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ABSTRACT 

Article History: 
In an era where information flow is moving at a rapid pace, image data processing is 

becoming increasingly important as technology advances, including in healthcare. 

Convolutional Neural Network (CNN) has been a common approach in image 

classification, but the larger the volume of data and the complexity of the task, the more 
expensive the computational cost of CNN. With the rapid growth in the amount of image 

data, efficiency in data processing is becoming increasingly important. In this study, the 

performance of neural network models using the convolution layer and Fourier transform 

layer in medical image data classification was compared. The results show that models with 
a Fourier transform layer tend to provide higher accuracy and better Area Under Curve 

(AUC) compared to models using a convolution layer. In addition, the model with the 

Fourier transform layer also shows faster execution time per epoch, which indicates 

efficiency in data processing. However, the convolution layer has an advantage in terms of 
model size, although it is not significantly different from the Fourier transform layer. In 

conclusion, the Fourier transform layer has an advantage in the classification of medical 

image data. 
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1. INTRODUCTION 

The world is experiencing rapid development in various sectors, including the digital world, which is 

full of fast-moving information flows. Information that can be interpreted as structured data is spread through 

various mediums, such as spoken language, newspapers, and videos [1]. Over the past few decades, 

technological limitations have only allowed tabular data processing. With the advancement of existing 

technologies, managing and analyzing complex data, including image or photo data, has been made possible. 

Image processing has evolved, and the first digital photograph was created in 1957 by Russell Kirsch [2]. 

The growing importance of image data processing can be seen because almost everyone worldwide 

can now generate data in photographs. There are various methods to process images, one of which is through 

classification, an attempt to group images based on certain criteria. The use of neural networks has been a 

rapidly growing method in handling this task, as seen in the research by Ehtisham et al. [3], who used CNN 

to identify defects in wood structures. Although CNNs are effective in extracting features from images, the 

increase in global data volume makes processing using CNNs computationally expensive [4]. 

One solution to this challenge is using the Fourier transform, which continues to evolve today. The 

Fourier transform is a mathematical method that changes the representation of a function or object from the 

spatial or time domain to the frequency domain. This process is widely used in various fields, including digital 

image processing [5]. In this context, the method in question is the FFT (Fast Fourier Transform), a 

development of the DFT (Discrete Fourier Transform), often used in signal and image processing. In image 

processing, the Fourier transform helps extract important information from an image by transforming it into 

the frequency domain, which can then be restored to its original form. 

For example, the Fourier Transform, specifically the Fast Fourier Transform (FFT), was initially 

applied by Minami et al. [6] to distinguish potentially life-threatening heartbeat rhythms through 

electrocardiogram (ECG) signals. This method proved more effective than previous approaches due to its 

lighter computation. In addition, other studies use different approaches. Tile-based Fast Fourier Transform 

(tFFT), a neural network model, improves the efficiency of FFT-based convolution in the CNN layer, which 

shows a significant improvement in convolution operations [7]. In addition, Vasilache et al. [8] assessed the 

effectiveness of CNN training using the latest NVIDIA GPU (Graphics Processing Unit). They introduced a 

new approach in implementing Convolution Fast Fourier Transform (cuFFT), which provides 1.5 to 5 times 

faster speed. 

In the context of image classification, a recent approach by Zak et al. [9] introduced a Fourier transform 

layer as an alternative to the convolution layer in CNNs. This component aims to speed up the image 

classification process without sacrificing accuracy, offering a promising solution to reduce the reliance on 

powerful GPUs during training. With encouraging results, the model using the Fourier transform layer 

achieved almost the same accuracy as the conventional model while reducing the training time by at least 

27% when using a standard Central Processing Unit (CPU). 

Based on the things mentioned above, this study compares the performance efficiency of neural 

network models with the convolution and Fourier transform layers, as discussed in the journal by Zak et al. 

[9] in processing several image data. The data used in this study is image data in the health sector. The reason 

for selecting this data is the importance of efficiency in image data processing, where processing speed also 

plays an important role in addition to classification accuracy. The selection of this data is considered relevant 

in society, and the comparison results are expected to help determine which method is more effective in 

overcoming the complexity of image data processing in classification tasks. 

