
 https://doi.org/10.30598/barekengvol18iss3pp1899-1908

September 2024 Volume 18 Issue 3 Page 1899–1908

P-ISSN: 1978-7227 E-ISSN: 2615-3017

BAREKENG: Journal of Mathematics and Its Applications

1899

 EXTENDED SERIAL GRAPH-VALIDATION QUEUE SCHEME

WITH LOCKING STRATEGY

 Muhammad Fakhri Jauhari 1*, Fahren Bukhari2, Sri Nurdiati3

1,2,3Department of Mathematics, Faculty of Mathematics and Natural Sciences, IPB University

Jl. Kampus Meranti, Babakan, Dramaga, Bogor, 16680, Indonesia

Corresponding author’s e-mail: * fachrijrm@apps.ipb.ac.id

 ABSTRACT

Article History:
In today's digital landscape, collaborative work in real-time is on the rise, allowing

individuals to connect across different locations through applications facilitated by client-
server architecture, enabling users to access and work on the same project simultaneously.

However, clients' simultaneous access and modifications to the database can result in data

inconsistencies, underscoring the importance of concurrency control. Managing concurrent

transactions can introduce complexities and potentially adversely impact server
performance. Object caching emerges as a viable solution as an alternative approach to

handling transaction traffic. Extended Serial Graph-Validation Queue (Extended SG-VQ)

is a control concurrency scheme that operates within the client-server architecture

framework and incorporates object caching. The cache component implements a queue-
based validation algorithm as part of its validation process. At the same time, the server-

side employs a graph-based validation algorithm with locking strategies. Through a series

of hypothetical transaction scenarios across three cases, this study validates the

effectiveness of the Extended SG-VQ, demonstrating its ability to utilize serial graphs,
resolve conflicts, and identify cyclic patterns.

Received: 28th February 2024
Revised: 17th April 2024

Accepted: 11th July 2024

Published: 1st September 2024

Keywords:

Client-Server;
Concurrency Control;

Graph;

Locking.

 This article is an open access article distributed under the terms and conditions of the

Creative Commons Attribution-ShareAlike 4.0 International License.

How to cite this article:

M. F. Jauhari, F. Bukhari and S. Nurdiati., “EXTENDED SERIAL GRAPH-VALIDATION QUEUE SCHEME WITH LOCKING

STRATEGY,” BAREKENG: J. Math. & App., vol. 18, iss. 3, pp. 1899-1908, September, 2024.

Copyright © 2024 Author(s)

Journal homepage: https://ojs3.unpatti.ac.id/index.php/barekeng/

Journal e-mail: barekeng.math@yahoo.com; barekeng.journal@mail.unpatti.ac.id

Research Article ∙ Open Access

http://creativecommons.org/licenses/by-sa/4.0/
https://ojs3.unpatti.ac.id/index.php/barekeng/
mailto:barekeng.math@yahoo.com
mailto:barekeng.journal@mail.unpatti.ac.id

1900 Jauhari, et al. EXTENDED SERIAL GRAPH-VALIDATION QUEUE SCHEME WITH LOCKING STRATEGY…

1. INTRODUCTION

In recent times, there has been an increasing need for applications that enhance synchronous

collaboration, enabling multiple individuals to engage in shared projects concurrently, even when situated in

separate locations [1]. This form of collaboration is known as real-time collaboration. It facilitates joint efforts

on various tasks, such as co-authoring a document or utilizing an online platform for interactive discussions.

Real-time collaboration transcends geographical barriers and simplifies collaboration. For instance, desktop

sharing exemplifies this concept by enabling users to present their screens, facilitating simultaneous viewing

of shared content among all participants for collaborative interactions [2]. Similarly, document sharing offers

a collaborative platform where multiple individuals can access and collectively modify shared files [3]. The

client-server model is the most suitable for projects supporting real-time collaboration [4].

The simultaneous processing of multiple transactions (concurrency) risks generating inconsistent data.

Concurrent access to a shared database by multiple clients can lead to data inconsistency if one or more clients

modify the data [5]. Hence, there arises a need for a mechanism to manage concurrent transactions effectively

and mitigate the risk of inconsistencies, known as concurrency control. However, the execution of concurrent

transactions can complicate the transaction completion process (commit) and impose an additional workload

on the server, potentially decreasing its performance. Consequently, significant research efforts have been

dedicated to enhancing server performance, such as exploring object caching strategies on the server side [6]

and permitting transactions to access previous versions of objects [7].

