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 ABSTRACT   

Article History: 
Ovarian cancer can be identified from microarray data using machine learning. Many 

studies only focus on improving the machine learning classification algorithms to achieve 

higher performance. The purpose of classification is not only to obtain high performance 
but also to seek new knowledge from the results. This research focuses on both. By using a 

hybrid Supervised Infinite Feature Selection (SIFS) method with Classification and 

Regression Tree (CART) or SIFS-CART, this research aims to predict ovarian cancer and 

identify potential genes for ovarian cancer cases. The data used is the OVA_ovary dataset. 
SIFS in the best SIFS-CART model reduced 10935 genes in the initial OVA_ovary dataset 

to 1000 genes. Then, CART was built with these 1000 genes. Based on the balanced 

accuracy (BA) metric for imbalanced microarray data, the best SIFS-CART model achieves 

85.7% BA in training and 83.2% in testing. The optimal CART in the best SIFS-CART model 
only needs four genes from 1000 selected genes to build it. Those genes are STAR, WT1, 

PEG3, and ASPN. Based on studies of several pieces of literature in the medical field, it can 

be concluded that STAR, WT1, and PEG3 play an important role in ovarian cancer cases. 

However, the relationship between ASPN and ovarian cancer in more detail has not been 
studied by medical researchers. 
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1. INTRODUCTION 

Ovarian cancer is the most dangerous cancer among various cancers that attack the female reproductive 

system [1]. In 2020, Harsono reported that only 20% of ovarian cancer was diagnosed at stage 1 (early) when 

the disease is limited to the ovaries. 90% of patients in the early stages respond well to existing therapy [2]. 

Therefore, a method that can detect ovarian cancer quickly and accurately is needed. 

Various types of cancer, including ovarian cancer, can be identified from microarray data, which is a 

high-dimensional data [3]. Machine learning algorithms can identify cancer from microarray data relatively 

quickly. One way to identify cancer from microarray data is by classifying it. 

Several research studies have used machine learning for cancer classification from microarray data 

[4]–[9]. Those researchers only focus on improving the machine learning algorithms to achieve higher 

performance based on the evaluation metrics used. The purpose of classification is not only to obtain high 

performance but also to seek new knowledge from the classification results [10]. This research focuses on 

both, building model that can achieve higher performance and also seeks for the knowledge from the results. 

Research by Rochayani et al. in 2020 [3] identified genes associated with breast cancer using hybrid 

machine learning algorithms. The algorithm used is a combination of Least Absolute Shrinkage and Selection 

Operator (LASSO) as feature selection and Classification and Regression Tree (CART) as a classifier called 

LASSO-CART. In microarray data, the features are genes. The set of genes that LASSO selected is then used 

for the classification process with CART. Rochayani et al. also show the optimal CART interpretation. Based 

on several related studies in the medical field about breast cancer, the selected genes in optimal CART 

interpretation are indeed closely related to breast cancer growth. 

In 2021, Roffo et al. [11] proposed an Infinite Feature Selection (IFS) feature selection method. IFS is 

a graph-based feature selection method. In that research, IFS was tested on 11 datasets, nine high-dimensional 

data. The results show that IFS performs better than LASSO. 

Considering the performance of IFS in [11] and the superiority of CART interpretation in [3], this 

study uses a hybrid method of IFS and CART. IFS can work in two scenarios, namely unsupervised and 

supervised. This research uses a supervised scenario, which is now written as SIFS. SIFS was chosen because 

research [12] in 2022, which is still relatively new, concluded that using SIFS can increase the accuracy of 

various classifiers in cases of heart disease detection. 

Hopefully, this research can be a reference for using the SIFS-CART method for ovarian cancer 

classification cases. In addition, it is hoped that the interpretation of optimal CART in this study can give 

insights into important and potential genes in ovarian cancer. 

 

2. RESEARCH METHODS 

The data used in this research is the OVA_ovary dataset, an open-source microarray data available on 

the OpenML website. The OVA_ovary dataset file is in the ".arff" or Attribute-Relation File Format. The file 

consists of metadata and a dataset. The available dataset consists of 10937 columns and 1545 observations 

(rows). These columns include 1 ID_REF column, 10935 gene columns, and 1 Tissue column (target column) 

according to Table 1. The "Other" value in the target column indicates no ovarian cancer tissue sample, and 

"Ovary" indicates an ovarian cancer tissue sample. The OVA ovary dataset is imbalanced because the 'Ovary' 

class only contains 198 samples while the 'Other' class has 1347 samples. 