 

2. RESEARCH METHODS 

The research method used in this study is divided into 5 sections. Section 2.1 explains the theoretical 

basis of the analysis performed. Section 2.2 describes in detail the dataset used. Furthermore, the model 

configuration will be explained in detail in section 2.3. Section 2.4 describes the various parameters used in 

the training process. The last section, section 2.5, contains the approach used in comparing the convolution 

layer and Fourier transform layer. 
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2.1 Theoretical Analysis 

Convolutional Neural Network (CNN) is a type of deep learning model used to process data that has 

grid patterns, such as images [10]. In research written by Hubel and Wiesel [11] , the CNN model was inspired 

by the organization of the animal visual cortex. In addition, this model is designed to automatically and 

adaptively learn spatial features, ranging from low-level to high-level patterns. The primary objective of CNN 

is to develop a method that decreases the overall parameter count while constructing a neural network that is 

more intricate with fewer parameters [12]. The convolution layer is the primary component of the CNN 

architecture in charge of feature extraction, which usually consists of a combination of linear and non-linear 

operations, namely convolution operations and activation functions [13]. Figure 5 shows one example of a 

CNN taken from Alzubaidi's research, which illustrates the general structure of CNN architecture, consisting 

of three fundamental layers: convolution layer, pooling layer, and fully connected layer [4]. 

 

 
Figure 1. Example of CNN Architecture 

Nwankpa et al. stated that the activation function is utilized in neural networks to compute the weighted 

sum of input and bias, which decides whether a neuron is activated [14]. This function analyzes the given 

data and generates an output for the neural network, including the parameters found in the data. Nair and 

Hinton introduced the Rectified Linear Unit (ReLU) as an activation function, gaining widespread popularity 

in deep learning [15]. LeCun et al. reported that ReLU speeds up model learning in their study [16]. 

Furthermore, according to a journal authored by Ramachandran et al., ReLU has emerged as a highly effective 

and widely used activation function [17]. ReLU is a nearly linear function, so it retains the characteristics of 

linear models, which allows it to be easily optimized using the gradient descent technique [18]. Equation (1) 

defines the ReLU activation function. 

𝑓(𝑥) = 𝑚𝑎𝑥(0;  𝑥) = {
𝑥,   𝑖𝑓 𝑥 ≥ 0
0,   𝑖𝑓 𝑥 < 0

(1) 

Through computation, the ReLU activation function results in a value of 0 when given a negative input 

and generates a positive value matching the input when given a positive input. Es-Sabery et al. stated that the 

ReLU function has various benefits, including its capacity to address the issue of instability in gradient value 

changes and quicker convergence because of its straightforward formula [12]. 

Fast Fourier Transform (FFT) is an algorithm invented by James W. Cooley and John W. Tukey [19]. 

This algorithm performs Discrete Fourier Transform (DFT) operations more quickly and efficiently. DFT 

itself is a method to analyze signals in the frequency domain. Time complexity refers to how efficient or how 

much time an algorithm takes to complete its task, depending on the size of its input. Compared to the DFT, 

which has a time complexity of 𝑂(𝑛2), which means that the time required by the algorithm increases 

quadratically as the input size increases, the FFT update has a time complexity of 𝑂(𝑛 𝑙𝑜𝑔(𝑛)). This means 

that the FFT algorithm is more efficient as its execution time increases logarithmically as the input size 

increases, making it more suitable for large data [20]. In mathematics, the Fourier transform and inverse 

Fourier transform can be defined as Equation (2) and Equation (3), respectively [21]. 

𝐹(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡
∞

−∞

(2) 

and 

𝑓(𝑡) =
1

2𝜋
∫ 𝐹(𝜔)𝑒𝑖𝜔𝑡

∞

−∞

(3) 
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where 𝐹(𝜔) represents the function in the frequency domain while 𝑓(𝑡) represents the function in the time 

domain. The variable 𝜔 denotes frequency in radians per second and 𝑡 denotes the time variable. 

The Fourier transform layer is an adaptation of the Fourier transform technique into a neural network 

layer that utilizes the Fast Fourier Transform (FFT) on the input data [9]. After the FFT process, the real part 

of the transform is multiplied by the weight of the layer, which is a multiplication kernel for the entire real 

part of the Fourier transform. Thus, only two operations, FFT and multiplication, are required in the training 

process. FFT is known as an optimally efficient calculation tool. 