One of the schemes developed to address concurrency control issues in client-server system

environments is the Validation Queue (VQ) scheme, researched by Bukhari and Shrivastava [8]. This

optimistic concurrency control scheme utilizes object caching on the client side. In optimistic concurrency

control, transactions will be created of objects from the database server. Afterward, the server conducts a

validation process to verify that other transactions have not changed the object. The transaction proceeds if

the validation process is successful, and a copy of the modified object will be sent to the database server.

Instead, the transaction is aborted if the validation process fails.

As the number of client-side transactions grows, the complexity of the VQ scheme escalates during the

commit phase. Hence, this study suggests the Extended Serial Graph-Validation Queue (Extended SG-VQ)

scheme as a potential advancement over the VQ scheme. This research aims to modify the Validation Queue

(VQ) scheme, specifically on the server side, thereby introducing an alternative approach to manage the

concurrent access of resources in client-server systems.

2. RESEARCH METHODS

The development of this scheme began with research on the Validation Queue (VQ) scheme by Bukhari

and Shrivastava [8] based on the Read Order Concurrency Control (ROCC) scheme by Shi and Perrizo [9].

The Extended Serial Graph-Validation Queue scheme is a modification of the VQ scheme. Below are the

assumptions used in the development of this scheme:

1. Single server system;

2. Clients issue transactions one by one;

3. No blind writes. Transactions must read object 𝒙 before updating object 𝒙;

4. Transactions work on their memory. When requesting access to an object, the object is first copied

to its memory. Subsequently, the commit request and its updates are sent when the execution ends;

5. No network partition. A message is always sent to its destination, assuming it is received and

processed by the client in the same order as sent from the server while maintaining message

numbering and order.

BAREKENG: J. Math. & App., vol. 18(3), pp. 1899- 1908, September, 2024. 1901

2.1 System Architecture

This scheme employs a client-server architecture with object caching implemented on the client side,

as shown in Figure 1. Therefore, the scheme is divided into the cache and server sides. The Validation Queue

(VQ) scheme will encounter complexities in the commit process as the number of transactions from the client-

side increases. Therefore, modifications are made to the Validation Queue scheme to simplify the commit

process on the server side. The VQ scheme utilizes a queue-based validation algorithm both on the cache and

server sides. The cache-side validation algorithm is called the Cache Validation Queue (CVQ). In contrast,

the server-side validation algorithm is called the Server Validation Queue (SVQ). The modified scheme is

called Extended Serial Graph-Validation Queue (Extended SG-VQ). The modifications only involve

changing the validation algorithm on the server side, while the validation algorithm on the cache side

continues to use the CVQ validation algorithm. After modification, the validation algorithms on the cache

and server sides are sequentially referred to as Validation Queue (VQ) and Serial Graph (SG).

Figure 1. System architecture of the extended SG-VQ scheme

The client-side consists of the application, Cache Manager, and Cache Manager Object. These

components are independent modules that communicate explicitly with each other through messages. In this

research, the Cache Manager and the Cache Manager Object refer to a cache (local cache). The server side

comprises the Service Manager, Scheduler, and Object Manager. The Service Manager manages incoming

and outgoing messages on the server. Each request for database access is directed to the Service Manager,

who forwards it to the Scheduler. The Scheduler's responsibility is to coordinate database access

synchronization. To execute these accesses, the Scheduler sends them to the Object Manager.

 It is necessary to understand the concept of elements and transactions. In this research, elements and

transactions are defined as the following,

Definition 1. [10] An element 𝒆𝒑𝒒 is the 𝒒-th element of transaction 𝑻𝒑, where:

1. 𝒆𝒑𝒒 ⊆ {𝒓𝒑𝒒(𝒙), 𝒘𝒑𝒒(𝒙)|𝒙 ≔ object}

2. 𝑹𝒔𝒆𝒕(𝒆𝒑𝒒) ∩ 𝑾𝒔𝒆𝒕(𝒆𝒑𝒒) = ∅, 𝑹𝒔𝒆𝒕 ∶= readset, 𝑾𝒔𝒆𝒕 ≔ writeset

Several requests the system receives can be regarded as a collection of accesses. Without loss of

generality, the collection of accesses in the study is considered as elements. The 𝑞-th element of transaction

𝑇𝑝 is denoted as element 𝑒𝑝𝑞 . According to Definition 1 (1), the type of operation within an element can be

a read operation and/or a write operation, with 𝑥 being the object. Definition 1 (2) explains that read and

write operations on the same object cannot be in the same element. The readset is a set of objects to be read,

and the writeset is a set of objects to be written/updated.

