on Figure 7 client 𝑚 performs a read-only transaction, merely reading object 𝑥 (denoted as

𝑟𝑚(𝑥)), while client 𝑛 reads object 𝑦 (denoted as 𝑟𝑛(𝑦)) to update object 𝑥 (denoted as 𝑊𝑛(𝑥)). A read-write

conflict arises because client 𝑚 reads an object being updated by client 𝑛.

While the transactions are active, transaction 𝑇𝑛 does a local update while client 𝑚 still reads object 𝑥.

However, transaction 𝑇𝑛 can only obtain an exclusive lock on object 𝑥 when validated at the server after

client 𝑚 finished reading object 𝑥 because no transaction is allowed to make changes if an object is being

locked. In the serialization graph, globally 𝑒𝑚 <𝐻𝑛 𝑒𝑛 holds; locally in client 𝑛, 𝑒𝑚 <𝐻𝑛 𝑒𝑛 holds, but

locally in client 𝑘 = 1, … , ℓ, 𝑒𝑚 <𝐻𝑘 𝑒𝑛 does not hold because transaction 𝑇𝑚 is a read-only transaction

and therefore does not affect client 𝑘.

BAREKENG: J. Math. & App., vol. 18(2), pp. 1359 - 1368, June, 2024. 1367

Based on the three cases, if 𝑒𝑚 <𝐻𝑛 𝑒𝑛 holds for client 𝑛, then 𝑒𝑚 <𝐻𝑘 𝑒𝑛 holds for client 𝑘 =
 1, … , ℓ that have the same transactions.

Lemma 2. Let 𝑻 = {𝑻𝟏, 𝑻𝟐, 𝑻𝟑 . . . } be a set of transactions, the Extended SG-VQ algorithm produces a

complete history of 𝑯 over 𝑻, and the serialization graph 𝑺𝑮(𝑯) is defined. If 𝑻𝒎 → 𝑻𝒏 exists in 𝑺𝑮(𝑯),

then 𝒆𝒎 <𝑯 𝒆𝒏 due to a conflict between validated elements 𝒆𝒎 ∈ 𝑻𝒎 and 𝒆𝒏 ∈ 𝑻𝒏 in 𝑯.

Proof. Based on Definition 8, if 𝑇𝑚 → 𝑇𝑛 holds in the total order 𝐻, then there exists 𝑒𝑚 ∈ 𝑇𝑚 conflicting

with 𝑒𝑛 ∈ 𝑇𝑛. Consequently, 𝑒𝑚 <𝐻 𝑒𝑛.

Lemma 3. Let 𝑯 be a complete history generated by the Extended SG-VQ algorithm and there exists a path

𝑻𝟏 → 𝑻𝟐 → ⋯ → 𝑻𝒏 in 𝑺𝑮(𝑯) with 𝒏 > 𝟏. Element 𝒆𝟏 precedes 𝒆𝒏 in 𝑯, or 𝒆𝟏 <𝑯 𝒆𝒏.

Proof. Mathematical induction is used to prove this statement:

1. Induction Basis: Since 𝑛 > 1, we take 𝑛 = 2 as the induction basis. Based on Lemma 2, on the path

𝑇1 → 𝑇2 in 𝑆𝐺(𝐻), there exists 𝑒1 ∈ 𝑇1 conflicting with 𝑒2 ∈ 𝑇2. Consequently, 𝑒1 <𝐻 𝑒2, therefore

Lemma 3 holds true for 𝑛 = 2.

2. Induction Hypothesis: It is assumed that Lemma 3 holds for the case 𝑛 = 𝑘 where 𝑘 ≥ 2 and 𝑘 ∈ ℤ+.

Based on Lemma 2, in the total order 𝐻, 𝑒1 ∈ 𝑇1 conflicts with 𝑒𝑘 ∈ 𝑇𝑘. As a result, 𝑒1 <𝐻 𝑒𝑘 because

there is a path 𝑇1 → 𝑇2 → ⋯ → 𝑇𝑘 in 𝑆𝐺(𝐻).

3. Induction Step: We will prove that Lemma 3 also holds for 𝑛 = 𝑘 + 1 based on the induction hypothesis.

This means, we will prove that on the path 𝑇1 → 𝑇2 → ⋯ → 𝑇𝑘 → 𝑇(𝑘+1) in 𝑆𝐺(𝐻), 𝑒1 precedes 𝑒𝑘+1

in the total order 𝐻, or can be denoted as 𝑒1 <𝐻 𝑒𝑘+1. Assuming that the statement of Lemma 3 holds

for 𝑛 = 𝑘, then based on Lemma 2, it is known that in the total order 𝐻, 𝑒𝑘 ∈ 𝑇𝑘 conflicts with 𝑒𝑘+1 ∈
 𝑇𝑘+1, therefore 𝑒𝑘 <𝐻 𝑒𝑘+1 because there is a path 𝑇𝑘 → 𝑇𝑘+1 in 𝑆𝐺(𝐻).

Since 𝒆𝟏 precedes 𝒆𝒌 and 𝒆𝒌 precedes 𝒆𝒌+𝟏, then based on the transitive property of total order, it can

be concluded that 𝒆𝟏 precedes 𝒆𝒌+𝟏 in the total order 𝑯, or can be denoted as 𝒆𝟏 <𝑯 𝒆𝒌+𝟏. By proving this

inductively, it has been shown that if Lemma 3 holds for 𝒏 = 𝒌, then it also holds for 𝒏 = 𝒌 + 𝟏, thus

proving that Lemma 3 holds for all 𝒏 > 𝟏.