2.2 Data Description 

This study used three publicly available health datasets on the kaggle.com website: Breast Cancer, 

Lymphoma, and SiPaKMeD. The Breast Cancer data consists of images of breast cancer cells with 

dimensions (700 × 460 × 3) taken from 82 patients [22]. The image data type is Portable Network Graphics 

(PNG). This data includes two classes representing different breast tumor types, such as benign and 

malignant. The total number of images in this data is 7909. The second dataset, Lymphoma Data, was created 

by Orlov et al. [23] and contains images of malignant lymph node cancer cells. It includes three classes: 

chronic lymphocytic leukemia, follicular lymphoma, and mantle cell lymphoma. This data consists of 374 

images, and the image data type is Tagged Image File Format (TIF). Meanwhile, the last data is SiPaKMeD 

data, created by Plissiti et al. [24], focusing on images of cervical cancer disease cells. Consisting of five 

classes, this data includes cell types such as superficial-intermediate, parabasal, koilocytotic, dyskeratotic, 

and metaplastic, with 4,049 images with bitmap data type (BMP). All data was placed in local storage, and 

during the processing process, there was no change in the type of image that was directly resized and 

converted to numbers. 

The data was originally divided into training and testing only, or training, validation, and testing will 

be combined in the data preparation stage. Furthermore, the dataset will be partitioned again with a 

predetermined proportion of 80% for training data, 10% for validation data, and 10% for testing data. This 

approach is applied to overcome variations in the initial partitioning of data that may only consist of two 

classes: training data and testing data. The main objective is to ensure that the entire dataset follows the same 

configuration, creating a balanced and objective basis for the model training and testing process. 

2.3 Model Configuration 

The method used in this research's model configuration adopts the neural network architecture 

configuration described in the journal Zak et al. [9]. The development of the neural network model focuses 

on two main layers, namely the convolution layer and Fourier transform layer, which is then further divided 

into Convolution Small Kernel (CSK), Convolution Large Kernel (CLK), Fourier Model (FM), and Inverse 

Fourier Model (iFM). CSK uses a convolution layer with the same parameters as the Fourier transform layer. 

CLK is a variation that uses an overall number of parameters equivalent to the Fourier Model (FM). FM is a 

benchmark with the Fourier transform layer, while iFM introduces inverse properties to the Fourier transform 

layer. The overall architecture involves input layers, hidden layers, and fully connected layers, with hidden 

layers being either convolution layers or Fourier transform layers and fully connected layers involving 

flattened and dense layers. 

2.4 Model Training 

The architecture model is designed and organized based on several predefined rules to perform the 

training process. Training is carried out up to 100 epochs by applying callbacks based on the validation 

accuracy value and a patience level of 4. The batch size used is 8, and the loss function used is categorical 

cross-entropy, which is optimized using the Adam optimizer. In the Fourier transform layer and the 

convolution layer, the activation function is ReLU, while in the last output layer, the activation function used 

is softmax. Evaluation of the training results includes monitoring the loss value, accuracy, validation loss, 

and validation accuracy, as well as measuring the time taken by the model during the training process. It 

should be noted that the neural network model training process used in this research uses GPU. 

After the training stage, the model parameters are stored, and then the stored parameters are called to 

complete the prediction process on the test data. In this study, repetition was performed 20 times for each 

model variation.  The computing resources used in this study involve a 12th-generation Intel(R) Core(TM) 
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i9-12900K processor with 24 CPUs, operating at a speed of approximately 3.2 GHz. These resources are 

supported by 64 GB of RAM and an RTX 3060 Ti GPU. This research also uses Python version 3.12 and 

Tensorflow version 2.14.0 and operates on the Windows 11 platform. 

2.5 Model Evaluation 

Several metrics are used to compare and determine the better model in the model evaluation process. 

Grandini et al. explain that the confusion matrix is a table used to describe the performance of a classification 

model by comparing the actual (correct) classification and the classification predicted by the model [25]. 