Table 1. OVA_ovary dataset 

ID_REF 1007_s_at 121_at … AFFX-ThrX-M_at Tissue 

117704 3196.7 3844.8 … 1094.5 Other 
301664 3532.6 397.9 … 612.1 Other 
203673 5109.7 563.7 … 1578.4 Other 

 ⋮  ⋮ ⋮ ⋮  ⋮ ⋮ 
277715 7334.8 660.9 … 588 Ovary 
179866 4225.5 1125.5 … 1306.2 Ovary 

Data source: https://www.openml.org/search?type=data&status=active&id=1166 

 

https://www.openml.org/search?type=data&status=active&id=1166
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The research steps generally consist of four stages: data preprocessing, gene selection, classification, 

and evaluation and interpretation. This research uses Python as the programming language in the data 

processing process. The software used is JupyterLab version 3.6.3. The hardware used is a laptop with 13th-

generation Intel Core i7 processor specifications and dual-channel 8GB RAM (or 16GB RAM). The research 

steps can be seen in Figure 1. 

 

 
Figure 1. The research steps 

2.1 Data Preprocessing 

OVA_ovary dataset does not have missing values. Data preprocessing conducted in this research 
included data extraction, deleting irrelevant columns (ID_REF column), adjusting data types, data scaling 
with min-max normalization [13], and data splitting to training data and testing data using 80%:20% 
proportion [14]. The data preprocessing step produces two groups of data, namely training data and testing 
data. 

2.2 Gene Selection 

Infinite Feature Selection, abbreviated as Inf-FS or IFS, is a graph-based feature selection method 

proposed by Roffo et al. A complete explanation of IFS can be seen in [11]. IFS can work in two scenarios, 

namely unsupervised or supervised. In this research, we use a supervised scenario (SIFS). The SIFS steps are 

summarized below [11]: 

1. The first stage of SIFS is building undirected fully-connected weighted graph 𝐺 = (𝑉, 𝐸). On graph 𝐺, 

the set of vertices 𝑉 = {�⃗�1, �⃗�2, �⃗�3, … , �⃗�𝑛} represents a set of feature distributions 𝐹 = {𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑛} 

and the set of edges 𝐸 modeling the relationship between pairs of nodes (in this case the relationship 

between distributions).  

2. The second stage is making weighted adjacency matrix. Let 𝐴 be matrix with elements 𝐴(𝑖, 𝑗) where 

1 ≤ 𝑖, 𝑗 ≤ 𝑛. Matrix 𝐴 is the weighted adjacency matrix of the graph 𝐺 defined by a function 𝜑𝑆 as in 

Equation (1) where 0 ≤ 𝛼𝑘 ≤ 1, ∑ 𝑎𝑘𝑘 = 1. 

 𝜑𝑆(�⃗�𝑖 , �⃗�𝑗) = 𝐴(𝑖, 𝑗) = (𝛼1ℎ𝑖 + 𝛼2𝑚𝑖 + 𝛼3𝜎𝑖)(𝛼1ℎ𝑗 + 𝛼2𝑚𝑗 + 𝛼3𝜎𝑗). (1) 

The function  𝜑𝑆 has positive real value that defines the weight in each edge. The 𝜑𝑆 function is formed 

from three factors, including Fisher criterion (ℎ𝑖), normalized mutual information (𝑚𝑖), and normalized 

standard deviation (𝜎𝑖).  
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3. Matrix 𝐴 is then used to calculate partial scores matrix (�̌�) from the feature set using Equation (2). This 

formula utilizes the concepts of regularization and eigenvalues. 

 �̌� = (𝐼 − 𝑟𝐴)−1 − 𝐼, (2) 

where 𝐼 stands for identity matrix and 𝑟 is real-valued regularization factor. This research use 𝑟 =
0.9

𝜌(𝐴)
, 

where 𝜌(𝐴) is the largest eigenvalue (spectral radius) of 𝐴. 

4. The partial score from step 3 is used to calculate the final score vector (�̌�) using Equation (3).  

 �̌� = �̌�𝒆, (3) 

where 𝒆 is a 1D vector of ones. The purpose of SIFS is to provide a score of importance for each feature 

as a function of the importance of its neighboring features. The most discriminating and relevant features 

will get a higher rank.  

In this research, we use SIFS as a gene selection method on the OVA_ovary dataset. All concepts of 

SIFS used are the same as the original SIFS method in [11], except for counting mutual information in step 

2. Mutual information in this research was obtained using the Nearest Neighbor Method in [15], applying the 

‘mutual_info_classif’ package in Python. 

