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ABSTRACT 

Article History: 
Alzheimer’s disease is one of the brain disorders that can be deadly in older. The disease is 

less treated and less recognized, but Alzheimer’s disease is now a significant public health 

problem. Early detection of the disease can significantly reduce symptoms. However, the 

lack of medical personnel makes handling this disease complex. Therefore, an automatic 
diagnosis of Alzheimer’s disease is needed with a Magnetic Resonance Imaging (MRI) 

examination to get an accurate diagnosis of the disease. This study classified the type of 

Alzheimer’s disease with deep learning methods using the Bayesian Convolutional Neural 

Network (BCNN) and the Variational Inference (VI) technique. It aims to determine image 
classification and accuracy level at the level of Alzheimer’s disease by using 2,400 brain 

MRI images, divided into three classes (non-demented, very mild demented, and mild 

demented) based on severity. The data was acquired from the kaggle.com website. We use 

a dataset scenario of 80% for training and 20% for testing, 100×100 pixels, kernel size 

3×3, and optimizer Adam with epoch 200. The accuracy of the image classification process 

is 80%. The non-demented label predicts that the uncertainty is 0.371, and the other 

uncertainty prediction is 0.002. The ability to anticipate uncertainty enables clinicians to 

make informed decisions regarding the reliability of the model’s output and the need for 
additional validation or confirmation. 
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1. INTRODUCTION 

As per the World Health Organization (WHO), Alzheimer’s disease is the predominant type of 

Dementia, accounting for 60-70% of cases [1]. The majority of these cases manifest in individuals aged 65 

years or above. By 2023, the global prevalence of Dementia is projected to exceed 55 million individuals, 

with over 60% of this population residing in low- and middle-income nations. Presently, the management of 

Alzheimer’s disease solely entails alleviating symptoms, with no pharmaceutical interventions capable of 

providing a cure. The condition of Dementia will have physical, psychological, social, and economic effects 

not only on the individual with Dementia but also on their caregivers, families, and communities. Frequently, 

individuals lack knowledge or comprehension of Dementia, resulting in the stigmatization and challenges 

associated with its diagnosis and treatment. Hence, the identification of Alzheimer’s disease can be 

accomplished through a rapid and uncomplicated system that utilizes an individual's demographic and clinical 

information. 

Integrating advanced technologies, such as magnetic resonance imaging (MRI) and deep learning 

algorithms, has led to notable advancements in diagnosing Alzheimer’s disease. The utilization of digital 

technology and the internet has emerged as viable solutions for addressing these challenges. The utilization 

of Artificial Intelligence (AI) represents a burgeoning domain within scientific inquiry. AI can identify 

objects, offering valuable and streamlined insights, such as identifying disease types through image 

classification. Deep learning techniques, capable of automatically extracting features, can be employed in the 

object recognition process. The Bayesian Neural Network (BNN) is a deep learning technique that can extract 

image features or images. It can classify images, generate uncertainty estimates, and predict by incorporating 

probability elements into the neural network. 

According to [2], applying BCNN in combination with variational inference has demonstrated the 

potential to improve the precision and effectiveness of Alzheimer's disease detection. The techniques above 

utilize deep learning to examine complex patterns within medical images, explicitly focusing on 

neuroimaging applications [3]. CNNs have been utilized in MRI analysis to create frameworks that can 

identify distinct features of Alzheimer's disease from imaging data [4]. Furthermore, the utilization of 

multimodal MRI imaging has yielded significant findings regarding the structural alterations linked to 

Alzheimer's disease, underscoring the significance of employing sophisticated imaging methodologies to 

comprehend the pathology of this ailment [5]. Moreover, research has shown that ensemble learning and 

transfer learning methods are particularly effective in enhancing the categorization of Alzheimer's disease 

based on MRI data [6]. According to [7], these methodologies improve the precision of diagnosis and play a 

significant role in the timely identification of Alzheimer’s disease, a critical aspect for the successful 

management and treatment of the condition. Moreover, incorporating Bayesian techniques in the MRI 

analysis has demonstrated promise in enhancing datasets and the efficacy of classifiers for Alzheimer's 

disease [8]. 