Table 1 is an example of a multiclass confusion matrix. 

Table 1. Confusion Matrix Multiclass 

 
Prediction 

A B C 

Actual 

A 𝑇𝑃𝐴 𝐸𝐴𝐵 𝐸𝐴𝐶  

B 𝐸𝐵𝐴 𝑇𝑃𝐵 𝐸𝐵𝐶  

C 𝐸𝐶𝐴 𝐸𝐶𝐵  𝑇𝑃𝐶 

 

According to Tharwat [26], in Table 1, the grey diagonal represents correct predictions, while the red 

diagonal represents incorrect predictions. True Positive (TP) is where the actual and predicted values must 

be identical. False Negative (FN) is the sum of values from the same row except the TP value. False Positive 

(FP) is the sum of values from the same column except the TP value. True Negative (TN) is the sum of values 

from all columns and rows except the class's calculated value. In addition, error (E) is a symbol that describes 

the number of prediction errors. Accuracy is one of the key metrics that measure the extent to which a model 

can provide correct predictions. The higher the accuracy value, the better the performance of the model. 

According to Tharwat [26], accuracy measures the ratio between the number of samples successfully 

classified correctly and the overall number of samples, providing an overall picture of the model's success in 

predicting classifications across data. The formula for calculating accuracy in multi-class classification is 

Equation (4): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃𝐴 + 𝑇𝑃𝐵 + 𝑇𝑃𝐶

𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎
× 100% (4) 

where 𝑇𝑃𝐴, 𝑇𝑃𝐵, and 𝑇𝑃𝐶 are observations where the prediction is equal to the actual class. 

In addition to accuracy, Area Under Curve (AUC) is also a concern, as it reflects how well the model 

can distinguish between positive and negative classes. The higher the AUC value, the better the model's 

ability in terms of sensitivity and specificity. As stated by Zak et al., the Area Under the Curve (AUC) is a 

measure that utilizes probabilities derived from the model to assess its effectiveness in classifying samples 

not present in the dataset. The closer the AUC gets to 1, the higher the model's performance [9]. Furthermore, 

the training time of the model is also an important metric, where evaluation is done to determine how fast the 

model can complete the training process. A shorter training time can indicate the model's efficiency in 

learning the data. Model size is also considered one of the important factors in model efficiency and flexibility 

in practical problems. The use of these metrics provides a complete picture of the quality and performance of 

the developed model.  

After obtaining the data, statistical testing will determine the best model for each dataset. This process 

involves a series of statistical tests. The initial stage involves the Shapiro-Wilk test to evaluate the distribution 

of the data [27]. Next, ANOVA or Kruskal-Wallis tests will be performed, depending on the identified data 

distribution [28]. Afterward, post hoc tests, such as the Tukey test [29] or Mann-Whitney U test [30] will be 

applied for further analysis. It is important to note that a significance level of 5% (alpha = 0.05) was used 

during this examination. 

 

3. RESULTS AND DISCUSSION 

The results and discussion of this research are compiled using the methods previously described. The 

following is the analysis process carried out by the research methods used. The three datasets were initially 
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divided into 80% for training, 10% for validation, and 10% for testing, as shown in Table 2. Table 2 

illustrates the balanced data variation, with a limited amount of data in the Lymphoma data, a moderate 

amount in the SiPaKMeD data, and a large amount in the Breast Cancer data. This variation shows a fairly 

diverse representation of the three datasets. Before neural network processing, it is imperative to note that all 

image data was uniformly resized to (150 × 150 × 3) and rescaled. 

Table 2. Data Distribution 

Dataset Name 
Number of 

Data 
Train Validation Testing 

Breast Cancer 7783 6226 780 777 

Lymphoma 374 298 40 36 

SiPaKMeD 4049 3237 409 403 

Table 2 illustrates the balanced data variation, with a limited amount of data in the Lymphoma data, a 

moderate amount in the SiPaKMeD data, and a large amount in the Breast Cancer data. This variation shows 

a fairly diverse representation of the three datasets. Before neural network processing, it is imperative to note 

that all image data was uniformly resized to (150 × 150 × 3) and rescaled. 