SIFS requires 3 parameters, namely 𝛼1, 𝛼2, and 𝛼3. Those parameters optimized using k-fold cross 

validation [16] with 𝑘 = 5. On the other hand, SIFS does not select genes directly but gives them a score of 

importance based on the weights obtained. Thus, the number of the selected features (or selected genes) needs 

to be specified manually. This research tested six selected gene sizes, namely 10, 50, 100, 500, 1000, and 

5000 highest-ranked genes. 

2.3 Classification 

Decision trees are considered as data mining method. It can be applied in classification and regression 

tasks [17]. There are various decision tree algorithms, such as Iterative Dichotomizer 3 (ID3), C4.5, and 

CART. This research uses CART as a classifier after the gene selection step because the literature [18] 

explained that CART is superior to ID3 and C4.5 since it can handle outlier data. 

CART uses Gini impurity as splitting criterion to create branches of the tree. Let 𝐷 be a node, 𝐾 =
1,2, … , 𝑘 represents the number of classes, and 𝑝𝐾 is the proportion of class 𝐾 observations in node 𝐷. The 

Gini impurity of 𝐷 denoted 𝐺𝑖𝑛𝑖(𝐷) is expressed by Equation (4). 

 

𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ 𝑝𝑘
2

𝐾

𝑘=1

. 
 

(4) 

The branching process continues until all the leaves are formed, resulting in the maximum tree. The 

form of the maximum tree is often too complex. The maximum tree needs to be pruned to prevent overfitting. 

Overfitting occurs when a model performs very well in training but poorly in testing [19]. The final CART 

obtained is called the optimal CART. 

This research created CART with the 'DecisionTreeClassifier' package from the 'sklearn.tree' library 

by setting the parameters criterion = 'gini' and splitter = 'best'. The pruning parameter, which in Python is 

called ccp_alpha, is searched with 'cost_complexity_pruning_path' in the 'DecisionTreeClassifier'. It prunes 

the tree using a minimum cost-complexity pruning technique [20]. The optimal CART is selected based on 

the evaluation metric used. 

2.4 Evaluation and Interpretation 

The classifier determines the class of each data sample. By the end of the classification process, each 

sample is categorized into one of four cases [21]. The four cases are summarized in the confusion matrix 

displayed in Table 2. In the confusion matrix, 𝑇𝑃 and 𝑇𝑁 represent data that has been classified correctly or 

in other words corresponds to the original data, while 𝐹𝑃 and 𝐹𝑁 represent data that has not been classified 

correctly. The values of 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 used to calculate evaluation metrics. 
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Table 2. Confusion matrix 

 Predicted Positive Predicted Negative 

Actual Positive True Positive (TP) False Negative (FN) 

Actual Negative False Positive (FP) True Negative (TN) 

Some research that classifies cancer from microarray data ignores the problem of imbalanced data. 

Some studies, such as [14], [22], and [23]. Those studies used accuracy as a measuring tool. In fact, accuracy 

can produce overly optimistic results on imbalanced data [19]. In other words, accuracy is sensitive to 

imbalanced data.  

There is another evaluation metric called balanced accuracy (BA). BA is a tool for evaluating 

classification results insensitive to imbalanced class distribution [24]. Sapitri et al. [25] have shown that BA 

can work more fairly than accurately in imbalanced data classification cases. Since OVA_ovary is considered 

imbalanced data, this research uses BA as an evaluation metric. BA is defined in Equation (5) [26]. 

 

𝐵𝐴 =
1

2
(

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) 

 

(5) 

The optimal CART is chosen based on the BA value in every pruning iteration of each selected gene 

size (10, 50, 100, 500, 1000, and 5000). The optimal CART criteria in this research are the same as in [25] 

which chooses CART, which produces the second lowest difference in BA values at the training and testing 

stage. Those CARTs met the three criteria: produce a reasonably high BA value at the testing stage, have a 

low difference in BA scores at the training and testing stages, and the CART interpretation is not very simple 

(it does not consist of only the root node, to prevent underfitting). From the optimal CARTs that used different 

selected gene sizes, this research selected one CART that has the highest BA value as the best SIFS-CART 

model. 

The final stage is to make a CART interpretation. CART interpretations are made from optimal CART 

of all selected gene sizes (10, 50, 100, 500, 1000, and 5000), so there are 6 CARTs. Furthermore, the genes 

selected to build the best SIFS-CART model were further dissected by literature studies of some researchers 

in medical fields related to ovarian cancer. 

 

 

3. RESULTS AND DISCUSSION 

After going through the data preprocessing stage, the OVA_ovary dataset has a value in [0, 1]. The 

outputs in this stage are training data and testing data. There are 1236 rows in training data and 309 rows in 

testing data. The training data is then used to determine the optimal SIFS parameters using 5-fold cross 

validation. 