There is an urgent requirement for sophisticated computational methods that yield precise diagnoses 

and provide valuable information regarding the certainty and dependability of predictions. Incorporating 

uncertainty estimation into the model framework, BCNN coupled with VI presents a promising approach to 

tackle this challenge. Nevertheless, despite their potential, the utilization of BCNN with VI in diagnosing 

Alzheimer’s disease from MRI data has not been thoroughly investigated. This study aims to close this divide 

by examining the effectiveness of BCNN with VI in improving the precision and dependability of 

Alzheimer’s disease diagnosis using MRI analysis. This study aims to enhance the diagnostic tools for early 

detection and monitoring of Alzheimer's disease by utilizing the inherent uncertainty estimation capabilities 

of BCNN with VI. 

 

2. RESEARCH METHODS 

2.1 Convolutional Neural Network (CNN) 

The Convolutional Neural Network (CNN) is a type of neural network architecture that operates feed-

forwardly. It consists of multiple convolution layers, which may follow an optional batch unification layer, 

activation function, and normalization. Furthermore, the architecture comprises fully connected layers. The 

image diminishes in size as it traverses the network, primarily due to reaching its maximum capacity. The 
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final layer will present the probability prediction of the class [9]. In mathematical terms, the image that is the 

focus of a CNN is known as a tensor. The terms vector and matrix are frequently employed in the context of 

tensors [10]. The provided image depicts CNN’s architectural design. 

 
 

Figure 1. CNN Architecture [11] 

Convolutional Neural Network (CNN) models can facilitate the development of image classifications 

to predict and classify images. The typical model architecture consists of multiple layers with initial values, 

weights, and biases. Subsequently, it utilizes training data to input weights and biases [9]. The CNN 

architecture comprises feature learning and classification [11]. The initial component of the architecture is 

feature learning, which encompasses multiple layers. The initial layer is called the convolution layer, while 

the subsequent layer is the pooling layer. An activation function is applied to each layer between the first and 

second types. The classification layer comprises multiple layers, with the neurons in each layer fully 

interconnected with previous layers. This layer receives the vector input from the image feature extraction 

layer. According to reference [12], the transformation yields accuracy values for each classification class as 

its output. 

2.1.1 Convolutional Layer 

Once the data is inputted into the CNN layer, it undergoes a convolution process using multiple filters 

to identify image data. The convolution process involves multiplying the dots between the input feature map 

in the image and a filter [13]. Convolution on image data is performed to extract features from the input 

image. Convolutional operations linearly alter the input data, considering the spatial information in the data. 

The selection of the convolution kernel is contingent upon the weights assigned to the layer. The convolution 

kernel can be trained using inputs from the CNN [14]. 

 
           Figure 2. Convolution Operation [14] 

2.1.2 Pooling Layer 

The pooling layer enhances the CNN detection process by reducing the dimensions of the convolution 

map feature through matrix calculations, thereby accelerating the process. Max pooling refers to selecting the 

highest value from the feature map, whereas average pooling involves calculating the average value of the 

feature map. The procedure above occurs within the pooling layer [13]. The predominant method employed 

for pooling layers involves the utilization of a 2x2 filter, which is implemented in a two-step manner and 

applied to every input slice [15]. For instance, when employing pooling (2x2) with a stride of two, the 

algorithm will select the maximum and average values for the 2x2 pixel region during each filter shift. This 

process results in the generation of the subsequent image. 



2426 Nareswari, et. al.    ADVANCEMENTS IN ALZHEIMER’S DIAGNOSIS THROUGH MRI USING BAYESIAN…  

 

 
            Figure 3. Pooling Layer Operation [16] 

2.1.3 Flatten 

Flattening is the process of transforming a matrix into a one-dimensional vector. The feature map 

acquired from the preceding layer is transformed into a one-dimensional vector to facilitate classification 

using the fully connected SoftMax layers [17].  

2.1.4 Fully Connected Layer 

In the CNN, the fully connected layer is the final stage, where all processes are interconnected to 

facilitate computation. Following multiple data mapping layers, the two-dimensional feature map obtained 

from the preceding process is transformed into a one-dimensional format, facilitating classification [13].  

2.1.5 Activation Function 

The activation function is a non-linear function that facilitates modifications in neural network 

operations, enabling data representation at higher dimensions and facilitating classification through 

straightforward pathways. 