Definition 2. [10] Transaction 𝑻𝒑 is partial order with ordering relation <𝒑, where:

1902 Jauhari, et al. EXTENDED SERIAL GRAPH-VALIDATION QUEUE SCHEME WITH LOCKING STRATEGY…

1. 𝑻𝒑 = {𝒆𝒑𝟏, 𝒆𝒑𝟐, … , 𝒆𝒑𝟑} ∪ {𝒂𝒑, 𝒄𝒑|𝒂𝒑: = abort, 𝒄𝒑: = commit};

2. 𝒂𝒑 ∈ 𝑻𝒑 only if 𝒄𝒑 ∉ 𝑻𝒑;

3. if 𝒕 is 𝒄𝒑 or 𝒂𝒑, for any 𝒆𝒑𝒒 in 𝑻𝒑, then 𝒆𝒑𝒒 <𝒑 𝒕;

4. if 𝒓𝒑𝒒(𝒙) ∈ 𝒆𝒑𝒒 and 𝒘𝒑𝒓(𝒙) ∈ 𝒆𝒑𝒓, then 𝒆𝒑𝒒 <𝒑 𝒆𝒑𝒓.

Definition 2 (1) indicates that the transaction contains elements and abort or commit operations.

Definition 2 (2) explains that if a transaction aborts, it will not commit, and vice versa. Definition 2 (3) states

that if operation t is aborted or commited, the ordering relationship includes all elements preceding operation

t in the transaction execution. Definition 2 (4) explains that if read and write are operations executed on the

same object, the ordering relationship defines the sequence of execution of corresponding elements.

2.2 Graph

As previously explained, the scheme modification focuses on the server-side validation algorithm,

which initially used a queue but now utilizes a graph. The server-side validation algorithm is based on a

directed graph, also known as a digraph. A directed graph or digraph has a definition similar to an undirected

graph, but its edges have directions from one vertex to another, meaning (𝑣1, 𝑣2) ≠ (𝑣2, 𝑣1) [11]. A path in

a digraph 𝐺 = (𝑉, 𝐸) is a sequence 𝑣1, 𝑣2, … , 𝑣𝑘 with [𝑣𝑖 , 𝑣𝑖+1] ∈ 𝐸 𝑓𝑜𝑟 1 ≤ 𝑖 < 𝑘 [12]. This path originates

from 𝑣1 and goes to 𝑣𝑘. In a digraph, if there is a cycle such that the first and last vertices are the same, this

condition is called cyclic [13]. A directed acyclic graph is a digraph that does not contain cycles.

Based on graph theory, the following definition can be formulated for this research:

Definition 3. Vertex is a collection of non-empty sets 𝑽 ≠ { } containing readset and/or writeset in a

transaction, such that 𝑽 = {𝑻𝒊,𝒋 | 𝑻𝒊,𝒋 = {𝑹𝒔𝒆𝒕𝒊,𝒋, 𝑾𝒔𝒆𝒕𝒊,𝒋} .

Vertex 𝑉(𝑇) is represented in the form of nodes as illustrated in Figure 2 below,

Figure 2. Vertex 𝑽(𝑻)

Definition 4. Edge is a connector between two vertices indicating the sequence of transaction execution.

Edge 𝐸 is represented in the form of directed lines as shown in Figure 3 below,

Figure 3. Edge 𝑬

Definition 5. A serial graph is a collection of sets of vertices and edges that have been inserted and represent

a queue of transactions, thus ensuring serial execution.

A simple serial graph can be depicted as Figure 4 below,

Figure 4. Example of serial graph

Figure 4 illustrates the sequence of transactions occurring as follows: transaction 𝑇11 → 𝑇21 → 𝑇31,

indicating that 𝑇11 precedes 𝑇21 and 𝑇31, and subsequently, 𝑇21 precedes 𝑇31.