The method used in the model configuration stage is the research written by Zak et al. [9] to design the 

model architecture. Four models were formed by varying two different layers. The aspects set here include 

the size of the image to be processed, the dimensions of the kernel used, and the number of filters or neurons 

applied to each layer. The notation used to represent these layers is as follows: C for the convolution layer, F 

for the flattened layer, D for the dense layer, and FT for the Fourier transform layer. More detailed information 

on the model characteristics can be found in Table 3. 

Table 3. Model Configuration 

Layer Filter Kernel Size Parameter  Layer Filter Kernel Size Parameter 

CSK  CLK 

1 C 900 5 × 5 68400  1 C 10 32 × 32 30730 

2 F - - 0  2 F - - 0 

3 D 3 - 57553203  3 D 3 - 424833 

Total Parameter 57621603  Total Parameter 455563 

FM  iFM 

1 FT - - 67500  1 FT - - 67500 

2 F - - 0  2 F - - 0 

3 D 3 - 405003  3 D 3 - 405003 

Total Parameter 472503  Total Parameter 472503 

Table 3 is written using only the Lymphoma dataset with three classes. The results show that in the 

first layer of the Convolution Small Kernel (CSK), the number of parameters formed is proportional to the 

Fourier Model. However, in the convolution large kernel (CLK), the accumulated parameters seem more or 

less comparable to the Fourier Model. Although there may be slight variations when applying to other datasets 

due to the different number of classes, the concept of comparison remains consistent across the evaluated 

datasets. 

The evaluation process involves assessing the training results across four datasets through various 

statistical tests. The Shapiro-Wilk test is first used to determine data distribution, followed by the ANOVA 

test for normal data or the Kruskal-Wallis test for non-normal data. Post hoc tests (Tukey or Mann-Whitney 

U) are then applied based on the data distribution. The analysis focuses on accuracy, AUC, and training time, 

with bolded values indicating optimal results and underlined values showing no significant difference from 

the optimal result. Table 4 summarizes the average accuracy results. 

Table 4. Accuracy Results for Each Model 

Dataset Name CSK CLK FM iFM 

Breast Cancer 68,21 ± 0 68,21 ± 0 77,19 ± 1,48 83,94 ± 1,4 
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Dataset Name CSK CLK FM iFM 

Lymphoma 36,25 ± 0,62 36,11 ± 0 41,67 ± 6,11 52,08 ± 9,4 

SiPaKMeD 26,92 ± 9,5 20,58 ± 0,06 71,94 ± 2,69 79,69 ± 2,09 

Table 4 shows that the model with the Fourier transform layer dominates in terms of accuracy. This 

can be seen from the high consistency of results for both Fourier models on each of the evaluated datasets. 

The iFM model using the Fourier transform layer achieved the highest accuracy, while the FM model ranked 

second for all tested datasets. Furthermore, the average AUC results are presented in Table 5. 

Table 5. Area Under the Curve (AUC) Results for Each Model 

Dataset Name CSK CLK FM iFM 

Breast Cancer 50,45 ± 4,68 50 ± 0 74,02 ± 3,97 86,55 ± 2,19 

Lymphoma 54,28 ± 6,64 49,73 ± 0,92 59,94 ± 5,08 69,14 ± 8,16 

SiPaKMeD 56,5 ± 9,4 50 ± 0 88,93 ± 1,89 95,54 ± 0,69 

Table 5 shows that iFM is superior in all these comparisons. Meanwhile, the results for CSK and CLK 

are not satisfactory over a wide range of data. Although the FM model is inferior to iFM, it is good enough 

to outperform the model using the convolution layer. Furthermore, the average training time in seconds for 

each model is presented in Table 6. 

Table 6. Results of Average Time Per Epoch in Seconds for Each Model 

Dataset Name CSK CLK FM iFM 

Breast Cancer 71,51 ± 13 68,12 ± 13,8 76,37 ± 13,7 75,4 ± 13,76 

Lymphoma 4,49 ± 1 4,12 ± 1,23 3,95 ± 1,01 3,83 ± 1,17 

SiPaKMeD 22,04 ± 0,79 8,91 ± 2,78 9,36 ± 2,53 8,12 ± 2,45 

Table 6 shows that iFM appears to have a shorter training time than the other models in most trials. 