1) SoftMax 

The SoftMax activation function is employed to classify multiple classes. The equation in SoftMax is 

expressed in the following form [12].  

𝑓𝑗(𝑍) =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘
𝑘

(1) 

The SoftMax activation algorithm yields more comprehensible outcomes and offers superior 

probabilistic interpretation compared to alternative classification algorithms. SoftMax can be used to 

compute probabilities for all labels. A vector with an accurate value will be extracted from the label and 

transformed into a vector with a range of zero to one. This vector will have a value of one when all the 

vectors are added together [12].  

2) Swish 

The Swish activation function is employed to compute functions within automated search-based learning 

frameworks. The function is smooth, indicating that it does not exhibit abrupt changes in direction, as 

observed in the case of Rectified Linear Unit (ReLU) near 𝑥 =  0. Conversely, the function exhibits a 

gradual curve from 0 to 0 and subsequently increases. It is possible to describe the activation function 

of Swish as follows [18].  

𝑓(𝑥) = 𝑥 ∙ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) =
𝑥

1 + 𝑒𝑥
(2) 

3) Rectified Linear Unit (ReLU) 

ReLU activation is an activation layer on the CNN model that uses the function: 

𝑓(𝑥) = max(0, 𝑥) (3)                   

which means that this function thresholds with a zero value to the pixel value in the input image. With 

this activation, all pixel values in the image that are less than zero will be made 0 [12].  
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       Figure 4. ReLU Activation Function [12] 

2.1.6 ADAM Optimizer 

The Adaptive Moment Optimization (ADAM) algorithm optimizes stochastic objective functions on 

first-order gradients by employing adaptive estimation of low-order moments. The technique above is 

employed to compute the velocity of individual adaptive estimation for parameters that deviate from the 

estimated moments of the initial and subsequent gradients. ADAM has the advantage of having a limited step 

size due to its step size hyperparameters. This allows it to work on sparse gradients and naturally perform 

step-size annealing forms without requiring the objective to be stationary [19]. The mathematical formula for 

ADAM is as follows [20]:  

𝑥𝑡 = 𝛿1 ∗  𝑥𝑡−1 − (1 − 𝛿1) ∗ 𝑔𝑡 (4)             

𝑦𝑡 = 𝛿2 ∗  𝑦𝑡−1 − (1 − 𝛿2) ∗ 𝑔𝑡
2 (5)   

△ 𝜔𝑡 = −𝜂
𝑥𝑡

√𝑦𝑡+𝜖
∗ 𝑔𝑡 (6)   

𝜔𝑡+1 = 𝜔𝑡 +△ 𝜔𝑡 (7) 

                   
 

2.2 Bayesian Neural Network 

Bayes’ theorem is a significant theory in statistics that allows for the inference of the probable outcome 

of an event. Conventional machine-learning models incorporate uncertainty by integrating machine-learning 

theory and Bayesian theory [21]. In evaluating models, epistemic uncertainty is a valuable tool [22]. 

Epistemic uncertainty is a direct indicator of the dependability of predictions and can be employed as a metric 

for assessing the robustness of a model [21]. The uncertainty resulting from not knowing the actual function 

that generates the data or more specifically the uncertainty surrounding the model parameters is known as 

epistemic uncertainty [23]. Increasing training data can decrease epistemic uncertainty, but not aleatoric 

uncertainty. This is crucial for applications related to safety crises that use tiny data sets [24]. Furthermore, 

BNN can enhance CNN’s performance by reducing uncertainty in both estimate accuracy and prediction 

accuracy. The BNN is considered a feasible approach for probabilistic learning due to its utilization of a 

precise and efficient deep variance learning algorithm [25]. The diagram presented below illustrates the 

ability of BNN to evaluate epistemic uncertainty by manipulating weight parameters and biases in 

Convolutional Neural Networks, such as Artificial Neural Networks (ANN), from fixed values to probability 

distributions [21]. 

 
Figure 5. Illustration of ANN and BNN [26] 
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Based on Figure 5 each weight of ANN has a fixed value while each weight of BNN is given by a 

distribution 𝑤𝑖,𝑗. 