Theorem 1. Every history 𝑯 of the Extended SG-VQ scheme is serializable.

Proof. Proof by Contradiction: If there exists a cycle in 𝑆𝐺(𝐻), it means 𝑇1 → 𝑇2 → ⋯ → 𝑇𝑛 → 𝑇1, where

𝑛 > 1. Based on Lemma 3, one element from 𝑇1 conflicts with another element from 𝑇1 in history 𝐻; this

contradicts Proposition 1, which implies that the execution of transaction 𝑇1 is equivalent to a single element.

Therefore, 𝑆𝐺(𝐻) does not have cycles, and 𝐻 is serializable.

4. CONCLUSIONS

In proving the correctness of transaction execution generated by the Extended SG-VQ scheme, ten

definitions, and two propositions have been outlined, along with the proof of three lemmas to establish

Theorem 1. Lemma 1 proves that if 𝑒𝑚 <𝐻 𝑒𝑛 holds, then locally on client 𝑘 generating both transactions,

𝑒𝑚 <𝐻𝑘 𝑒𝑛 holds. Lemma 2 proves that if 𝑇𝑚 → 𝑇𝑛 exists in 𝑆𝐺(𝐻), then 𝑒𝑚 <𝐻 𝑒𝑛. Lemma 3 proves

that on the path 𝑇1 → ⋯ → 𝑇𝑛, 𝑒1 <𝐻 𝑒𝑛 holds for all 𝑛 > 1. The Serializability Theorem of the Extended

SG-VQ scheme demonstrates that transactions produced are cycle-free. Based on this proof, it can be

concluded that every history 𝐻 generated by the Extended SG-VQ scheme is serializable. Therefore, it has

been theoretically proven that the Extended Serial Graph-Validation Queue scheme can execute transactions

correctly.

REFERENCES

[1] S. Ali, R. Alauldeen, and R. A. Khamees, “What is client-server system: architecture, issues and challenge of client-server

system (review),” Recent Trends in Cloud Computing and Web Engineering, vol. 2, no. I, pp. 1–6, 2020.

[2] J. Gifford, “Remote working: unprecedented increase and a developing research agenda,” Human Resource Development

International, vol. 25, no. 2, pp. 105–113, March 2022.

1368 Salsabila et al. PROVING CORRECTNESS OF THE EXTENDED SERIAL GRAPH-VALIDATION…

[3] Q.-V. Dang and C.-L. Ignat, “Performance of real-time collaborative editors at large scale: user persperctive,” in 2016 IFIP

Networking Conference and Workshops, pp. 548–553, May 17-19, 2016.

[4] M. Härtwig and S. Götz, “Mobile Modeling with Real-Time Collaboration Support,” Journal of Object Technology, vol. 21,

no. 3, pp. 1-5, July 2022.

[5] T. Connolly and C. Begg, Database Systems: A Practical Approach in Design, Implementation, and Management Database,

6th ed. Essex: Pearson Education, 2015, 99-100.

[6] M. Kaur and H. Kaur, “Concurrency control in distributed database system,” International Journal of Advanced Research

in Computer Science and Software Engineering, vol. 3, no. 7, pp. 1443–1447, July 2013.

[7] F. Bukhari and S. Shrivastava, “An Efficient Distributed Concurrency Control Scheme for Transactional Systems with

Client-Side Caching,” in Proceedings of the 14th IEEE International Conference on High Performance Computing and

Communications, HPCC-2012 - 9th IEEE International Conference on Embedded Software and Systems, ICESS-2012, pp.

1074–1081, Jun. 25-27, 2012.

[8] M. F. Jauhari, “Skema serial graph-validation queue (sg-vq) pada sistem klien-server,” Master thesis, IPB Univ., Bogor,

Indonesia, 2024.

[9] T. Wang, R. Johnson, A. Fekete, and I. Pandis, “Efficiently making (almost) any concurrency control mechanism

serializable,” International Journal on Very Large Data Bases, vol. 26, no. 4, pp. 537–562, August 2017.

[10] F. Bukhari, Maintaining Consistency in Client-Server Database Systems with Client-Side Caching. Doctoral [Dissertation].

Newcastle upon Tyne: Newcastle Univ., 2012. [Online]. Available: Newcastle University Theses.

[11] A. Mhatre and R. Shedge, “Comparative study of concurrency control techniques in distributed databases,” in Proceedings

- 2014 4th International Conference on Communication Systems and Network Technologies, CSNT 2014, pp. 378–382, Apr.

7-9, 2014.

[12] Fathansyah, Basis Data, 3rd ed. Bandung: Informatika Bandung, 2018, 312-318.

[13] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Concepts, 6th ed. McGraw-Hill, 2011, 661-667.

[14] T. V. A. Parreira, Empowering a Relational Database with Lsd: Lazy State Determination. Master [Thesis]. Lisbon: NOVA

School of Science and Technology, 2022. [Online]. Available: Repository of NOVA University (RUN).

[15] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in Database System, no. 2. Addison-

Wesley, 1987, 1-34.

[16] Y. Heryadi and I. Sonata, Dasar-Dasar Graph Machine Learning dan Implementasinya Menggunakan Bahasa Python.

Yogyakarta: GAVA MEDIA, 2022, 1-4.

[17] P. A. Bernstein and N. Goodman, “Concurrency control in distributed database systems,” ACM Computing Survey, vol. 13,

no. 2, pp. 185–221, June 1981.