However, it should be noted that there is an exception in the Breast Cancer dataset, where CLK outperforms 

the other models in terms of training time efficiency. Meanwhile, FM showed variations in training time 

depending on the dataset. On the other hand, CSK tends to have a longer training time, especially on the 

SiPaKMeD dataset, and requires special attention in terms of training time efficiency. Furthermore, the total 

training time (average time of one epoch × number of epochs) in seconds for each model is presented in 

Table 7. 

Table 7. Results of Total Training Time in Seconds for Each Model 

Dataset Name CSK CLK FM iFM 

Breast Cancer 357,5 ± 64,8 340,6 ± 69,1 645,8 ± 338 725,8 ± 233 

Lymphoma 23,72 ± 6,47 20,92 ± 6,72 29,52 ± 7,6 45,17 ± 28,6 

SiPaKMeD 155,5 ± 40,9 48,68 ± 19,3 75,13 ± 31,8 102,1 ± 49,4 

Table 7 shows that CLK appears to have a shorter training time than the other models in all trials. On 

the other hand, iFM tends to have a longer training time, especially on the Breast Cancer dataset, and requires 

special attention regarding training time efficiency. Furthermore, the model size in kilobytes for each model 

is presented in Table 8. 

Table 8. Model Size for Each Dataset 

Dataset Name CSK CLK FM iFM 

Breast Cancer 450463 KB 3708 KB 3980 KB 3980 KB 

Lymphoma 675280 KB 5367 KB 5562 KB 5562 KB 

SiPaKMeD 1124915 KB 8685 KB 8726 KB 8726 KB 

Table 8 shows variation among the four models, but it is notable in the CSK model that the size of the 

model is too far compared to the other models. When viewed from the smallest size, the CLK model 

outperforms the other models for the entire dataset. However, it should be noted that the size of FM and iFM 

do not vary significantly from CLK for the entire dataset. In terms of layer comparison, it can be said that the 

model with the Fourier transform layer has a more stable and similar size for all tested datasets compared to 
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the convolution layer. This will certainly be useful and important, especially in terms of the efficiency and 

flexibility of the model in practical problems. 

From the above results, it can be observed that there are conditions where the convolution layer 

stagnates or does not show any performance improvement for accuracy and AUC from various experiments. 

This factor is due to the difficulty of the model in learning the data. Although the training time of each epoch 

of the convolution layer may vary, the total training time is relatively short as some epochs do not learn the 

data well, thus ending the learning process sooner. 

On the other hand, the Fourier transform layer consistently performed better in terms of accuracy and 

AUC than the convolution layer. Furthermore, the training process of the Fourier model takes longer than 

that of the convolution layer. The training time per epoch for the Fourier model tends to be shorter, especially 

for the inverse Fourier model. However, the total training time tends to be longer because more epochs are 

required to achieve the optimal level of performance in the model training process. 

 

4. CONCLUSIONS 

From the results and discussion described above, some important conclusions can be drawn that 

illustrate the efficiency and effectiveness of neural network models with convolutional and Fourier transform 

layers in image data classification: 

1. Models with the Fourier transform layer consistently demonstrated superior performance in terms of 

accuracy and AUC compared to those with convolutional layers, with the iFM model achieving the highest 

scores across various datasets. 

2. The iFM model generally had a faster execution time per epoch, except on the Breast Cancer dataset where 

the CLK model was faster. Despite this, the overall training time was the shortest for the CLK model and 

the longest for the iFM model, especially for the Breast Cancer dataset. 

3. Model size analysis indicated that the CLK model was the smallest, while the FM and iFM models were 

similar in size, with the Fourier transform layer showing better stability. 

4. The Fourier transform layer is more effective and efficient in terms of accuracy, execution time, and model 

size stability, underscoring its practical application potential in image data classification. 

5. Limitations of this study include the use of datasets that were not processed on the CPU, simple data 

preprocessing steps, lack of validation methods like cross-validation, and insufficient experimentation 

with hyperparameter tuning. These factors could impact the results and suggest areas for future research. 

Combining Fourier transform and convolutional layers offers a promising direction for developing 

more complex and efficient models for image classification tasks. 
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