The BCNN algorithm involves a series of steps to calculate the uncertainty in classification predictions. 

These steps are as follows [21]:  

1) There is a dataset D = {𝑥𝑖 , 𝑦𝑖} and 𝑃(𝐷|𝑤) follows on a categorical distribution. 

𝑃(𝐷|𝑤) = ∏ 𝑃(𝑦𝑖|𝑥𝑖 , 𝑤)

𝑛

𝑖=1

(8) 

2) Maximize likelihood to get Maximum Likelihood Estimation (MLE) on parameters w. 

𝑤𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑤

∑ 𝑙𝑜𝑔 𝑃(𝑦𝑖|𝑥𝑖 , 𝑤)𝑛
𝑖  (9) 

3) Estimate the Maximum a Posteriori (MAP) of w to maximize the likelihood of the dataset multiplied by 

the distribution 𝑃(𝑤). 

𝑤𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑤

∑ 𝑙𝑜𝑔 𝑃(𝑦𝑖
|𝑥𝑖, 𝑤) + 𝑙𝑜𝑔 𝑃(𝑤)

𝑛

𝑖

(10) 

The 𝑤-point estimates provided by MLE and MAP are not always reliable. The purpose of using 

Bayesian inference is to find the posterior weight distribution based on training data 𝑃(𝑤|𝐷), so that 

uncertainty parameters can be quantified. 

4) 𝑃(𝑤|𝐷) in analytical solutions are not found, hence the approximate algorithm is considered by being 

used to estimate the 𝑞(𝑤|𝜃) posterior distribution with Kullback-Leibler (KL) divergence. 

𝐾𝐿[𝑞(𝑤|𝜃)𝑃(𝑤|𝐷)] = 𝐸𝑞(𝑤|𝜃)
𝑙𝑜𝑔

𝑞(𝑤|𝜃)

𝑃(𝑤|𝐷)
(11) 

However, the manual calculation of KL divergence may be complicated depending on the model and 

prior distribution or posterior distribution used, then use Tensor Flow Probability (TFP) to facilitate the 

calculation of KL divergence in VI. 

5) If VI is considered a normal distribution, then it 𝜃 can represent as. This is in line with the concept of 

𝜃 = 𝜇, 𝜎2 a normal mean field where the researcher treats each parameter independently in a variational 

distribution. The goal of VI is to find distributions from variational distributions to approximate posterior 

distributions that are difficult to solve and therefore cannot be optimized in complex models such as 

BNN. In this case, it is often optimized using a destination function based on the estimation of stochastic 

gradients in Monte Carlo samples (MC) of a variational distribution called Monte Carlo Variational 

Inference (MCVI) [27].  

6) BNN prediction system using Bayes’ theorem based on training model. 
 

𝑃(𝑦|𝑥, 𝐷) = ∫ 𝑃(𝑦|𝑥, 𝑤)𝑃(𝑤|𝐷)𝑑𝑤 (12) 

 

3. RESULTS AND DISCUSSION 

3.1 Alzheimer’s Dataset 

This study used a dataset comprising 2400 brain MRI images obtained from individuals diagnosed 

with Alzheimer's disease. The images were categorized into three distinct classes: non-demented, very mildly 

demented, and mildly demented. Alzheimer’s disease is defined as individuals with type A who do not exhibit 

initial indications of Alzheimer's disease. Thus, they are not impacted by cognitive deterioration that 

surpasses the typical range for their age and condition. Type B individuals exhibit initial indications of 

Alzheimer’s disease, resulting in mild cognitive impairments such as challenges in retaining new information 

or recalling existing information. However, they are still capable of performing routine tasks without 

substantial hindrances. Type C individuals exhibit distinct cognitive symptoms that significantly impact their 

capacity to engage in daily activities, including challenges in information retention, cognitive clarity, and 

other related functions. 
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Nevertheless, they can operate autonomously with aid or modifications. The data was acquired from 

the kaggle.com website, specifically from the Alzheimer’s Dataset repository, which consists of four classes 

of images. The repository owner, Sarvesh Dubey, is identified as the owner [28]. Researchers opt to utilize 

three classes out of a total dataset of 6400, consisting of 2400 samples, due to one class having a smaller 

sample size than the others. This approach ensures class balance and mitigates potential bias in the 

classification model. Presented below is an MRI scan depicting the cerebral region of an individual diagnosed 

with Alzheimer’s disease. Presented below is an MRI scan depicting the brain of individuals diagnosed with 

Alzheimer’s disease. 