2.3 Lock-Based Protocols

The lock mechanism facilitates concurrent access to a data item. Access to a data item is only permitted

if a lock is currently held on that item. Data items can be locked in two modes, either exclusive (X) mode or

shared mode (S) [14]. An exclusive-mode lock is assigned for transactions requiring reading and writing

 𝑇11 𝑇21 𝑇31

 𝑇𝑖𝑗

BAREKENG: J. Math. & App., vol. 18(3), pp. 1899- 1908, September, 2024. 1903

access to the data item. Conversely, a shared-mode lock is assigned for transactions that only need to read

from an item but not write to it. Transaction execution can only proceed after the requested lock is obtained

[15]. A transaction may be granted a lock on an item if the requested lock is compatible with the locks already

held on the item by other transactions. Multiple transactions can hold shared locks (S) on an item

simultaneously. However, if any transaction holds an exclusive lock (X) on the item, no other transaction

may hold any lock. In such a scenario, a lock cannot be granted, and the requesting transaction must wait

until all incompatible locks held by other transactions are released before the lock can be granted [16].

3. RESULTS AND DISCUSSION

3.1 Cache-Side Validation Algorithm

In the Extended SG-VQ scheme, the cache-side algorithm is referred to as the Validation Queue (VQ).

VQ serves as a tool for recording execution requests of elements. VQ consists of Read element, Commit

element, Validated element, Local Validated element, and Update Propagation element. Each Update

Propagation element represents the execution of an update transaction, containing 𝑅𝑠𝑒𝑡 and 𝑊𝑠𝑒𝑡

information within the element. When the Local Manager receives an Update Propagation message from the

server, the Read or Commit element is added to VQ, enabling the Local Manager to receive Read or Commit

requests from the local transaction.

Each transaction will be executed by sending a commit request to the Local Cache Manager. Upon

receiving the commit request, the Local Cache Manager will create a Commit element displayed in the VQ,

and then the transaction will be validated. If validation is successful and the transaction is read-only, all

transaction elements are merged into a Validated element. If the transaction is an update transaction, all

transaction elements are merged into a Local Validated element, after which the Local Cache Manager sends

a commit request message to the server. The Local Validated elements will become Validated if the server

response is positive; otherwise, the local elements will be discarded.

To validate a transaction, the Local Cache Manager utilizes a validation algorithm. Two elements,

namely element 𝑒𝑖𝑝 from transaction 𝑇𝑖 and element 𝑒𝑗𝑞 from transaction 𝑇𝑗, where 𝑖 ≠ 𝑗, are said to conflict

if they satisfy at least one of the following conditions [10]:

1. 𝑊𝑠𝑒𝑡(𝑒𝑖𝑝) ∩ 𝑊𝑠𝑒𝑡(𝑒𝑗𝑞) ≠ ∅;

2. 𝑊𝑠𝑒𝑡(𝑒𝑖𝑝) ∩ 𝑅𝑠𝑒𝑡(𝑒𝑗𝑞) ≠ ∅;

3. 𝑅𝑠𝑒𝑡(𝑒𝑖𝑝) ∩ 𝑊𝑠𝑒𝑡(𝑒𝑗𝑞) ≠ ∅.

Observe the following queue structure as shown on Figure 5,

Figure 5. Queue structure

𝐸1 is a collection of elements from other transactions between the elements 𝑒𝑖,0 and 𝑒𝑖,1. Based on

Figure 5, 𝐸1 may be empty. Furthermore, 𝐸2 is a collection of elements from other transactions between the

1904 Jauhari, et al. EXTENDED SERIAL GRAPH-VALIDATION QUEUE SCHEME WITH LOCKING STRATEGY…

elements 𝑒𝑖,1 and 𝑒𝑖,2, and 𝐸𝑗 between the elements 𝑒𝑖,𝑗−1 and 𝑒𝑖,𝑗 of transaction 𝑇𝑖 where 1 ≤ 𝑗 ≤ 𝑛. 𝐸𝑘 is

divided into two parts, 𝑀 and 𝑁, by the element 𝑒∗, such that 𝐸𝑘 = 𝑀; 𝑒∗; 𝑁, where 𝑀 and/or 𝑁 can be empty

sequences. Two conditions apply during validation:

1. Condition 1: An element or the combined elements 𝑒𝑖,0 ∪ 𝑒𝑖,1 ∪ … ∪ 𝑒𝑖,𝑗 does not conflict with any

element in the sequence 𝐸𝑗+1, for every 𝑗 = 0, 1, … , 𝑛 − 1.