The 5-fold cross-validation technique divides the training data into five folds. The five folds were 

processed in five iterations. In each iteration, one-fold acts as testing data, and the rest is used as training 

data. Using 5-fold cross-validation, we obtained the optimal SIFS parameter values: 𝛼1 = 0.45, 𝛼2 = 0.1, and 

𝛼3 = 0.45. Those parameters determine the weights and rank of genes in the OVA_ovary dataset. Runtime 

of SIFS as gene selection is 628.39 seconds or around 10 minutes. 

SIFS, which uses optimal parameters, reduces data dimension. The number of columns in the original 

data is 10935 gene columns plus one target column (Tissue). The gene columns were reduced based on the 

selected gene sizes tested. This research tested six selected gene sizes, namely 10, 50, 100, 500, 1000, and 

5000. The changing of data dimensions is listed Table 3. The number of columns in reduced data equals the 

number of selected genes used plus one target column. 

Table 3. The Dimensions of data in each SIFS-CART model 

The number of 

selected genes used 

Training data dimension Testing data dimension 

Columns Rows Columns Rows 

10 11 1236 11 309 
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The number of 

selected genes used 

Training data dimension Testing data dimension 

Columns Rows Columns Rows 

50 51 1236 51 309 

100 101 1236 101 309 

500 501 1236 501 309 

1000 1001 1236 1001 309 

5000 5001 1236 5001 309 

The new training and testing data (reduced data) is used in the classification process with CART. After 

optimizing CART with minimum cost-complexity pruning and using optimal criterion in [25], we got 

ccp_alpha results and computing time as in Table 4.  

Table 4 shows that the number of genes used is directly proportional to the computational time required 

for the classifier CART. The more genes used, the longer the computing time needed for CART training and 

testing. Furthermore, the optimal ccp_alpha size required for each gene size varies. This is because 

differences in the genes used will form different maximum CART. The BA values obtained are summarized 

in Figure 2. 

Table 4. Cost-Complexity parameter and runtimes of CART in SIFS-CART 

The number of 

selected genes 

The optimal value of 

ccp_alpha  

Runtime (s) 

Training Testing 

10 0.004644897 0.062249 0.013062 

50 0.006490471 0.262553 0.010346 

100 0.00730178 0.443611 0.010645 

500 0.013897171 3.101056 0.012987 

1000 0.005779011 7.096078 0.019628 

5000 0.034140344 35.18662 0.049774 

 

 
Figure 2. Comparison of BA from different selected genes  

In Figure 2, BA values in the training and testing process are volatile. However, CART, which uses 

5000 selected gene sizes, apparently only produces more excellent BA than 1000 selected gene sizes. It may 

indicate that in the group of 5000 genes, many genes are less relevant to ovarian cancer. Considering that BA 

is not sensitive to imbalanced data, information can be obtained that the SIFS algorithm in calculating the 
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weights and ranking of gene features by SIFS still has the opportunity to investigate. This is because, in 

Figure 2, the model with 50 genes has a much lower BA than 10 and 100 genes. 

Based on BA values, CART, which uses 1000 selected genes, was chosen as the best model because it 

achieves the highest BA results in the testing process. The BA in the training process is also relatively high 

compared to the others. The best SIFS-CART model for ovarian cancer classification from OVA_ovary used 

1000 selected genes and achieved 85.7% BA in training and 83.2% in testing. The classification results are 

listed in Table 5. 

Table 5. The classification results of best SIFS-CART model 

Stage TP TN FP FN 

Training 116 1067 8 45 

Testing 25 269 3 12 

It obtained the best SIFS-CART model containing 1000 genes. In other words, SIFS selected 1000 out 

of 10935 genes for 1545 samples. It indicates that after going through the gene selection stage, the dataset 

(including the target column) has dimensions of 1001 columns and 1545 rows. The number of columns now 

is lower than the number of rows. It means that the OVA_ovary dataset has been successfully reduced to no 

longer have a high-dimensional form. 

The final step is interpreting. The visualization of the optimal CARTs is shown in Figure 3. The first 

line at each non-leaf node (node with branches) in Figure 3 contains the splitting criteria for creating tree 

branches. The first word refers to the name of the gene column. The word "gini" refers to the Gini impurity 

value at that node. "Samples" indicates the number of samples at that node. The first value in "value" states 

the number of 'Other' class samples at that node, and the second value is the number of 'Ovary' class samples 

at that node. Furthermore, "class" indicates the dominant class at that node. The more dominant the 'Other' 

class, the more orange the node color. On the other hand, the more dominant the 'Ovary' class, the bluer the 

node color. 