 
Figure 6. Brain MRI (A: Non-Demented, B: Very Mild Demented, C: Mild Demented) 

3.2 Pre-processing 

The purpose of this stage is to standardize all the features present in the brain MRI image to facilitate 

the analysis. In this stage, the brain MRI images are subjected to feature equalization to facilitate the 

subsequent analysis. The element equalization process is employed to enhance the clarity of brain MRI 

images, as the elements within each image exhibit variations. Subsequently, the image sizes are adjusted to 

100x100 pixels. Subsequently, we performed dataset preprocessing by employing thresholding, which 

assigns a numerical value ranging from 0 to 1 for black images and 0 to 255 for white images. Using the brain 

MRI image, we employ the grayscale color mode to generate a gray hue. 

The dataset comprises 800 data points for each of the three classes: non-dementia, very mild dementia, 

and mild dementia. We partitioned datasets in a ratio of 80% for training data and the remaining for testing. 

In addition, 10% of the training data will be allocated for validation. BCNN design utilizes data training and 

validation for division purposes, while model testing is conducted using data testing. There are 1728 data for 

training, 480 data for testing, and 192 data in the validation process. 

3.3 Bayesian Convolutional Neural Network Model  

We conducted multiple experiments during this phase to compare the models with the BCNN to obtain 

optimal classification outcomes. Determining the optimal BCNN architecture involves researchers assessing 

the significance of data usage scenarios, selecting appropriate optimizers, and comparing epoch values. We 

employ Adam’s optimizer type due to its demonstrated efficacy in training neural network models. The 

accuracy and loss values will be determined by researchers using both the training and validation data. We 

utilize this comparison to determine the optimal BCNN model, ensuring it achieves a sufficiently high level 

of accuracy. In this comparative analysis of epoch values, we employed epoch values ranging from 2 to 200. 

The subsequent findings pertain to the comparison of epoch values. 

Table 1. Accuracy and Loss of Training Process 

Epoch 
Training Validation 

Accuracy Loss Accuracy Loss 

2 0.3478 6.4322 0.3385 6.4013 

10 0.5220 5.6538 0.3073 6.3355 

50 0.6696 3.5785 0.2552 5.7546 

90 0.8513 1.6856 0.3542 4.8659 

150 0.9404 0.7627 0.3021 6.4123 

200 0.9583 0.5532 0.5469 3.4294 
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According to the data presented in Table 1., the epoch of 200 yields the highest accuracy for both 

testing and validation. Two key performance indicators accuracy and loss are used to evaluate a classification 

model's effectiveness. A score of 1 denotes extreme accuracy, whereas a score of 0 denotes extreme 

inaccuracy in the model. The second is the loss value, which displays the deviation between the goal value 

and the model prediction. Better predictions are shown by lower loss values. A low loss number is ideal since 

it shows how effectively the model works with training data and how well it can generalize to new data. 

Conversely, a large loss number suggests that the model's predictions deviate significantly from the intended 

outcome, which may be the result of underfitting, inaccurate hyperparameter settings, or unrepresentative 

data. This suggests that the model may perform poorly in terms of prediction and struggle to generalize. The 

provided diagram illustrates the architecture of the BCNN. 

 
Figure 7. BCNN Architecture Scheme 

This study employs the CNN model consisting of four convolutional layers and three pooling layers to 

extract features from brain MRI images. The optimal model is achieved with a total parameter count of 

102,726. The calculation for determining the best model is as follows: 

Table 2. Best Model Parameter 

No Name Size Parameter 

1. Conv2d_Reparameterization_1 (None, 100, 100, 16) 320 

2. MaxPool2d_3 (None, 50, 50, 16) 0 

3. Conv2d_Reparameterization_2 (None, 50, 50, 32) 9280 

4. MaxPool2d_4 (None, 25, 25, 32) 0 

5. Conv2d_4 (None, 25, 25, 64) 18496 

6. MaxPool2d_5 (None, 12, 12, 64) 0 

7. Conv2d_5 (None, 12, 12, 128) 73856 

8. Global_MaxPool2d_1 (None, 128) 0 

9. Dense_Reparameterization (None, 3) 774 

10. One_Hot_Categorical (None, 3) 0 

Total Params: 102726 

Trainable Params: 102726 

Non - Trainable Params: 0 

The convolution process will decrease the image’s dimensions, resulting in the final image size of 