2. Condition 2: The combination of elements 𝑒𝑖,0 ∪ 𝑒𝑖,1 ∪ … ∪ 𝑒𝑖,𝑗 do not conflict with any element

in the sequence 𝐸𝑗+1, for every 𝑗 = 0,1, … 𝑘 − 1, and every element in 𝑀 but the combined

elements conflict with the element 𝑒∗, for 𝑘 = 1, 2, … , 𝑛. Then, the element 𝑒𝑖,𝑛 or the combined

elements 𝑒𝑖,0 ∪ 𝑒𝑖,1 ∪ … ∪ 𝑒𝑖,𝑗 do not conflict with any element in the sequence 𝐸𝑗 , for every 𝑗 =

𝑛, 𝑛 − 1, … 𝑘 + 1, and the combined elements 𝑒𝑖,𝑛 ∪ 𝑒𝑖,𝑛−1 ∪ … ∪ 𝑒𝑖,𝑘−1 ∪ 𝑒𝑖,𝑘 do not conflict with

the element 𝑒∗ and every element in 𝑁.

In the Extended SG-VQ scheme, the cache-side validation algorithm is as follows:

1. The validation process is considered successful in a read-only transaction successful if the

transaction satisfies either condition 1 or condition 2.

2. The validation process is considered successful in an update transaction if the transaction satisfies

only condition 1.

3.2 Server-Side Validation Algorithm

Before performing the validation process, the server will receive a commit request message from the

cache manager. Each object has a unique sequential number called a cache version. The cache version is

constantly updated whenever an object is updated. When the server receives the commit request message, it

first checks the cache version carried by the transaction. Suppose the cache version carried matches the latest

version stored by the server. In that case, the process will proceed to the validation stage.

The server maintains a list containing the objects and the transactions holding locks on each object. In

this scheme, the object status is divided into LOCK and UNLOCK. If the object status is LOCK, a transaction

locks it, and other transactions cannot access it to update the object. If the object status is UNLOCK, any

transaction does not currently lock the object and can be accessed by anyone. The validation begins with

checking the object status to prevent multiple transactions from updating the same object simultaneously.

Suppose the object status is LOCK, and another transaction attempts to update the same object. In that case,

the last arriving transaction will be returned to its originated cache.

The next step is to insert transactions into the serial graph. The process of inserting a transaction into

the serial graph is adjusted based on the following conditions:

1. If 𝑅𝑠𝑒𝑡𝑖𝑗 ∩ 𝑊𝑠𝑒𝑡𝑘𝑙 ≠ { }, then transaction 𝑇𝑖𝑗 is inserted into the serial graph with the sequence

𝑇𝑖𝑗 → 𝑇𝑘𝑙. An edge exits from 𝑇𝑖𝑗 to 𝑇𝑘𝑙, indicating that 𝑇𝑘,𝑙 is processed after 𝑇𝑖𝑗;

2. If 𝑊𝑠𝑒𝑡𝑖𝑗 ∩ 𝑅𝑠𝑒𝑡𝑘𝑙 ≠ { }, then transaction 𝑇𝑖𝑗 is inserted into the serial graph with the sequence

𝑇𝑖𝑗 ← 𝑇𝑘𝑙. An edge enters from 𝑇𝑘𝑙 to 𝑇𝑖𝑗, indicating that 𝑇𝑖𝑗 is processed after 𝑇𝑘𝑙.

After transactions are inserted into the serial graph, a check for cycles in the sequence of the serial

graph is performed. The last arriving transaction is removed from the serial graph and aborted if a cycle is

detected. However, the transaction validation process is declared successful if no cycle is detected. Then, the

transactions are executed based on the sequence in the serial graph.

Upon passing validation, the values of objects in the object manager are updated, and the transaction

is removed from the serial graph, releasing the LOCK from the object. Subsequently, the server propagates

an update to all caches, storing the objects to update their values.