 

       (a)                   (b)  

  

                                                   (c)                     (d)  
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                                                   (e)                          (f)  

Figure 3. Optimal CART in SIFS-CART interpretations that using: 

(a) 10 genes, (b) 50 genes, (c) 100 genes, (d) 500 genes, (e) 1000 genes, and (f) 5000 genes 

The selected optimal ccp_alpha values successfully make the optimal CARTs in Figure 3 look simple. 

Only a maximum of 6 genes are needed to create each tree. The best model, which uses 1000 genes, only 

requires four genes. Those genes are listed in Table 6. The information in Table 6 obtained by inputting the 

gene column name (Probe ID) from CARTs to an annotation genes website named BioGPS which was 

initiated by Wu et al. on 2009. After that, we searched some literature in Google and Google Scholar using 

keywords built from the probe ID, gene symbol, gene name, and word ‘cancer’.  

Table 6. Important genes in ovarian cancer based on the results of best SIFS-CART model 

Probe ID Gene Symbol Gene Name 

204548_at STAR Steroidogenic acute regulatory protein 

206067_s_at WT1 Wilms tumor 1 

209242_at PEG3 Paternally expressed gene 3  

219087_at ASPN Asporin  

Data source: BioGPS (http://biogps.org/#goto=welcome) 

Based on the literature study, we got some information about gene interpretations. In [27], it was 

explained that STAR predominantly regulates steroid synthesis. Steroid hormones are a large group of 

regulatory molecules produced in steroidogenic cells in various organs, including the ovaries. Estrogen is a 

steroid hormone. It is known that estrogen plays an important role in cancer cases, for example, endometrial, 

breast, and ovarian cancer.  

A study [28] concluded that high WT1 expression levels correlated with aggressive clinical features in 

ovarian cancer. These results are supported by research [29] which found that WT1 expression levels can 

help doctors predict how aggressive a certain type of ovarian cancer, called high-grade serous ovarian 

carcinoma, will be. 

PEG3 dysfunction commonly occurs in various types of cancer [30]. Decreased PEG3 expression levels 

have been detected in 18 cancer types [31]. In addition, PEG3 belongs to a group of genes that frequently 

change their activity due to epigenetic changes in the context of ovarian cancer [32]. 

ASPN is one of the genes that may represent a new prognostic biomarker for gastric cancer [33]. 

Increased ASPN expression is associated with immune infiltration in endometriosis. ASPN can be used as a 

diagnostic biomarker and a potential immunotherapy target in endometriosis [34]. On the other hand, the 

association of ASPN with ovarian cancer specifically still has not been studied. This research found that 

ASPN is one of the candidate genes in the optimal CART. Thus, research in the medical field related to 

ovarian cancer can consider ASPN for further research. 

Based on the literature study above, it can be concluded that STAR, WT1, and PEG3 do play a role in 

ovarian cancer cases. The results of this study support this information because STAR, WT1, and PEG3 are 

the top three selected genes used in the best optimal CART interpretation, namely SIFS-CART, which uses 

http://biogps.org/#goto=welcome
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1000 chosen genes. The results of this research also support previous research by Sa’adah et al. [14] which 

also used the OVA_ovary dataset. Research [14] using LASSO-CART also concluded that STAR and WT1 

are ovarian cancer biomarkers because they are the top two genes on their optimal CART. However, since 

Sa’adah et al. [14] use different evaluation metrics (accuracy) and different data scaling methods (z-score 

normalization) and do not mention the TP, TN, FP, and FN results, the result on the best SIFS-CART model 

in this research cannot be compared. 

 

4. CONCLUSIONS 

Based on the findings gathered from the research, it can be inferred that: 

a) The results of gene selection using SIFS succeeded in reducing the OVA_ovary dataset from 10935 gene 

columns to 1000 gene columns. 

b) The best SIFS-CART model for ovarian cancer classification from OVA_ovary used 1000 genes. It 

achieves 85.7% BA in training and 83.2% BA in testing. 

c) Optimal CART in the best SIFS-CART model only needs four genes to build it. Those genes are STAR, 

WT1, PEG3, and ASPN. Based on this literature study, STAR, WT1, and PEG3 play a role in ovarian 

cancer cases. However, the relationship between ASPN and ovarian cancer has not been studied by 

medical researchers.  

Future research can analyze or fix the SIFS algorithm based on balanced accuracy to ensure it produces 

a more relatable trend. Another choice is testing another optimization algorithm to optimize SIFS parameters. 

Thus, research in the medical field related to ovarian cancer can consider ASPN for further research. 
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