12x12 pixels with 128 filter parameters before entering the entire connection. Subsequently, the matrix data 

will undergo a conversion into a vector format to facilitate the complete connection process, thereby yielding 

a total of 128 neurons that are eligible for forwarding. In addition, the Monte Carlo estimation of KL 

Divergence will be employed in the Variational Inference technique to categorize images into three distinct 

classes in patients diagnosed with Alzheimer’s disease based on pre-trained models. 
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3.4 Model Evaluation 

A confusion matrix is a matrix with dimensions 𝑁 × 𝑁 that is utilized to assess the accuracy of a 

prediction model. 𝑁 represents the total number of classes in the target image. The confusion matrix is utilized 

in the machine learning model to compare the actual target values. The table will display the quantity of 

training data for both the accurate and inaccurate target classification. The confusion matrix results obtained 

are as follows. 

 
            Figure 8. Confusion Matrix Results 

It is possible to compute the precision, recall, and f1-score values for every class using the confusion 

matrix shown in Figure 8. In particular, the values of precision, recall, and f1-score for very mild dementia 

are 0.74, 0.69, and 0.71, whereas the values for no dementia are 0.94, 0.74, and 0.83. For mild dementia, the 

f1-score, recall, and precision were 0.76, 0.97, and 0.80. The classification accuracy achieved using the 

optimal BCNN model with 480 testing data is 0.80. According to the accuracy findings, the correct prediction 

for the image of very mild dementia is 111, the prediction rate for non-dementia is 118, and the prediction 

rate for mild dementia is 155. 

3.5 Uncertainty Prediction 

The outcome of the optimal BCNN model is additionally employed to annotate data from external 

sources. This procedure aims to determine the categorization of novel unidentified data observed through 

image patterns. Uncertainty is anticipated through the utilization of stochastic elements present within the 

dataset. The objective of this procedure is to introduce a degree of uncertainty in the projected label, which 

can be elucidated as an approximation of the model’s confidence level in its predictions. The graph has been 

modified to display a 95% confidence interval for the estimated probability of the model. We conducted an 

uncertainty prediction by utilizing the sample images of non-dementia within the dataset. 

 
Figure 9. Uncertainty Prediction (1) 

Figure 9. displays a longer green bar, indicating a high level of uncertainty in the prediction, with a 

value of 0.371. Therefore, as the stem increases, so does the level of uncertainty. If the plot exhibits red bars, 

it signifies that the class in question is not predictable, whereas green bars indicate a predicted class. In the 
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prediction, the model assigns a probability of 0 (non-dementia), indicating that the model is confident that 

the image is non-dementia. 

 
Figure 10. Uncertainty Prediction (2) 

By employing various non-dementia images, it has been observed that the presence of shorter green 

bars signifies a low level of uncertainty in prediction, specifically at 0.002. Therefore, as the bar increases, 

so does the level of uncertainty. Red bars in the plot indicate an unpredictability of the class, while green bars 

indicate a predictability of the class. The prediction reveals that the model assigns a probability of 0 (non-

dementia), indicating the model’s belief that the image is not affected by any degeneration. 

 

4. CONCLUSIONS 

To effectively classify different types of Alzheimer’s disease (non-dementia, very mild dementia, and 

mild dementia), it is crucial to identify the optimal parameter architecture. This entails obtaining a dataset 

scenario with a ratio of 80% for training, a pixel size of 100x100, a kernel size of 3x3, and an Adam optimizer. 

According to Adam, the most optimal epoch is Epoch 200, achieving an accuracy rate of 80% for testing. 

The best model’s uncertainty prediction yields a value of 0.371 for the non-dementia label. In contrast, the 

second prediction of uncertainty, also based on the best model, yields a value of 0.002 for the non-dementia 

label. 
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