3.3 Hypothetical Transaction Execution on the Server Side

In this section, the hypothetical execution of transactions on the server side will be explained. The

initial condition in the serial graph is when transactions within the serial graph are being processed for

execution. When a transaction is executed on the server side, the system requires time to update the object

BAREKENG: J. Math. & App., vol. 18(3), pp. 1899- 1908, September, 2024. 1905

values in the database until the server sends an update propagation to every existing client cache. Once this

process is completed, the transaction is removed from the serial graph, and the commit process is finished.

1. Case 1

Figure 6. Initial state in the serial graph for case 1

Figure 6 shows initial state of the serial graph, where:

𝑇11 = {𝑊11(𝑥)}

𝑇21 = {𝑅21(𝑥), 𝑊21(𝑦)}

The server is currently validating transactions 𝑇11 and 𝑇21, which are in the serial graph. Then, a

validation request is sent by 𝑇31 = {𝑅31 (𝑦), 𝑊31 (𝑧)}. Initially, the cache version brought by 𝑇31 will be

checked by the Server. Assuming the cache version brought by 𝑇31 is valid. Then, the server checks the

locking status of objects in transactions 𝑇11 and 𝑇21, which are already in the serial graph. The object accessed

by transaction 𝑇31 is currently in an UNLOCK mode because the object in 𝑇11 or 𝑇21 differs from 𝑇31.

Therefore, transaction 𝑇31 is inserted into the serial graph, as shown in Figure 7.

Figure 7. Final state in the serial graph for case 1

The execution sequence in the serial graph becomes 𝑇31 → 𝑇21 → 𝑇11. Since there are no cycles in the

serial graph, the validation process is successful.

2. Case 2

Figure 8. Initial State in The Serial Graph for Case 2

Figure 8 shows initial state of the serial graph, where:

𝑇11 = {𝑊11(𝑥)}

𝑇21 = {𝑅21(𝑥). 𝑊21(𝑦)}

𝑇31 = {𝑅31(𝑦), 𝑊31(𝑧)}

Then, a validation request is sent by transaction 𝑇41 = {𝑊41 (𝑧)}. The cache version of 𝑇41 will be

checked by the server first. After ensuring its validity, the server checks the object locking. The object

accessed by 𝑇41 is in a LOCK mode because its lock is held by 𝑇31, causing 𝑇41 to fail the validation process

and be aborted.

3. Case 3

Figure 9. Initial State in The Serial Graph for Case 3

Figure 9 shows initial state of the serial graph, where:

𝑇31 = {𝑅31(𝑦), 𝑊31(𝑧)}

𝑇21 = {𝑅21(𝑥), 𝑊21(𝑦)}

𝑇21 𝑇11

𝑇21 𝑇11 𝑇31

𝑇21 𝑇11 𝑇31

𝑇31 𝑇21

1906 Jauhari, et al. EXTENDED SERIAL GRAPH-VALIDATION QUEUE SCHEME WITH LOCKING STRATEGY…

Then, a validation request is sent by transaction 𝑇51 = {𝑅51 (𝑧), 𝑊51 (𝑥)}. The Server will check the

cache version of 𝑇51. After ensuring its validity, the server checks the object locking. The object status in

transaction 𝑇51 is in an UNLOCK mode. Subsequently, transaction 𝑇51 is inserted into the serial graph with

the sequence 𝑇51 → 𝑇31 because 𝑅𝑠𝑒𝑡(𝑇51) ∩ 𝑊𝑠𝑒𝑡(𝑇31) ≠ { }, and 𝑇21 → 𝑇51 because 𝑅𝑠𝑒𝑡(𝑇21) ∩
𝑊𝑠𝑒𝑡(𝑇51) ≠ { }, resulting in the serial graph condition as shown in Figure 10.

Figure 10. Final State in The Serial Graph for Case 3

The execution sequence of transactions in the serial graph encounters an issue because there is a cycle,

resulting in transaction 𝑇51 failing the validation process. Consequently, transaction 𝑇51 is removed from the

serial graph and aborted.

4. CONCLUSIONS

Based on the research, a new scheme has been developed through modifications to the Validation

Queue (VQ) scheme. These modifications offer an alternative scheme for further development from the VQ

scheme. This scheme is called the Extended Serial Graph-Validation Queue (SG-VQ) scheme. The Extended

SG-VQ scheme utilizes a serial graph with a locking strategy as the validation algorithm on the server side.

It employs a validation queue as the validation algorithm on the cache side. Through a series of hypothetical

transaction scenarios across three cases, this study validates the effectiveness of the Extended SG-VQ,

demonstrating its capability to utilize serial graphs, resolve conflicts, and identify cyclic patterns. This

research can be advanced to the simulation stage to analyze the optimal environment for implementing the

proposed scheme. Furthermore, the scheme can be further developed by incorporating attributes that more

accurately reflect real-world conditions, such as implementating of prioritization mechanisms.

REFERENCES

[1] Q.-V. Dang and C.-L. Ignat, “Performance of real-time collaborative editors at large scale: user perspective,” in 2016 IFIP

Networking Conference and Workshops, pp. 548–553, May 17-19, 2016.

[2] X. Liu and J. Shen, “Research on the desktop sharing mechanism of online teaching system,” in 3rd International Conference
on Mechatronics and Industrial Informatics, pp. 790–793, Oct. 30-31, 2015.

[3] B. Ashadevi and P. Muthamil Selvi, “Google docs: an effective collaborative tool for graduates to perform academic

activities in the cloud,” IJDR, vol. 7, no. 8, pp. 14626–14633, August 2017.

[4] M. Härtwig and S. Götz, “Mobile modeling with real-time collaboration support,” Journal of Object Technology, vol. 21,
no. 3, pp. 1-15, July 2022.

[5] T. Connolly and C. Begg, Database Systems: A Practical Approach in Design, Implementation, and Management Database,

6th ed. Essex: Pearson Education, 2015, 99-100.

[6] M. Alkhazaleh, S. A. Aljunid, and N. Sabri, “A review of caching strategies and its categorizations in information centric
network,” JATIT, vol. 97, no. 19, pp. 4996–5011, October 2019.

[7] P. A. Bernstein, A. Fekete, H. Guo, R. Ramakrishnan, and P. Tamma, “Relaxed currency serializability for middle-tier

caching and replication,” in Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data pp.

599–610, Jun. 27-29, 2006.
[8] F. Bukhari and S. Shrivastava, “An efficient distributed concurrency control scheme for transactional systems with client-

side caching,” in Proceedings of the 14th IEEE International Conference on High Perforsmance Computing and

Communications, HPCC-2012 - 9th IEEE International Conference on Embedded Software and Systems, pp. 1074–1081,

Jun. 25-27, 2012.
[9] V. T. S. Shi and W. Perrizo, “A new method for concurrency control in centralized database systems,” in Proceedings of the

ISCA 17th International Conference Computers and Their Applications, pp. 184–187, Apr. 4-6, 2002.

[10] F. Bukhari, Maintaining Consistency in Client-Server Database Systems with Client-Side Caching. Doctoral [Dissertation].

Newcastle upon Tyne: Newcastle Univ, 2012. [Online]. Available: Newcastle University Theses.
[11] Y. Heryadi and I. Sonata, Dasar-Dasar Graph Machine Learning dan Implementasinya Menggunakan Bahasa Python.

Yogyakarta: GAVA MEDIA, 2022, 1-4.

𝑇51 𝑇31

𝑇21

BAREKENG: J. Math. & App., vol. 18(3), pp. 1899- 1908, September, 2024. 1907

[12] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in Database System. Addison-Wesley,

1987, 1-34.

[13] R. Diestel, Graph Theory, 5th ed. Berlin: Springer, 2017.
[14] Fathansyah, Basis Data, 3rd ed. Bandung: Informatika Bandung, 2018, 312-318.

[15] S. B. Gupta and A. Mittal, Introduction to Database Management System, 2nd ed. New Delhi: Laxmi Publications, 2017,

353.

[16] S. kanungo and morena rustom. D, “Analysis and comparison of concurrency control techniques,” IJARCCE, vol. 4, no. 3,
pp. 245–251, Mar. 2015.

1908 Jauhari, et al. EXTENDED SERIAL GRAPH-VALIDATION QUEUE SCHEME WITH LOCKING STRATEGY…

